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TWO DIMENSIONAL VALUE-DISTRIBUTION OF CUBIC HECKE L-FUNCTIONS

AMIR AKBARY AND ALIA HAMIEH

ABSTRACT. We establish the two-dimensional asymptotic distributions of the logarithm and log-

arithmic derivative of L-functions associated with a family of cubic Hecke characters. A crucial

ingredient in the proof of our main result is an exponential decay estimate for the characteristic

functions of the distributions.

1. INTRODUCTION

A classical result of Bohr and Jessen [2] states that for fixed σ ą 1{2 and varying t, the values

log ζpσ` itq of the Riemann zeta function ζpσ` itq have a limiting distribution with a continuous

density. The original proof of this theorem uses the properties of the sums of convex curves. In an

important paper [10] Jessen and Wintner described a general framework for Bohr-Jessen’s theorem.

Their method uses ideas from probability theory such as sums of independent random variables

and infinite convolutions together with Fourier analysis machinery. Using this approach in [10,

Theorem 19] they provided detailed information on the distribution function in Bohr-Jessen’s the-

orem; for example, among other things they proved that the density function is continuous and

possesses continuous partial derivatives of all orders. Hattori and Matsumoto [7] extended this

line of research by studying the tail of the distribution of log ζpσ ` itq for 1
2

ă σ ă 1. Their

results were strengthened by Lamzouri [11] and Lamzouri, Lester, and Radziwiłł [13] in which

the authors also investigate the discrepancy between the distributions of log ζpσ ` itq and that of

an adequately chosen random variable log ζpσ, Xq.

Over the past few decades similar probabilistic approaches have been used in studying the value

distribution of other families of L-functions. A notable case is the family of quadratic twists in

which one studies the values of certain real functions attached to quadratic characters χd (such as

log |Lps, χdq|, argLps, χdq, or Lp1, χdqq, as d varies over the fundamental discriminants (see, for

example, [3], [4], [5], [6], and [11]). Here Lps, χq denotes the Dirichlet L-function associated

with the Dirichlet character χ. We note that in spite of the vast literature on the one-dimensional

distributions of such families, the two dimensional distributions for discrete families of L-functions

are not widely studied. An example of a two-dimensional distribution theorem for the family

Lps, χdq is proved by Stankus [15].

More recently Ihara and Matsumoto initiated a systematic study, in spirit of Jessen-Wintner the-

ory, of two-dimensional value-distributions of logarithms and logarithmic derivatives of families

of L-functions. The following is proved in [8, Theorem 1.1 and Proposition 3.5].

Theorem 1.1 (Ihara-Matsumoto). Let Ĥ f be the set of all primitive characters modulo f and πpmq
be the number of primes not exceeding m. Let σ :“ ℜpsq ą 1{2 be fixed and let |dw| “ pdxdyq{2π.

Then there exists a continuous non-negative density function Mσpwq such that

lim
mÑ8

1

πpmq
ÿ

2ă f ďm
f prime

1

f ´ 2
#tχ f P Ĥ f ; log Lps, χ f q P S u “

ż

S

Mσpwq |dw|,
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where S Ă C is either compact or complement of a compact set. Moreover, Mσpw̄q “ Mσpwq and

Mσpwq tends to zero as |w| Ñ 8.

In [8, Section 3] the density function Mσpwq is explicitly constructed as an infinite convolution

of the local density functions given in [8, formula (24)]. In addition it is proved that the Fourier

transform of Mσpwq is continuous in σ and w, and for each σ ą 1{2 it belongs to Lt for any

1 ď t ď `8 (see [8, Proposition 3.4]).

Jessen-Wintner approach can also be applied to the study of the two-dimensional value distri-

bution of families of Hecke L-functions on number fields or on function fields. For example, let

k be Q or an imaginary quadratic number field. For an integral ideal f, denote by Hf the ray class

group of k of conductor f. Let If be the group of fractional ideals in k relatively prime to f, and let

if : If Ñ Hf be the projection map. For χf P Ĥf (the collection of primitive characters of Hf) and

an integral ideal a, set χfpaq “ χfpifpaqq if pa, fq “ 1, and χfpaq “ 0 otherwise. Let Lps, χfq be the

Hecke L-function associated to χf. Let Lps, χfq be either log Lps, χfq or L1{Lps, χfq. The following

is proved in [9, Theorem 4].

Theorem 1.2 (Ihara-Matsumoto). Let σ :“ ℜpsq ą 1{2 be fixed and let |dw| “ pdxdyq{2π.

Assume the generalized Riemann hypothesis (GRH) for Lps, χfq. Let Npfq denote the norm of the

ideal f. Then there exists a density function Mσpwq, satisfying properties described in Theorem

1.1, such that

lim
NpfqÑ8
f prime

1

Npfq#tχf P Ĥf; Lps, χfq P S u “
ż

S

Mσpwq |dw|,

where S Ă C is either compact or complement of a compact set.

In this paper we establish an unconditional theorem in spirit of the above result for a family of

cubic twists. Let k “ Qp
?

´3q and ζ3 “ exp p2πi{3q. Then Ok “ Zrζ3s is the ring of integers of k.

