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TWO DIMENSIONAL VALUE-DISTRIBUTION OF CUBIC HECKE L-FUNCTIONS
AMIR AKBARY AND ALIA HAMIEH

ABSTRACT. We establish the two-dimensional asymptotic distributions of the logarithm and log-
arithmic derivative of L-functions associated with a family of cubic Hecke characters. A crucial
ingredient in the proof of our main result is an exponential decay estimate for the characteristic
functions of the distributions.

1. INTRODUCTION

A classical result of Bohr and Jessen [2] states that for fixed o > 1/2 and varying ¢, the values
log {(o + it) of the Riemann zeta function {(o + it) have a limiting distribution with a continuous
density. The original proof of this theorem uses the properties of the sums of convex curves. In an
important paper [10] Jessen and Wintner described a general framework for Bohr-Jessen’s theorem.
Their method uses ideas from probability theory such as sums of independent random variables
and infinite convolutions together with Fourier analysis machinery. Using this approach in [10,
Theorem 19] they provided detailed information on the distribution function in Bohr-Jessen’s the-
orem; for example, among other things they proved that the density function is continuous and
possesses continuous partial derivatives of all orders. Hattori and Matsumoto [7] extended this
line of research by studying the tail of the distribution of log (o + it) for % < o < 1. Their
results were strengthened by Lamzouri [11] and Lamzouri, Lester, and Radziwilt [13] in which
the authors also investigate the discrepancy between the distributions of log {(o- + if) and that of
an adequately chosen random variable log (o, X).

Over the past few decades similar probabilistic approaches have been used in studying the value
distribution of other families of L-functions. A notable case is the family of quadratic twists in
which one studies the values of certain real functions attached to quadratic characters y, (such as
log |L(s, xa)|, argL(s, xa), or L(1,x,)), as d varies over the fundamental discriminants (see, for
example, [3], [4], [5], [6], and [11]). Here L(s,y) denotes the Dirichlet L-function associated
with the Dirichlet character y. We note that in spite of the vast literature on the one-dimensional
distributions of such families, the two dimensional distributions for discrete families of L-functions
are not widely studied. An example of a two-dimensional distribution theorem for the family
L(s, x4) is proved by Stankus [15].

More recently Ihara and Matsumoto initiated a systematic study, in spirit of Jessen-Wintner the-
ory, of two-dimensional value-distributions of logarithms and logarithmic derivatives of families
of L-functions. The following is proved in [8, Theorem 1.1 and Proposition 3.5].

Theorem 1.1 (Thara-Matsumoto). Let H  be the set of all primitive characters modulo f and r(m)
be the number of primes not exceeding m. Let o := R(s) > 1/2 be fixed and let |dw| = (dxdy)/2n.
Then there exists a continuous non-negative density function M, (w) such that

1 1 n

lim — ——#{y,€ Hy; logL(s,xr) €S sz(,w dw|,

Jim oy, 2 g € A ogLlney) €5} = | Mo (o)
f prime
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where S < C is either compact or complement of a compact set. Moreover, M,(w) = M,(w) and
M, (w) tends to zero as |w| — .

In [8, Section 3] the density function M, (w) is explicitly constructed as an infinite convolution
of the local density functions given in [8, formula (24)]. In addition it is proved that the Fourier
transform of M, (w) is continuous in o and w, and for each o > 1/2 it belongs to L' for any
1 <t < 40 (see [8, Proposition 3.4]).

Jessen-Wintner approach can also be applied to the study of the two-dimensional value distri-
bution of families of Hecke L-functions on number fields or on function fields. For example, let
k be Q or an imaginary quadratic number field. For an integral ideal f, denote by H; the ray class
group of k of conductor {. Let I; be the group of fractional ideals in k relatively prime to f, and let
i - I — H; be the projection map. For y; € H; (the collection of primitive characters of H;) and
an integral ideal a, set x;(a) = x;(is(a)) if (a,f) = 1, and x;(a) = O otherwise. Let L(s, x;) be the
Hecke L-function associated to y;. Let L(s, y;) be either log L(s, x;) or L' /L(s, x;). The following
is proved in [9, Theorem 4].

