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ARTIN PRIME PRODUCING POLYNOMIALS

AMIR AKBARY AND KEILAN SCHOLTEN

Abstract. We define an Artin prime for an integer g to be a prime such that g is a
primitive root modulo that prime. Let g ∈ Z \ {−1} and not be a perfect square. A
conjecture of Artin states that the set of Artin primes for g has a positive density. In
this paper we study a generalization of this conjecture for the primes produced by a
polynomial and explore its connection with the problem of finding a fixed integer g and a
prime producing polynomial f(x) with the property that a long string of consecutive primes
produced by f(x) are Artin primes for g. By employing some results of Moree, we propose
a general method for finding such polynomials f(x) and integers g. We then apply this
general procedure for linear, quadratic, and cubic polynomials to generate many examples
of polynomials with very large Artin prime production length. More specifically, among
many other examples, we exhibit linear, quadratic, and cubic (respectively) polynomials
with 6355, 37951, and 10011 (respectively) consecutive Artin primes for certain integers
g.

1. Introduction

We define an Artin prime for an integer g (for simplicity called an Artin prime) to be a
prime p with the property that g is a primitive root modulo p. Let g ∈ Z \ {−1} and not
be a perfect square. A celebrated conjecture of Artin states that the set of Artin primes
for g has a positive density. More generally for a fixed integer g if we set

δg(x) :=
#{p ≤ x; p is an Artin prime for g}

#{p ≤ x; p prime} ,

then the conjecture predicts that

δg = lim
x→∞

δg(x)

exists. Also the conjecture states that if g = g1g
2
2 is not a perfect power and its square-free

part g1 6≡ 1 (mod 4) then

δg = A =
∏

q prime

(

1− 1

q(q − 1)

)

= 0.373955813 . . . ≈ 3

8
.

Moreover if g = −1 or a perfect square then δg = 0 and in all other cases δg is a positive
constant that depends on g and also is a rational multiple of A. The absolute constant A
is called Artin’s constant. Artin’s conjecture is unresolved. In 1967 Hooley [5] proved it
conditionally under the assumption that for every square-free d the Dedekind zeta function
of the Kummerian fields Q(e2πi/d, g1/d) satisfies the generalized Riemann hypothesis.
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In this paper we consider a generalization of Artin’s conjecture for the primes generated
by polynomials with integer coefficients. For prime q let

Nq(f) = #{n (mod q); f(n) ≡ 0 (mod q)}.

It is easy to show that if a polynomial f(x) produces infinitely many primes for values
n ∈ Z+, then the following three conditions hold:

(i) The leading coefficient of f(x) is positive.
(ii) f(x) is irreducible over Z.
(iii) There is no prime q such that Nq(f) = q.

An old conjecture due to Bouniakowsky [3] states that the above three conditions are also
sufficient.

Conjecture 1.1 (Bouniakowsky). A polynomial f(x) ∈ Z[x] produces infinitely many
primes if and only if (i), (ii), and (iii) hold.

This conjecture is a special case of a far reaching conjecture of Schinzel [14] (the so
called Hypothesis H) on prime values of a finite collection of polynomials. A well-known
conjecture of Bateman and Horn provides a quantitative version of Schinzel’s Hypothesis
H. Here we state this conjecture in the case of a single polynomial. A polynomial f(x) is
called a prime producing polynomial if it produces infinitely many primes. From now on
we assume that Conjecture 1.1 holds (i.e. f(x) ∈ Z[x] is a prime producing polynomial if
and only if conditions (i), (ii), and (iii) hold). Let

πf(x) = #{0 ≤ n ≤ x; f(n) is prime}.

Conjecture 1.2 (Bateman-Horn). Assume that f(x) ∈ Z[x] produces infinitely many
primes. As x→ ∞,

πf (x) ∼
1

deg(f)

∏

q prime

(

q −Nq(f)

q − 1

)

x

log x
= C(f)

x

log x
.

The constant C(f) is called the prime producing constant of f(x). It can be shown that
the product defining C(f) is convergent (see [1, p. 364]).