Let

C :“ tc P Ok; c ‰ 1 is square free and c ” 1 pmod x9yqu .
For c P C, let χc “

`
.

c

˘
3

be the cubic residue character modulo c. We set

Lps, χcq “
#

log Lps, χcq (Case 1),

L1{Lps, χcq (Case 2).

In [1, Theorem 1.4] we proved a one-dimensional distribution result forℜpLpσ, χcq for a fixed

σ ą 1
2

as c varies in C. The goal of this paper is to determine the two-dimensional limiting

distribution of the values Lps, χcq “ ℜ pLps, χcqq ` iℑ pLps, χcqq for a fixed s withℜpsq ą 1
2

as c

varies in C. More precisely, we prove the following theorem.

Theorem 1.3. Let s P C be such thatℜpsq ą 1
2
. Let NpYq be the number of elements c P C with

norm not exceeding Y. Then the following statements hold:

(i) There exists a smooth probability density function Mspt1, t2q such that

lim
YÑ8

1

NpYq# tc P C : Npcq ď Y, ℜ pLps, χcqq ď z1, and ℑ pLps, χcqq ď z2u

“
ż z1

´8

ż z2

´8
Mspt1, t2q dt1dt2.

The function Mspt1, t2q and its partial derivatives tend to zero as |t1 ` it2| Ñ 8. If 1
2

ă ℜpsq ă 1,

then Mspt1, t2q is real analytic and moreover, in (Case 2), Mspt1, t2q is real analytic for ℜpsq “ 1

as well. In addition, it satisfies Mspt1,´t2q “ Ms̄pt1, t2q.
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(ii) The asymptotic distribution function Fspzq can be constructed as an infinite convolution over

prime ideals p of k,

Fspzq “ *p Fs,ppzq,
where

Fs,ppzq “
#

1
Nppq`1

δpzq ` 1
3

´
Nppq

Nppq`1

¯ ř2

j“0 δ´ap, j pzq if p ∤ x3y,
δ´ap,0pzq if p | x3y.

Here δapzq :“ δpz ´ aq, δ is the Dirac distribution, and

ap, j :“ ap, jpsq “

$
&
%

logp1 ´ ζ j

3
Nppq´sq in (Case 1),

ζ
j

3
log Nppq

Nppqs´ζ j

3

in (Case 2).

(iii) The density function Mspt1, t2q can be constructed as the inverse Fourier transform of the

characteristic function ϕFs
py1, y2q, which in (Case 1) is given (for y “ y1 ` iy2) by

ϕFs
py1, y2q “ exp

`
´iℜ

`
ȳ log

`
1 ´ 3´s

˘˘˘

ˆ
ź

p∤x3y

˜
1

Nppq ` 1
` 1

3

Nppq
Nppq ` 1

2ÿ

j“0

exp

˜
´iℜ

˜
ȳ log

˜
1 ´

ζ
j

3

Nppqs

¸¸¸¸

and in (Case 2) is given by

ϕFs
py1, y2q “ exp

ˆ
´iℜ

ˆ
ȳ log 3

3s ´ 1

˙˙

ˆ
ź

p∤x3y

˜
1

Nppq ` 1
` 1

3

Nppq
Nppq ` 1

2ÿ

j“0

exp

˜
´iℜ

˜
ȳζ

j

3
log Nppq

Nppqs ´ ζ j

3

¸¸¸
.

Although the proof of Theorem 1.3 shares common features with the proof of Theorem 1.2, it

differs from it in several aspects. Firstly, we employ the zero-density estimates for L-functions to

prove our theorem unconditionally, without the assumption of the GRH. Secondly, the proof of

the existence of the distributions in Theorem 1.2 relies on the construction of the characteristic

functions of the distributions via the infinite convolutions of certain explicitly given local density

functions (see [9, Section 4, Theorem M̃ (iv) and references there]). In contrast, we establish the

existence of the distribution functions in Theorem 1.3 by describing the characteristic functions

of the distributions as some complex moments of the related L-functions and then construct the

associated density functions by an appeal to the exponential decay of the characteristic functions

(see Lemma 1.4).

Here we describe the strategy of our proof of Theorem 1.3. We say that f possesses an asymp-

totic distribution function F if

lim
NÑ8

#tn ď N; f1pnq ď z1 and f2pnq ď z2u
N

“ Fpz1, z2q,

for all pz1, z2q in which Fpp´8, z1q ˆ p´8, z2qq “ Fpp´8, z1s ˆ p´8, z2sq (see Section 2 for more

explanation). The following lemma outlines our approach in proving Theorem 1.3.

Lemma 1.4. Let f “ f1 `i f2 be a complex valued arithmetic function and let y “ y1 `iy2. Suppose

that, as N Ñ 8, the functions
8ÿ

n“1

eipy1 f1pnq`y2 f2pnqqe´n{N

8ÿ

n“1

e´n{N
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converge uniformly on any sphere |y| ď a to a function rMpy1, y2q. Then f possesses an asymptotic

distribution function F. In this case, rM is the characteristic function of F. Moreover, if

(1.1)

ˇ̌
ˇ rMpy1, y2q

ˇ̌
ˇ ď exp p´η |y|γq ,

for some η, γ ą 0, then Fpz1, z2q “
şz1

´8
şz2

´8 Mpt1, t2q dt1dt2 for a smooth function M, where

(1.2) Mpz1, z2q “ p1{2πq2

ż

R2

exp p´ipz1y1 ` z2y2qq rMpy1, y2q dy1dy2.