Theorem 1.2 (Ihara-Matsumoto). Let o := R(s) > 1/2 be fixed and let |dw| = (dxdy)/2n.
Assume the generalized Riemann hypothesis (GRH) for L(s, x;). Let N(f) denote the norm of the
ideal §. Then there exists a density function M,(w), satisfying properties described in Theorem
1.1, such that
1
lim ——#{y: € H:; L(s, esS —JM dw
m N {xi € Hy; L(s.x1) €S} ) ldwl,

f prime

where S < C is either compact or complement of a compact set.

In this paper we establish an unconditional theorem in spirit of the above result for a family of
cubic twists. Let k = Q(+/—3) and {3 = exp (27i/3). Then O, = Z[{;] is the ring of integers of k.
Let

C:={ce Oy ¢ # lissquare free and c = 1 (mod (9))}.

ForceC, lety, = (;) , be the cubic residue character modulo c. We set

_ JlogL(s,x.) (Casel),
Lisxe) = {L’/L(s, Yo (Case?2).

In [1, Theorem 1.4] we proved a one-dimensional distribution result for R (L(c, x.) for a fixed
o > % as ¢ varies in C. The goal of this paper is to determine the two-dimensional limiting
distribution of the values L(s, x.) = R (L(s,x.)) + iJ (L(s, x.)) for a fixed s with R(s) > 1 asc

varies in C. More precisely, we prove the following theorem.

Theorem 1.3. Let s € C be such that R(s) > 3. Let N(Y) be the number of elements ¢ € C with
norm not exceeding Y. Then the following statements hold:

(i) There exists a smooth probability density function M(t,,t,) such that

lim ;# {ceC:N(c) <Y, R(L(s,xc)) <z, and I (L(s,x.)) < z2}

s N(Y)

21
= J f M(ty, 1) dtidt,.
—00 —00

The function My(t,,1,) and its partial derivatives tend to zero as |t; + ity| — o0. If2 <R(s) <1
then M(t,,1t;) is real analytic and moreover, in (Case 2), M(t1,t;) is real analytic for R(s) =
as well. In addition, it satisfies M(t;, —t,) = M;(t,, ).

1
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(ii) The asymptotic distribution function F(z) can be constructed as an infinite convolution over
prime ideals p of k,
Fy(z) = % Fip(2),

1 N(p) 2 .
Fyp(z) = {N(”l)+‘6(z) +3 (N(v)p+1> 2i=00-a,;(z) Pt 3),
5_%0( ) lfp | <3>
Here 6,(z) := 6(z — a), 6 is the Dirac distribution, and
log(1 — ZIN(p)™*)  in(Case 1),

p.j o= Ay j(5) = 4 glogN(p) in (Case 2)
NGy —2] .

where

(iii) The density function M(t,,t,) can be constructed as the inverse Fourier transform of the
characteristic function ¢r (y1,y2), which in (Case 1) is given (fory = y; + iy,) by

or,(y1,2) = exp (—iR (Flog (1 —37")))

I 1 N 2 Z
me L3NG+ 1 Z""(‘“(“"%“N@f))))

and in (Case 2) is given by

SOFN()’I,)’Z) = &xp (_i% (zslo—gi)>
1 sel1ogN(p)
};3[><N(v)+ +1Z p< < (p)_é))).

Although the proof of Theorem 1.3 shares common features with the proof of Theorem 1.2, it
differs from it in several aspects. Firstly, we employ the zero-density estimates for L-functions to
prove our theorem unconditionally, without the assumption of the GRH. Secondly, the proof of
the existence of the distributions in Theorem 1.2 relies on the construction of the characteristic
functions of the distributions via the infinite convolutions of certain explicitly given local density
functions (see [9, Section 4, Theorem M (iv) and references there]). In contrast, we establish the
existence of the distribution functions in Theorem 1.3 by describing the characteristic functions
of the distributions as some complex moments of the related L-functions and then construct the
associated density functions by an appeal to the exponential decay of the characteristic functions
(see Lemma 1.4).

Here we describe the strategy of our proof of Theorem 1.3. We say that f possesses an asymp-
totic distribution function F if

. #{n <N fi(n) <z and fi(n) < 2}
lim
N— N
for all (z;,z2) in which F((—00,21) x (—0,22)) = F((—00,z1] % (—%, z2]) (see Section 2 for more
explanation). The following lemma outlines our approach in proving Theorem 1.3.