In addition if (1.1) holds for γ ě 1, then M is real analytic.

We shall establish the following two propositions so as to verify that the conditions of Lemma

1.4 are satisfied by the family Lps, χcq “ ℜpLps, χcqq ` iℑpLps, χcqq described in Theorem 1.3.

Proposition 1.5. Let

N˚pYq “
ÿ

cPC
expp´Npcq{Yq.

Fix s with σ “ ℜpsq ą 1
2

and y “ y1 ` iy2 P C. Let rMspy1, y2q be the function given by one of the

product formulas in Theorem 1.3. Then

lim
YÑ8

1

N˚pYq

‹ÿ

cPC
exp pipy1ℜpLps, χcqq ` y2ℑpLps, χcqqqq expp´Npcq{Yq “ ĂMspy1, y2q

uniformly on any sphere |y| ď a, where ‹ indicates that the sum is over c such that Lps, χcq ‰ 0.

Proposition 1.6. Fix s with σ “ ℜpsq ą 1
2
. As |y| Ñ 8 , we have

ˇ̌
ˇĂMspy1, y2q

ˇ̌
ˇ ď

$
&
%

exp

´
´C1|y| 1

σ plog |y|q´1
¯

(Case 1)

exp
´

´C2|y| 1
σ plog |y|q 1

σ
´1

¯
(Case 2),

where C1 and C2 are positive constants that depend only on σ.

In establishing value-distribution results a rapid decay estimate for the characteristic function of

the distribution is almost always a crucial part of the proof regardless of the approach employed

(see for example [5, Section 6], [8, Formula (38)], [14, Lemma 4], [1, Proposition 1.11], and [13,

Section 6]). A common approach in proving results similar to Proposition 1.6 uses an interpre-

tation of the characteristic function of the distribution as the characteristic function of an infinite

sum of certain independent random variables. Then the desired decay estimate of the characteristic

function can be explored by exploiting the information on the statistical parameters, such as mean

and variance, of the associated random variables (see for example [12, Proposition 2.1]). In this

paper we prove the stated decay estimate in Proposition 1.6 by an elementary method in spirit of

[1, Proposition 1.11], which itself is based on ideas from [14] and [16]. We further note that, in

proving [1, Proposition 1.11] the authors adapted the method used in [14] in a relatively straight-

forward manner to get the desired upper bound for the characteristic function of the 1-dimesional

distribution of the family ℜ pLpσ, χcqq for a fixed σ ą 1
2

as c varies in C. In fact, one can easily

check that the characteristic function of the distribution given in [1, Theorem 1.4] can be expressed

as ϕFσp2y1, 0q, where ϕFs
py1, y2q is given in Theorem 1.3 above. While the proof of the exponential

decay of ϕFs
py1, y2q is inspired by similar ideas, the details are more subtle and intricate owing to

the nature of the characteristic function ϕFs
py1, y2q when t “ ℑpsq and y2 are non-zero.

In Section 2, after reviewing preliminaries on distribution functions, we prove Lemma 1.4 and

show how it together with Propositions 1.5 and 1.6 imply Theorem 1.3. The proof of Proposition

1.5 is given in Section 3, and it follows to a great extent the proof of [1, Proposition 1.10]. The

proof of Proposition 1.6, however, requires novel ideas and is given in full detail in Section 4.
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2. DISTRIBUTIONS AND PROOFS OF LEMMA 1.4 AND THEOREM 1.3

Let Rk be the k-dimensional Euclidean space equipped with the Lebesgue measure. Let F be

a probability measure defined on the Borel σ-algebra B of Rk. The set function F : B Ñ r0, 1s
sending B to FpBq is called a distribution function in Rk. A set E P B is called a continuity set of

the distribution function F if

FpIntpEqq “ FpĒq.
Here IntpEq is the collection of the interior points of E and Ē denotes the closure of E. One can

show that there is a countable set C :“ CpFq Ă R such that ra1, b1s ˆ ¨ ¨ ¨ ˆ rak, bks is a continuity

set of F for all ai, bi R C. We say that the distribution function F is absolutely continuous if there

is a Lebesgue integrable function Mptq :“ Mpt1, ¨ ¨ ¨ , tkq defined on Rk such that

FpEq “
ż

E

Mptq dt

for any Borel set E P B.

For y “ py1, ¨ ¨ ¨ , ykq and z “ pz1, ¨ ¨ ¨ , zkq, set xy, zy “ y1z1 ` ¨ ¨ ¨ ` ykzk. The characteristic

function ϕF of the distribution function F is defined as the Fourier transform of the measure F.

More precisely,

ϕFpyq :“
ż

Rk

eixy,zy dFpzq.

We say that a sequence pFnq8
n“1

of distribution functions converges weakly to a distribution

function F, and we write Fn Ñ F, if FnpEq Ñ FpEq for all continuity sets E of F. We know that

Fn Ñ F if and only if ż

Rk

f pzq dFnpzq Ñ
ż

Rk

f pzq dFpzq

for any bounded continuous function f pzq on Rk.

We can show that the correspondence between the class of all distribution functions and the class

of their characteristic functions is a one to one correspondence (see [10, p. 53]). Moreover, the

following important theorem exhibits a close connection between the convergence of a sequence of

distribution functions and the corresponding sequence of their characteristic functions. This theo-

rem is essentially an elaborate version of Levy’s continuity theorem for k-dimensional distributions

as described by Jessen and Wintner in [10, pp. 53 and 54].

Theorem 2.1. (i) Let pFnq8
n“1 be a sequence of distribution functions, and let pϕFn

q8
n“1 be the

sequence of their characteristic functions. Then Fn converges weakly to a distribution function F

if and only if ϕFn
converges uniformly to ϕ in every sphere |y| ď a. Furthermore, in this case, ϕ is

the characteristic function of F, i.e., ϕ “ ϕF.

(ii) In part (i) if yaϕpyq P L1 for an integer a ě 0, then F is absolutely continuous and its density

Mptq, given by the inversion formula

(2.1) Mptq “ p1{2πqk

ż

Rk

e´ixt,yyϕpyq dt,

is continuous, approaches zero as |t| Ñ 8, and in the case a ą 0 has continuous partial deriva-

tives of order ď a, which may be obtained by differentiation under integral sign of (2.1), that

approach zero as |t| Ñ 8.

(iii) In part (i) if

ϕpyq “ O pexpp´A|y|qq ,
as |y| Ñ 8, for some A ą 0, then F is absolutely continuous and its density Mptq “ Mpt1, ¨ ¨ ¨ , tkq
is real analytic. In other words there is a neighbourhood of each point pt0

1
, ¨ ¨ ¨ , t0

k
q P Rk in which

Mptq can be developed as a power series in terms of t1 ´ t0
1
, ¨ ¨ ¨ , tk ´ t0

k
.



6 AMIR AKBARY AND ALIA HAMIEH

We say that f pnq “ f1pnq ` i f2pnq possesses an asymptotic distribution function F, if

lim
NÑ8

#tn ď N; f1pnq ď z1 and f2pnq ď z2u
N

“ Fpz1, z2q,

for all pz1, z2q in which Ez1,z2
“ p´8, z1s ˆ p´8, z2s is a continuity set of F.

Theorem 2.1 is the key tool in the proof of Lemma 1.4 that provides a criteria for proving the

asymptotic distribution of the real and imaginary parts of the values of the cubic twists.

Proof of Lemma 1.4. The proof is a direct consequence of Theorem 2.1 and a Tauberian theorem

of Hardy and Littlewood (see [1, Proof of Lemma 1.9] for details). �

The convolution of two distribution functions F and G is the distribution function F ˚ G defined

by

pF ˚ Gqpzq “
ż

Rk

Fpz ´ yq dGpyq “
ż

Rk

Gpz ´ yq dFpyq.

One can show that ϕF˚G “ ϕFϕG. A distribution function F is called the infinite convolution of

distribution functions F1, F2, . . . , Fn, . . . if F1 ˚ F2 ˚ . . . ˚ Fn converges weakly to F as n Ñ 8. In

such case we write F “ ˚iFi. The following theorem provides a necessary and sufficient condition

for the existence of infinite convolutions.

Theorem 2.2. The infinite convolution ˚iFi exists if and only if there exists δ ą 0 such that for

|y| ď δ we have

lim
m,nÑ8

ź

mă jďn

ϕF j
pyq “ 1.

Proof. See [10, Theorem 1 and footnote on page 53]. �

We now have all the ingredients needed for the proof of our main theorem.

Proof of Theorem 1.3. The proof comes as an application of Lemma 1.4 together with Proposition

1.5 and Proposition 1.6. In Proposition 1.5 we show that

lim
YÑ8

1

N˚pYq

‹ÿ

cPC
exp pipy1ℜpLps, χcqq ` y2ℑpLps, χcqqqq expp´Npcq{Yq “ ĂMspy1, y2q

uniformly on any sphere |y| ď a, where ĂMspy1, y2q is first obtained as the following Dirichlet series

(see Section 3 for derivation and definition of λy):

rMspy1, y2q “
ÿ

r1,r2ą0

λypp1 ´ ζ3qr1qλypp1 ´ ζ3qr2q

3r1s`r2s

ˆ
ÿ

a,b,mĂOk

gcdpabm,p3qq“1

gcdpa,bq“1

λypa3mqλypb3mq

Npaq3sNpbq3sNpmq2σ
ź

p|abm
p prime

`
1 ` Nppq´1

˘ .

Following the computations in [1, Section 4.6], one can verify that rMspy1, y2q admits the product
expansion given by

rMspy1, y2q “ exp
`
´iℜ

`
ȳ log

`
1 ´ 3´s

˘˘˘

ˆ
ź

p∤x3y

˜
1

Nppq ` 1
`

1

3

Nppq

Nppq ` 1

2ÿ

j“0

exp

˜
´iℜ

˜
ȳ log

˜
1 ´

ζ
j

3

Nppqs

¸¸¸¸
(2.2)
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in (Case 1) and

rMspy1, y2q “ exp

ˆ
´iℜ

ˆ
ȳ log 3

3s ´ 1

˙˙

ˆ
ź

p∤x3y

˜
1

Nppq ` 1
`

1

3

Nppq

Nppq ` 1

2ÿ

j“0

exp

˜
´iℜ

˜
ȳζ

j

3
log Nppq

Nppqs ´ ζ
j

3

¸¸¸
(2.3)

in (Case 2). It follows from Lemma 1.4 that Lps, χcq has an asymptotic distribution function Fs

with the characteristic function ϕFs
“ rMs. In view of Proposition 1.6, we also see that Lemma 1.4

establishes the existence of a smooth probability density function Mspt1, t2q for which Fspz1, z2q “şz1

´8
şz2

´8 Mspt1, t2q dt1dt2, and

Mspz1, z2q “ p1{2πq2

ż

R2

exp p´ipz1y1 ` z2y2qq rMspy1, y2q dy1dy2.