= F(z1,22),

Lemma 1.4. Let f = fi+if, be a complex valued arithmetic function and let y = y, +iy,. Suppose
that, as N — oo, the functions

a0
el fia42sale) =/

n=1

0

Ze—n/N

n=1
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converge uniformly on any sphere |y| < a to a function M (y1,¥2). Then f possesses an asymptotic
distribution function F. In this case, M is the characteristic Jfunction of F. Moreover, if

(1.1) W(yl,yz)) <exp(—n /),

for some n,y > 0, then F(z1,2,) = §"' 2 M(t1, 1) dnidt, for a smooth function M, where

(1.2) M(z1,22) = (1/2”)2J exp (—i(ziy1 + 222)) M(y1,y2) dyidys.
R2

In addition if (1.1) holds fory > 1, then M is real analytic.

We shall establish the following two propositions so as to verify that the conditions of Lemma
1.4 are satisfied by the family L(s,x.) = R(L(s,x.)) + iI(L(s, x.)) described in Theorem 1.3.

Proposition 1.5. Let
= > exp(=N(c)/Y).
ceC
Fix s with o = R(s) > % andy =y, + iy, € C. Let Ms(yl,yz) be the function given by one of the
product formulas in Theorem 1.3. Then

Jim N* Zep (1R (L(5,x0)) + 023 (L(5x))) exp(—N(e)/Y) = My, y2)

cEC
uniformly on any sphere |y| < a, where x indicates that the sum is over ¢ such that L(s, x.) # 0.

Proposition 1.6. Fix s with o = R(s) > 3. As [y| — 0, we have

N exp (~Cilyl* (loglsl) ™)  (Case 1)
’M3<yl’y2)’ < 1 1
exp (—Calyf* (log )7 ') (Case 2),
where C and C, are positive constants that depend only on o.

In establishing value-distribution results a rapid decay estimate for the characteristic function of
the distribution is almost always a crucial part of the proof regardless of the approach employed
(see for example [5, Section 6], [8, Formula (38)], [14, Lemma 4], [1, Proposition 1.11], and [13,
Section 6]). A common approach in proving results similar to Proposition 1.6 uses an interpre-
tation of the characteristic function of the distribution as the characteristic function of an infinite
sum of certain independent random variables. Then the desired decay estimate of the characteristic
function can be explored by exploiting the information on the statistical parameters, such as mean
and variance, of the associated random variables (see for example [12, Proposition 2.1]). In this
paper we prove the stated decay estimate in Proposition 1.6 by an elementary method in spirit of
[1, Proposition 1.11], which itself is based on ideas from [14] and [16]. We further note that, in
proving [1, Proposition 1.11] the authors adapted the method used in [14] in a relatively straight-
forward manner to get the desired upper bound for the characteristic function of the 1-dimesional
distribution of the family R (L(c, x.)) for a fixed o > 1 as ¢ varies in C. In fact, one can easily
check that the characteristic function of the distribution given in [1, Theorem 1.4] can be expressed
as ¢r, (2y1,0), where ¢, (y1,y2) is given in Theorem 1.3 above. While the proof of the exponential
decay of ¢r, (y1,y2) is inspired by similar ideas, the details are more subtle and intricate owing to
the nature of the characteristic function ¢r (y;,y,) when ¢t = J(s) and y, are non-zero.

In Section 2, after reviewing preliminaries on distribution functions, we prove Lemma 1.4 and
show how it together with Propositions 1.5 and 1.6 imply Theorem 1.3. The proof of Proposition
1.5 is given in Section 3, and it follows to a great extent the proof of [1, Proposition 1.10]. The
proof of Proposition 1.6, however, requires novel ideas and is given in full detail in Section 4.
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2. DISTRIBUTIONS AND PROOFS OF LEMMA 1.4 AND THEOREM 1.3

Let R* be the k-dimensional Euclidean space equipped with the Lebesgue measure. Let F be
a probability measure defined on the Borel o-algebra 8 of RX. The set function F : 8 — [0, 1]
sending B to F(B) is called a distribution function in R*. A set E € B is called a continuity set of
the distribution function F if

F(Int(E)) = F(E).