One can verify that Mspt1, t2q “ Mspt1, t2q, i.e., Ms is real, using the fact that ϕFs
py1, y2q “

ϕFs
p´y1,´y2q. That Mspt1,´t2q “ Ms̄pt1, t2q follows from the identity ϕFs

py1,´y2q “ ϕFs̄
py1, y2q.

This establishes parts (i) and (iii).

In order to get part (ii) in which Fs is given as an infinite convolution, we apply Theorem 2.2 in

addition to the observation that

ϕFs
“

ź

p

ϕFs ,p,

where the local factors ϕFs ,p are determined by the product formulae (2.2) and (2.3). See [1, Proof

of Theorem 1.4] for details. �

3. PROOF OF PROPOSITION 1.5

The arguments in the proof of [1, Proposition 1.10] can be followed mutatis mutandis to establish

Proposition 1.5. In this section, we provide an outline for the proof. We refer the reader to the

corresponding parts in [1] for all the details while highlighting the differences and the necessary

adjustments whenever needed.

In what follows we only consider (Case 2) since (Case 1) can be treated similarly. We start by

making the following simple but crucial observation. For y “ y1 ` iy2, we set

Iyps, χcq “ exp pipy1ℜpLps, χcqq ` y2ℑpLps, χcqqqq

“ exp

ˆ
i

2
pyLps, χcqq ` yLps, χcqq

˙

“ exp

ˆ
i

2
pyLps, χcqq

˙
exp

ˆ
i

2
pyLps, χcqq

˙
.

Forℜpsq ą 1, employing the Euler product representation of Lps, χcq yields

exp

ˆ
i

2
pyLps, χcqq

˙
“

ÿ

aĂOk

λypaqχcpaq
Npaqs

,

where λy is an arithmetic function defined on the integral ideals of k as follows:

λypaq “
ź

p

λyppαpq, λyppαpq “ Gαp p´iy log Nppqq ,

and the function Grpuq is determined using the generating series

exp

ˆ
ut

1 ´ t

˙
“

8ÿ

r“0

Grpuqtr,
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for u, t P C with |t| ă 1. The reader is referred to the proof of [1, Lemma 4.1] for a detailed

description of λy in (Case 1) and (Case 2).

This allows us to write Iyps, χcq forℜpsq ą 1 as an absolutely convergent Dirichlet series. More

precisely, we get

Iyps, χcq “
ÿ

a,bĂOk

λypaqλypbqχcpab2q
NpaqsNpbqs

.

For fixed A ą 0 and sufficiently small ǫ ą 0, let RY,ǫ,A be the rectangle with the vertices 1 `
iplog Yq2A, p1`ǫq{2` iplog Yq2A, p1`ǫq{2´ iplog Yq2A, and 1´ iplog Yq2A. We say that an element

c P C is inZc, if Lps, χcq does not have a zero in RY,ǫ,A. Otherwise, it is inZ. Thus, C “ ZYZc.

Note thatZ andZc depend on Y , ǫ, and A.

For s and y as in Proposition 1.5, we have

(3.1)

‹ÿ

cPC
Iyps, χcq expp´Npcq{Yq “

‹ÿ

cPZc

`
‹ÿ

cPZ
“

ÿ

cPZc

`
‹ÿ

cPZ
.

Observe that |Iyps, χcq| “ 1. Thus, by [1, Lemma 4.3], an application of a zero-density estimate,

we have
‹ÿ

cPZ
Iyps, χcq expp´Npcq{Yq !

‹ÿ

cPZ
expp´Npcq{Yq ! Yδ,

for some δ ă 1. The application of this estimate in (3.1) yields

(3.2)

‹ÿ

cPC
Iyps, χcq expp´Npcq{Yq “

ÿ

cPZc

Iyps, χcq expp´Npcq{Yq ` OpYδq.

For c P Zc, we express Iyps, χcq as the sum of an infinite series with rapidly decaying terms and

a certain contour integral. In fact, following the proof of [1, Lemma 4.3], we get

Iyps, χcq “
ÿ

a,bĂOk

λypaqλypbqχcpab2q
NpaqsNpbqs

exp

ˆ
´Npabq

X

˙

´ 1

2πi

ż

LY,ǫ,A

exp

ˆ
i
y

2
Lps ` u, χcq

˙
exp

´
i
y

2
Lps ` u, χcq

¯
ΓpuqXudu,(3.3)

where LY,ǫ,A “ L1 ` L2 ` L3 ` L4 ` L5. Let σ “ ℜpsq. Then here L1 is the vertical half-line given

by p1 ´ σ ` ǫ

2
q ` itplog YqA for t ě 1, L2 is the horizontal line segment given by t ` iplog YqA for

´ ǫ
2

ď t ď p1 ´ σ ` ǫ

2
q, L3 is the vertical line-segment given by ´ ǫ

2
` itplog YqA for ´1 ď t ď 1,

L4 is the horizontal line segment given by t ´ iplog YqA for ´ ǫ
2

ď t ď p1 ´ σ ` ǫ

2
q, and L5 is the

vertical half-line given by p1 ´ σ` ǫ

2
q ` itplog YqA for t ď ´1.

Combining (3.2) and (3.3) yields

(3.4)

‹ÿ

cPC
Iyps, χcq expp´Npcq{Yq “ pIq ´ pIIq ` pIIIq ` OpYδq,

where

pIq “
ÿ

cPC

˜
ÿ

a,bĂOk

λypaqλypbqχcpab2q
NpaqsNpbqs

exp

ˆ
´Npabq

X

˙¸
exp

ˆ
´Npcq

Y

˙
,

pIIq “
ÿ

cPZ

˜
ÿ

a,bĂOk

λypaqλypbqχcpab2q
NpaqsNpbqs

exp

ˆ
´Npabq

X

˙¸
exp

ˆ
´Npcq

Y

˙
,
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and

pIIIq “
ÿ

cPZc

ˆ
´ 1

2πi

ż

LY,ǫ,A

exp

ˆ
i
y

2
Lps ` u, χcq

˙
exp

´
i
y

2
Lps ` u, χcq

¯
ΓpuqXudu

˙

ˆ exp

ˆ
´Npcq

Y

˙
.

The calculations in Sections 4.2, 4.3 and 4.4 in [1] apply with very minor and obvious changes

to evaluate the sums pIq, pIIq and pIIIq respectively. It suffices to mention that rMspy1, y2q comes

from the contribution of cubes to pIq. In fact, following the calculations in [1, Section 4.2] we get

pIq “ 3ress“1ζkpsq
4|Hx9y|ζkp2q Y rMspy1, y2q ` opYq,

where

rMspy1, y2q “
ÿ

r1,r2ą0

λypp1 ´ ζ3qr1qλypp1 ´ ζ3qr2q
3r1s`r2s

ˆ
ÿ

a,b,mĂOk

gcdpabm,p3qq“1

gcdpa,bq“1

λypa3mqλypb3mq
Npaq3sNpbq3sNpmq2σ

ź

p|abm
p prime

`
1 ` Nppq´1

˘

“ exp

ˆ
´iℜ

ˆ
y log 3

3s ´ 1

˙˙

ˆ
ÿ

a,b,mĂOk

gcdpabm,p3qq“1

gcdpa,bq“1

λypa3mqλypb3mq
Npaq3sNpbq3sNpmq2σ

ź

p|abm
p prime

`
1 ` Nppq´1

˘ .

One can then verify that rMspy1, y2q admits the product expansion given in Theorem 1.3 (see [1,

Section 4.6] for details). Combining the estimates obtained for pIq, pIIq and pIIIq as done in [1,

Section 4.5] yields

‹ÿ

cPC
Iyps, χcq expp´Npcq{Yq “ 3ress“1ζkpsq

4|Hx9y|ζkp2q Y rMspy1, y2q ` opYq, as Y Ñ 8.

Observe that the convergence is uniform on any sphere |y| ď a. This is mainly due to the estimate

λypaq !ǫ,a Npaqǫ (see [9, p. 92]) which holds for any ǫ ą 0 and all |y| ď a where a is a positive

real number.

Finally, by noting that N˚pYq “ 3ress“1ζkpsq
4|Hx9y|ζkp2q Y ` OpY

1
2

`ǫq (see [1, Lemma 3.3]), we complete the

proof of Proposition 1.5.

4. PROOF OF PROPOSITION 1.6

In this section we prove Proposition 1.6 in (Case 2). The proof of the proposition in (Case 1) is

similar.
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We will show that

rMspy1, y2q “ exp

ˆ
´iℜ

ˆ
ȳ log 3

3s ´ 1

˙˙

ˆ
ź

p∤x3y

˜
1

Nppq ` 1
` 1

3

Nppq
Nppq ` 1

2ÿ

j“0

exp

˜
´iℜ

˜
ȳζ

j

3
log Nppq

Nppqs ´ ζ j

3

¸¸¸

satisfies

ˇ̌
ˇ rMspy1, y2q

ˇ̌
ˇ ď exp

´
´C|y| 1

σ plog |y|q 1
σ

´1
¯

, as |y| Ñ 8.

Let p be a prime ideal such that p ∤ x3y and consider the corresponding Euler factor

rMs,ppy1, y2q “ 1

Nppq ` 1
` 1

3

Nppq
Nppq ` 1

2ÿ

j“0

exp

˜
´iℜ

˜
ȳζ

j

3
log Nppq

Nppqs ´ ζ j

3

¸¸
.