Here Int(E) is the collection of the interior points of E and E denotes the closure of E. One can
show that there is a countable set C := C(F) < R such that [ay, b;] x - -+ x [a, by] is a continuity
set of F for all a;, b; ¢ C. We say that the distribution function F is absolutely continuous if there
is a Lebesgue integrable function M(¢) := M(ty, - - - , ;) defined on R¥ such that

J M(t) dt
for any Borel set E € 8.
Fory = (yi,---,y) and z = (z1, -+ ,z), set (,2) = y121 + -+ + yxzk. The characteristic
function ¢ of the distribution function F is defined as the Fourier transform of the measure F.
More precisely,

¢F@>;:f 9 dF(2).
Rk
o0

We say that a sequence (F,) , of distribution functions converges weakly to a distribution
function F, and we write F,, — F, if F,,(E) — F(E) for all continuity sets E of F. We know that

F, — F if and only if
fﬂmmwﬁffwww
Rk R

for any bounded continuous function f(z) on R

We can show that the correspondence between the class of all distribution functions and the class
of their characteristic functions is a one to one correspondence (see [10, p. 53]). Moreover, the
following important theorem exhibits a close connection between the convergence of a sequence of
distribution functions and the corresponding sequence of their characteristic functions. This theo-
rem is essentially an elaborate version of Levy’s continuity theorem for k-dimensional distributions
as described by Jessen and Wintner in [10, pp. 53 and 54].

Theorem 2.1. (i) Let (F,)" | be a sequence of distribution functions, and let (¢r,)>", be the
sequence of their characterlstlc functions. Then F, converges weakly to a distribution functlon F
if and only if ¢F, converges uniformly to ¢ in every sphere |y| < a. Furthermore, in this case, ¢ is
the characteristic function of F, i.e., ¢ = @F.

(ii) In part (i) if y"¢(y) € L' for an integer a > 0, then F is absolutely continuous and its density
M(t), given by the inversion formula

2.1) M(t) = (1/27r>kf e p(y) dt,

Rk
is continuous, approaches zero as |t| — o, and in the case a > 0 has continuous partial deriva-
tives of order < a, which may be obtained by differentiation under integral sign of (2.1), that
approach zero as |t| — 0.
(iii) In part (i) if
¢(y) = O (exp(—Aly])),

as |y| — oo, for some A > 0, then F is absolutely continuous and its density M(t) = M(ty,- - ,t;)
is real analytic. In other words there is a neighbourhood of each point (t(l), ceey t]?) e R¥ in which
M(t) can be developed as a power series in terms of t; — t(l), cee e — t]?.
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We say that f(n) = fi(n) + if>(n) possesses an asymptotic distribution function F, if

lim #{n < N; fi(n) <z and fo(n) < 22}
N—0o0 N

= F(Zl,Zz),

for all (z1,2,) in which E,, ,, = (—00,z1] x (—o0, 2] is a continuity set of F.
Theorem 2.1 is the key tool in the proof of Lemma 1.4 that provides a criteria for proving the
asymptotic distribution of the real and imaginary parts of the values of the cubic twists.

Proof of Lemma 1.4. The proof is a direct consequence of Theorem 2.1 and a Tauberian theorem
of Hardy and Littlewood (see [1, Proof of Lemma 1.9] for details). |

The convolution of two distribution functions F and G is the distribution function F = G defined
by

(F+G)e) = | Fla=) dG0) = | G-y drp)

One can show that ¢r.¢ = ¢r@s. A distribution function F is called the infinite convolution of
distribution functions Fy, F», ..., F,,... if F{ = F ...« F, converges weakly to F asn — c0. In
such case we write F' = »;F;. The following theorem provides a necessary and sufficient condition
for the existence of infinite convolutions.

Theorem 2.2. The infinite convolution +;F; exists if and only if there exists 6 > 0 such that for

ly| < & we have
Jm, L1 ent) =

m<j<n
Proof. See [10, Theorem 1 and footnote on page 53]. O
We now have all the ingredients needed for the proof of our main theorem.