Using the Maclaurin series of the function f pxq “ x
1´x

for |x| ă 1 and noting that

|eib ´ eia| ď |b ´ a|, we get

rMs,ppy1, y2q “ Gppy, sq ` O

ˆ |y| log Nppq
Nppq2σ

˙
,(4.1)

where

Gppy, sq “ 1

Nppq ` 1
` Nppq

3pNppq ` 1q exp

ˆ
´i log Nppqy1ℜpNppq´itq ` y2ℑpNppq´itq

Nppqσ
˙

` Nppq
3pNppq ` 1q exp

ˆ
´i log Nppqy1ℜpζ3Nppq´itq ` y2ℑpζ3Nppq´itq

Nppqσ
˙

` Nppq
3pNppq ` 1q exp

ˆ
´i log Nppq

y1ℜpζ2
3
Nppq´itq ` y2ℑpζ2

3
Nppq´itq

Nppqσ
˙
.

Before we proceed further, we need the following lemma, the proof of which will be given at

the end of this section.

Lemma 4.1. Let ε ą 0 be given. Set aσ,εpyq “ |y| log |y|
σp π

6
´εq and bσ,εpyq “ |y| log |y|

σp π

9p
?

3{2q `εq . As |y| Ñ 8, we

have 0.097 ă |Gppy, sq| ă 0.9978 for all prime ideals p with aσ,εpyq ď Nppqσ ď bσ,εpyq.

We now use Lemma 4.1 to establish the proof of Proposition 1.6 in (Case 2). It is clear thatˇ̌
ˇ rMs,ppy1, y2q

ˇ̌
ˇ ď 1 for all p. Using (4.1), we get, as |y| Ñ 8,

ˇ̌
ˇ rMspy1, y2q

ˇ̌
ˇ ď

ź

p

aσ,εpyqďNppqσďbσ,εpyq

ˇ̌
ˇ rMs,ppy1, y2q

ˇ̌
ˇ

“
ź

p

aσ,εpyqďNppqσďbσ,εpyq

ˇ̌
ˇ̌Gppy, sq ` O

ˆ |y| log Nppq
Nppq2σ

˙ˇ̌
ˇ̌

“
ź

p

aσ,εpyqďNppqσďbσ,εpyq

|Gppy, sq|

ˆ
ź

p

aσ,εpyqďNppqσďbσ,εpyq

ˆ
1 ` O

ˆ |y| log Nppq
Nppq2σ

˙˙
,(4.2)
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where the last equality follows from the fact that Gppy, sq is bounded away from zero in the speci-

fied range for Nppq as seen in Lemma 4.1. Notice that

(4.3)
ź

p

aσ,εpyqďNppqσďbσ,εpyq

ˆ
1 ` Oσ

ˆ |y| log Nppq
Nppq2σ

˙˙
“ exp

´
O

´
|y|´1` 1

σ log |y|
¯¯
,

as |y| Ñ 8. Moreover, we have

Πσpyq “ Π
´

pbσ,εpyqq 1
σ

¯
´ Π

´
paσ,εpyqq 1

σ

¯
"σ,ε |y| 1

σ plog |y|q 1
σ

´1
, as y Ñ 8,

where Πpxq is the number of prime ideals in Ok whose norm is less than or equal to x.

Using this observation along with the upper bound for Gppy, sq given in Lemma 4.1, we see that

for |y| large enough, we have
ź

p

aσ,εpyqďNppqσďbσ,εpyq

|Gppy, sq| ď exp pΠσpyq logp0.9978qq

ď exp

´
´C|y| 1

σ plog |y|q 1
σ

´1
¯
,(4.4)

where C is a positive constant that depends only on σ and ε. Therefore, applying the estimates

(4.3) and (4.4) in (4.2) yields
ˇ̌
ˇ rMspy1, y2q

ˇ̌
ˇ ď expp´C|y| 1

σ plog |y|q 1
σ

´1q,

as desired.

Finally, we prove Lemma 4.1.

Proof of Lemma 4.1. We write

Gppy, sq “ 1

Nppq ` 1

` Nppq
3pNppq ` 1q exp

ˆ
´i log Nppqy1ℜpNppq´itq ` y2ℑpNppq´itq

Nppqσ
˙

Hppy, sq,

where

Hppy, sq “ 1 ` exp

ˆ
´i log Nppqy1ℜppζ3 ´ 1qNppq´itq ` y2ℑppζ3 ´ 1qNppq´itq

Nppqσ
˙

` exp

ˆ
´i log Nppq

y1ℜppζ2
3 ´ 1qNppq´itq ` y2ℑppζ2

3 ´ 1qNppq´itq
Nppqσ

˙
.

Observe that ζ3 ´ 1 “
?

3e´i π
6 and ζ2

3 ´ 1 “
?

3ei π
6 . Let y1 “ |y|ℜpeiθy q and y2 “ |y|ℑpeiθy q for

some θy P r0, 2πs. It follows that

Hppy, sq “ 1 ` exp

˜
´i log Nppq

?
3|y|

Nppqσ cospθy ` π

6
` t log Nppqq

¸

` exp

˜
´i log Nppq

?
3|y|

Nppqσ cospθy ´ π

6
` t log Nppqq

¸
.

Using the identity

|1 ` eiax ` eibx| “
c

3 ` 4 cospa ` b

2
xq cospa ´ b

2
xq ` 2 cosppa ´ bqxq,
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we have

|Gppy, sq| ď 1

Nppq ` 1
` Nppq

3pNppq ` 1q |Hppy, sq|,

where we can write

|Hppy, sq| “
b

3 ` 2Jppy, sq,
with

Jppy, sq “ 2 cos

´
3|y| log Nppq

2Nppqσ cospθy ` t log Nppqq
¯

cos

´ ?
3|y| log Nppq

2Nppqσ sinpθy ` t log Nppqq
¯

` cos
´ ?

3|y| log Nppq
Nppqσ sinpθy ` t log Nppqq

¯
.

For |y| large enough, we are interested in the prime ideals p for which

Hppy, sq ă 3.

To this end, we show that for a positive proportion of primes we have

(4.5) cos
´

3|y| log Nppq
2Nppqσ cospθy ` t log Nppqq

¯
cos

´ ?
3|y| log Nppq

2Nppqσ sinpθy ` t log Nppqq
¯

ă 1.

We must also show that for those prime ideals, we have |Gppy, sq| is bounded away from zero.

Consider the following sets

A “
8ď

N“0

ˆ´
2Nπ ´ π

6
, 2Nπ ` π

6

¯
Y

ˆ
2Nπ ` 5π

6
, 2Nπ` 7π

6

˙˙

and

B “
8ď

N“0

ˆ„
2Nπ ` π

6
, 2Nπ` 5π

6


Y

„
2Nπ ` 7π

6
, 2Nπ` 11π

6

˙
.

Now let p be such that

(4.6)
π

9p
?

3{2q
ă |y| log Nppq

Nppqσ ă π
6
.

Given a prime ideal p that satisfies (4.6), we consider two cases.

1. θy ` t logpNppqq P A:

Assume that θy `t logpNppqq P
`
2Nπ ´ π

6
, 2Nπ ` π

6

˘
for some non-negative integer N. It follows

that
π

6
ă 3|y| log Nppq

2Nppqσ cospθy ` t log Nppqq ă π
4
.

Hence, ?
2

2
ă cos

´
3|y| log Nppq

2Nppqσ cospθy ` t log Nppqq
¯

ă
?

3

2
,

and so (4.5) holds. In particular, we get

(4.7) |Gppy, sq| ă 0.9799.

Moreover,

0 ă
?

3|y| log Nppq
2Nppqσ sinpθy ` t log Nppqq ă π

?
3

24
,
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and so

cos
´ ?

3|y| log Nppq
2Nppqσ sinpθy ` t log Nppqq

¯
ą cospπ

?
3

24
q.

It follows that Jppy, sq ą
?

2 cosp
?

3π

24
q ´ 1 “ 0.378.... Hence,

|Gppy, sq| ě Nppq
3pNppq ` 1q

b
3 ` 2Jppy, sq ´ 1

Nppq ` 1

ą Nppq
3pNppq ` 1q

b
3 ` 2p0.378q ´ 1

Nppq ` 1

ą 0.097.(4.8)

A similar result holds if θy ` t logpNppqq P
`
2Nπ ` 5π

6
, 2Nπ` 7π

6

˘
for some non-negative integer

N since the cosine function is even.

2. θy ` t logpNppqq P B:

Assume that θy`t logpNppqq P
“
2Nπ ` π

6
, 2Nπ` 5π

6

‰
for some non-negative integer N. It follows

that
π

18
ă

?
3|y| log Nppq

2Nppqσ sinpθy ` t log Nppqq ă
?

3π

12
.

Hence,

cos

ˆ ?
3π

12

˙
ă cos

´ ?
3|y| log Nppq

2Nppqσ sinpθy ` t log Nppqq
¯

ă cos

´
π

18

¯
,

and so (4.5) holds. In particular, we get

(4.9) |Gppy, sq| ă 0.9978.

Moreover, ˇ̌
ˇ̌3|y| log Nppq

2Nppqσ cospθy ` t log Nppqq
ˇ̌
ˇ̌ ă

?
3π

8
,

and so

cos

´
3|y| log Nppq

2Nppqσ cospθy ` t log Nppqq
¯

ą cosp
?

3π

8
q.

It follows that Jppy, sq ą 2 cosp
?

3π

8
q cosp

?
3π

12
q ´ 1 “ 0.3977.... Hence,

|Gppy, sq| ě Nppq
3pNppq ` 1q

b
3 ` 2p0.3977q ´ 1

Nppq ` 1
ą 0.099.(4.10)

If θy `t logpNppqq P
“
2Nπ ` 7π

6
, 2Nπ ` 11π

6

‰
for some non-negative integer N, a similar result holds

since the cosine function is even.

To finish the proof, observe that as |y| Ñ 8, we have

|y| log |y|
σpπ

6
´ εq ă Nppqσ ă |y| log |y|

σp π

9p
?

3{2q ` εq ùñ π

9p
?

3{2q
ă |y| log Nppq

Nppqσ ă π
6
,

for any ε ą 0. Setting aσ,εpyq “ |y| log |y|
σp π

6
´εq and bσ,εpyq “ |y| log |y|

σp π

9p
?

3{2q `εq , we deduce that for all prime

ideals p with aσ,εpyq ď Nppqσ ď bσ,εpyq, we have

0.097 ă |Gppy, sq| ă 0.9978,

as |y| Ñ 8. �
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