Proof of Theorem 1.3. The proof comes as an application of Lemma 1.4 together with Proposition
1.5 and Proposition 1.6. In Proposition 1.5 we show that

Zexp i R(L(5xe) +023(L(s,x.)))) exp(—N(€)/¥) = My(y1, y2)

Yoo *
- N LEC

uniformly on any sphere |y| < a, where M, s(¥1,y2) is first obtained as the following Dirichlet series
(see Section 3 for derivation and definition of A,):

v A((1=4)M4 (1 - 85)7)

Ms(yl’yz) = 3ris+ras

r1,r2>0

Az(a®m) A, (63m)
2

womes, N@¥N@E)FNm [T (1+N@)™)
ged(abm,(3))=1 plabm
ged(a,b)=1 p prime

Following the computations in [1, Section 4.6], one can verify that Ms (y1,y2) admits the product
expansion given by

M(y1,y2) = exp (—iR (ﬁlog (1-37)))

X l N() 2 exp | —i ylo *g—g
- D>< ENCERPY "( %<“g<l Nw»»
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in (Case 1) and
- ylog3
Mi(y1,y2) = exp (—m (ﬁsog 1))

1 1 N 2 5/ 1log N(p
(2.3) X H (N 7 + IN (p) ] Z exp (i‘R (37—43 £ (;)>>>

pI(3) () + (0) + 145 N(p)* — &5
in (Case 2). It follows from Lemma 1.4 that £(s, x.) has an asymptotic distribution function F
with the characteristic function ¢z, = M;. In view of Proposition 1.6, we also see that Lemma 1.4
establishes the existence of a smooth probability density function M(#,, t,) for which F(z;,2,) =

Sioo Sizoo Ms(tl, [2) d[ldt2, and

My(a.z) = (120" |

R

exp (—i(ayr + z2y2)) M(y1,y2) dyidys.

One can verify that M,(t;,t,) = M,(t,1,), i.e., M; is real, using the fact that ¢r (y;,y;) =
or,(—=y1,—y2). That My(t;, —t;) = M;(t;,t;) follows from the identity ¢r (vi, —y2) = @r. (y1,2)-
This establishes parts (i) and (iii).
In order to get part (ii) in which F is given as an infinite convolution, we apply Theorem 2.2 in
addition to the observation that
$r, = H‘PFS,D’
p

where the local factors ¢r, , are determined by the product formulae (2.2) and (2.3). See [1, Proof
of Theorem 1.4] for details. O

3. PROOF OF PROPOSITION 1.5

The arguments in the proof of [1, Proposition 1.10] can be followed mutatis mutandis to establish
Proposition 1.5. In this section, we provide an outline for the proof. We refer the reader to the
corresponding parts in [1] for all the details while highlighting the differences and the necessary
adjustments whenever needed.

In what follows we only consider (Case 2) since (Case 1) can be treated similarly. We start by
making the following simple but crucial observation. For y = y; + iy,, we set

Iy(s,xc) = exp (i R(L s, xe)) +323(L(s: xe))))
- oxp ($52(5.0) +3Z00x7)

- oxp (352050 ) e ($0ZGx) ).

For R(s) > 1, employing the Euler product representation of L(s, y.) yields

e (302040 = 5 “

where A, is an arithmetic function defined on the integral ideals of k as follows:
) =T JAE™),  A(0™) = G, (—iylogN(p)),
p

and the function G,(u) is determined using the generating series

ut o
exp (1 — t) = ;}G,(u)ﬂ’
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for u,t € C with |#f| < 1. The reader is referred to the proof of [1, Lemma 4.1] for a detailed
description of A, in (Case 1) and (Case 2).

This allows us to write 1,(s, x.) for R(s) > 1 as an absolutely convergent Dirichlet series. More
precisely, we get

5 A0 ()

PeX) = 2 RNy

a,bc O

For fixed A > 0 and sufficiently small € > 0, let Ry, 4 be the rectangle with the vertices 1 +
i(logY)*, (1+¢€)/2+i(logY)*, (1+€)/2—i(logY)*, and 1 —i(log Y)**. We say that an element
c e Cisin Z¢ if L(s, x.) does not have a zero in Ry, 4. Otherwise, it is in Z. Thus, C = Z u Z°.
Note that Z and Z¢ depend on Y, €, and A.

For s and y as in Proposition 1.5, we have

3.1) Zl 5, Xe) exp(— Z Z 2 Z

ceC ceZ¢ ceZ ceZ¢ cel

Observe that |I;(s, x.)| = 1. Thus, by [1, Lemma 4.3], an application of a zero-density estimate,
we have

Zly(s,)(c) exp(—N(c)/Y) « Zexp (c)/Y) « Y°,

ceZ ceZ
for some 6 < 1. The application of this estimate in (3.1) yields
(3.2) D 1(sox) exp(=N(e)/Y) = Y I,(s.xc) exp(—N(c)/Y) + O(Y").
ceC ceZ¢

For ¢ € Z¢, we express (s, x.) as the sum of an infinite series with rapidly decaying terms and
a certain contour integral. In fact, following the proof of [1, Lemma 4.3], we get

Iy(s’)(c) =

A= (a)/ly(b))(c(abz) N(ab)
2 T N@N@r e""(‘ X)

a,bc O,

(3.3) — L exp (%L(s + u,)(c)) exp (%£(E + u,)Z)) ['(u)X"du,

27i Lyea

where Lyca = Ly + Ly + Ly + Ly + Ls. Let o = R(s). Then here L, is the vertical half-line given
by (1 — o + %) + it(logY)" for t > 1, L, is the horizontal line segment given by ¢ + i(log Y)* for
£ <1< (1 —0+%), L;is the vertical line-segment given by —£ + it(log ¥)* for —1 <1 <1,
L, is the horizontal line segment given by 7 — i(log ¥)* for —5 <1 < (I — o + £), and Ls is the
vertical half-line given by (1 — o + §) + it(log Y)* forr < —1.

Combining (3.2) and (3.3) yields

(3.4 Z*:Iy(s,)(c) exp(—N(c)/Y) = (I) — (II) + (I1I) + 0(y5),
where
A5(a)4,(b)x(ab?) N(ab) N(c)
(I) = ; (a’;bk N(a)N(0) exp <— % )) exp (—T> ,

e )]

CE.Z a,bCDk
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and

N =<

L(s+ u,)(c)> exp (%L(E + u,E)) F(u)X”du)

(1 = > (—zim L exp (i

ceZ¢
o (M)

The calculations in Sections 4.2, 4.3 and 4.4 in [1] apply with very minor and obvious changes
to evaluate the sums (1), (I1) and (III) respectively. It suffices to mention that M(y,y,) comes
from the contribution of cubes to (7). In fact, following the calculations in [1, Section 4.2] we get

_ 3res;—14i(s)
4|H)|2i(2)

h<

M,(y1,32) + o(Y),

where

M,(y1,y2) = Z A5((1 — 5321‘122(}(1 —{3)"7)

’X S (e m) A, (Pm)
s, N(@PN@O)FNmPe [T (1+N@®)™)

ged(abm,(3))=1

gcd(a,b)=1 pvrl)ﬁ)rre
log 3
= exp (—i‘R (ggog 1))
% 2 Az(a*m)a, (B*m)

womes, N(@)»N(®)FNm)?> [ (1+N(p)™)
ged(abm,(3))=1

abm
ged(a,b)=1 7l

p prime

One can then verify that M, (y1,y2) admits the product expansion given in Theorem 1.3 (see [1,
Section 4.6] for details). Combining the estimates obtained for (1), (1) and (I/II) as done in [1,
Section 4.5] yields

L5 exp(-N(@)/¥) = 2y (4 ) ofy), as¥ - o

e  4H)|4(2)

Observe that the convergence is uniform on any sphere |y| < a. This is mainly due to the estimate
A,(a) <cq N(a)€ (see [9, p. 92]) which holds for any € > 0 and all |y| < a where a is a positive
real number.

Finally, by noting that N*(Y) = fwﬁl‘gﬁzgy + O(Y2+€) (see [1, Lemma 3.3]), we complete the
proof of Proposition 1.5.

4. PROOF OF PROPOSITION 1.6

In this section we prove Proposition 1.6 in (Case 2). The proof of the proposition in (Case 1) is
similar.



10 AMIR AKBARY AND ALIA HAMIEH

;

1
><1_[<N(p)+1+

P13

We will show that

~ ) ylog 3
M(y1,y2) = exp (—Z‘R (§ —gl

N(p) & [ 310gN(p)
(7) +1 Zp (_m ( N(p) — ¢ )))

satisfies ‘Ms(yl,yz)) < exp (—C\yﬂ? (log |y|)%_1), as |y| — oo.
Let p be a prime ideal such that p 4 (3) and consider the corresponding Euler factor

N I 1 N@p) < o [ ¥¢310gN(p)
Mes1092) = Ry 7T 3G + 1 2 <_m (w——4)> |

j=0

Using the Maclaurin series of the function f(x) = +* for |x| < 1 and noting that
le? — ea| < |b — al, we get

@) Fs(n32) = Guls) + 0 (HEESE),
where
1 N(p) . YIR(IN(P)™) +3»I(N(p)™)
6029 7 ) T (o) NG )
3(NIEI;3<;>+ e <_l.logN(p)yﬂ%({aN(v)‘”l\)I(;;zﬂ(ésN(v)‘”))
N(p) . MR(GNEP) ™) + 33 (GNP )
+ 3NG) = 1) exp (—zlogN(p) N(p)” ) .

Before we proceed further, we need the following lemma, the proof of which will be given at
the end of this section.

Lemma 4.1. Let € > 0 be given. Set a,.(y) = % and by .(y) = %. As |y| — oo, we
0 9(V32)

have 0.097 < |G,(y, s)| < 0.9978 for all prime ideals p with a,.(y) < N(p)” < by ().

We now use Lemma 4.1 to establish the proof of Proposition 1.6 in (Case 2). It is clear that
)]\le,p(yl,yz)) < 1 for all p. Using (4.1), we get, as |y| — oo,

‘Ms(yl,h)‘ < H ‘Ms,p(h,yz)’

P
Ag.e (y)<N(D)’T<bcr,e (y)

_ I ‘Gp(y, 940 (Iyl logN(v))‘

N(p)Za'

P
Agg (y) <N(p)o— gbms (y)

4.2) x H (1 +0 (MQ%T)I\;@)) ,

P
Ao () SN(p)7 <bo e (v)
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where the last equality follows from the fact that G,(y, s) is bounded away from zero in the speci-
fied range for N(p) as seen in Lemma 4.1. Notice that

(4.3) H <1 + O, (%)) = exp (0 <b’!*1+# log ]y\)) ,

Age (y) gN(p)D’ <bse ()’)

as |y| — oo. Moreover, we have

M (3) = T ((Bre0)? ) =11 (@) > Iy

where I1(x) is the number of prime ideals in O, whose norm is less than or equal to x.
Using this observation along with the upper bound for G,(y, s) given in Lemma 4.1, we see that
for |y| large enough, we have

I 1 |G(y: 9)| < exp (I (y) log(0.9978))

p
s (V) SN(p)7 <bos ()
)

(4.4) < exp (—C ly
where C is a positive constant that depends only on o and €. Therefore, applying the estimates
(4.3) and (4.4) in (4.2) yields

1
1_1
b

1
v (log|yl)

asy — oo,

1
7 (log |y

)",

1, (y1.2)| < exp(~Cly[* (log |y

as desired.
Finally, we prove Lemma 4.1.

Proof of Lemma 4.1. We write

Gy(y, s) = N T 1
(p) + 1
N(p) . yiR(N(p)™) + y:I(N(p)™")
EEOES e (‘”"gN(p) NG ) e 9)
where

yiR((&G = DN() ™) +»3((&H — 1)N(P)”))
N(p)”

NR(EG = DN ™) +»I((45 - 1)N(v)”))
N(p)~ '

Observe that {3 — 1 = v/3e™% and {2 — 1 = /3¢5 Lety, = |y|R(e®) and y, = |y|I(e®) for
some 6, € [0, 2x]. It follows that

H,(y,s) =1+ exp <—i10gN(p)

+ exp <—i10g N(p)

V3ly|
N(p)”

V3ly| .
N cos(fy — % + tlog N(p))) :

H,(y,s) = 1+exp (—ilogN(p) cos(fy + Z + tlogN(p)))

+ exp (—ilog N(p)

Using the identity

, . b
11+ e + ™| = \/3 + 4c0s(a - x) cos( x) + 2cos((a — b)x),
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we have

where we can write

[Hy(y, s)| = /3 +2J5(y, 9),

3]yl logN V/3|y|logN(p) _.
Jo(y,s) = 2 cos (W cos(6, + tlog N(p))) cos (W sin(6, + tlog N(p)))

with

V/3|y|logN .
+ cos (% sin(6, + tlog N(D))) .

For |y| large enough, we are interested in the prime ideals p for which

H,(y,s) < 3.
To this end, we show that for a positive proportion of primes we have
3|y|logN V/3]y|logN .
(4.5) cos (W cos (6, + tlog N(p))) cos (%(—pg)(p) sin(6, + 7log N(p))) < 1.

We must also show that for those prime ideals, we have |G, (y, s)| is bounded away from zero.

Consider the following sets

* T b4 S5r T
A= <2N Y —) N7 + X oNr + &
NL_J()( big 6 7r+6 u( T+ 6 T+ 6))
and

B 0 g+ Foone 4 25 o love 4 Foong + U7
= 7+ —,2Nn+ — 7+ —,2Nn+—| ).
A 6 6" 6 6

Now let p be such that
logN
4.6) 7 DlloeNG) 7z
9(+/3/2) N(p)” 6

Given a prime ideal p that satisfies (4.6), we consider two cases.

1. 6, + tlog(N(p)) € A:

Assume that 6, +10g(N(p)) € (2Nz — Z,2Nr + %) for some non-negative integer N. It follows

that

)
7T 3ly[logN(p)

— < cos(6, + rlogN(p)) <

NI

6 2N(p)”
Hence,
\6 3|y/logN \/§
—- < cos (% cos(6y + tlogN(p))) <5
and so (4.5) holds. In particular, we get
4.7) |G,(y, s)| < 0.9799.
Moreover,
V3| logN(p) 73
0 in(6, + tlogN —_—,
< N sin(6, + rlogN(p)) < o
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and so

cos (—‘/gg\‘]l(og)f(p) sin(f, + tlog N(p))) > cos(%).

It follows that J,(y, s) > /2 cos( *[”) — 1 =0.378.... Hence,

N(p) !
|Go(y, s)| = NG £ 1) 3+ 2J,(y,5) — NOES
N(p) !
(4.8) > 0.097.

A similar result holds if 6, + tlog(N(p)) € (2Nm + 2Z,2Nr + Z) for some non-negative integer
N since the cosine function is even.

2.6, + tlog(N(p)) € B:

Assume that 6, +110g(N(p)) € [2N7 + £,2Nn + 2] for some non-negative integer N. It follows
that

7T \/3]y| log N . \/§7T
T %(—fy(p) sin(6, + tlogN(p)) < BTN
Hence,
V3r VibllogNG) n
cos (7) < cos (W sin(6, + tlogN(p))) < cos <18)
and so (4.5) holds. In particular, we get
(4.9) |G,(y, s)| < 0.9978.
Moreover,
3|y[logN(p) 31
— 0, + tlogN _,
‘ 2N(p)” os(6, + tlogN(p))| < 3
and so

cos (% cos(6, + tlog N(p))) > cos (%" V3

It follows that J,(y, s) > 2 cos( *[”) cos( *[”) 1 = 0.3977.... Hence,

N(p) 1
W 3+ 2(0.3977) — NG o1 00

If 6,+11og(N(p)) € [2N7r + Z2,2Nm + LZ] for some non-negative integer N, a similar result holds
since the cosine function is even

(4.10) |Go(y. 5)| =

To finish the proof, observe that as |y| — oo, we have

1 1 logN
|y|ﬂ0g | <N(p) <~ | log 1yl . 7 _ blleeN®) =z
for any & > 0. Setting a,(y) = 2 and b, (y) = —LLEbL e deduce that for all prime
> o-( —g) 0'(9(\/-/2)4- €)

ideals p with a,.(y) < N(p)” < b,.(y), we have
0.097 < |G, (y, 5)| < 0.9978,

as |y| — oo. i
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