A congruence class modulo a positive integer m is called m-allowable for f(x) if (f(r), m)
= 1 for any integer r in that congruence class. Similarly we can define an m-non-allowable
congruence class for f(x). Thus Nq(f) is the number of q-non-allowable classes for f(x).
Note that in each m-non-allowable class for f(x) there are only finitely many n for which
f(n) is prime, since any prime in such class is a prime divisor of m and such primes
can be taken as values of f(x) only finitely many times. Moreover, as a consequence of
Bateman-Horn conjecture, it can be shown that the integers n for which f(n) is prime are
asymptotically uniformly distributed over the m-allowable classes for f(x) (see [12, p. 112]
for a proof). In other words if a is in an m-allowable class for f(x) and Am(f) is the total
number of m-allowable classes for f(x), then

lim
x→∞

#{0 ≤ n ≤ x; f(n) is prime for n ≡ a (mod m)}
#{0 ≤ n ≤ x; f(n) is prime} =

1

Am(f)
.

We postulate this as the following conjecture which plays an important role in our investi-
gations in this paper.
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Conjecture 1.3 (Uniform Distribution). Assume that f(x) ∈ Z[x] produces infinitely
many primes. Then for any positive integer m the integers n for which f(n) is prime are
asymptotically uniformly distributed over the m-allowable congruence classes for f(x).

The following is proposed by Moree [12, Conjecture 3, p. 119].

Conjecture 1.4 (Generalized Artin’s Conjecture). Assume that f(x) ∈ Z[x] produces
infinitely many primes. For an integer g let

δg(f, x) :=
#{0 ≤ n ≤ x; f(n) = p is an Artin prime for g}

#{0 ≤ n ≤ x; f(n) is prime} .

Then
δg(f) = lim

x→∞
δg(f, x)

exists.

Combining the above conjecture with Bateman-Horn’s conjecture we have

#{0 ≤ n ≤ x; f(n) = p is an Artin prime for g} = δg(f)C(f)
x

logx
+ o

(

x

log x

)

,

as x → ∞. The case f(x) = x corresponds to the classical Artin conjecture. It would be
interesting if similar to the classical case we could develop a conjectural value for the density
δg(f). This appears to be difficult. However, it seems possible to propose a conjectural
density in certain cases.

Conjecture 1.5 (Density Expression). Assume that f(x) ∈ Z[x] produces infinitely
many primes. Let g be a square-free integer with the property that all the primes produced
by f(x) (except finitely many) stay inert in Q(

√
g). Then

δg(f) = lim
x→∞

δg(f, x)

exists and is independent of g. Moreover,

(1.1) δg(f) = δ(f) :=
∏

prime q>2

(

1− #{s (mod q)|f(s) ≡ 1 (mod q)}
q#{s (mod q)|f(s) 6≡ 0 (mod q)}

)

.

In Section 2.3 we give a heuristic argument in support of the above density expression.
Also in Proposition 3.2, under the assumption of the generalized Riemann hypothesis for
Dedekind zeta function of certain number fields, we prove that the above conjecture is
true for linear polynomials. The infinite product δ(f) was first proposed by Moree [12]
as a good approximation for δg(f). We have done some experiments in order to see how
well δ(f) approximates δg(f). Using a variety of quadratics f(x) and integers g with the
property that all the primes produced by f(x) (except finitely many) stay inert in Q(

√
g),

we numerically estimated values for δg(f) and δ(f). More precisely, we used the first 500000
primes in the infinite product defining δ(f) to find a value for δ(f). We then found the
actual value of δg(f,X) by counting how many of the primes produced in the sequence
f(0), f(1), ..., f(X) are Artin primes for g. We did this for three different values of X (i.e.
500000, 1000000, and 5000000) and recorded the difference between our approximated value
of δ(f) and δg(f,X). A sample of our experimental data for four quadratic polynomials is
given in Table 1

In contrast with the classical Artin constant, which has a relatively small value (≈ 3/8),
the values of δ(f) for four quadratic polynomials recorded in Table 1 are very large (≈ 1).
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Polynomial f(x) Fixed g ≈ δ(f) δ(f)− δ(f)− δ(f)−
δg(f, 500000) δg(f, 1000000) δg(f, 5000000)

56417x2 + 174208554651372 1877 0.9987863 0.0002893 0.0002678 0.0000665

x2 + 9828324151968468548 14458 0.9989678 0.0002039 0.0003953 0.0002410

x2 + 2x+ 9828324124393614405 8458 0.9988635 0.0000252 0.0003463 0.0001775

x2 + 2x+ 9828324573822479829 3 0.9989856 0.0000661 0.0006741 0.0004032

Table 1. Numerical results on δ(f)− δg(f)

The existence of such polynomials was conjectured, in a related problem, first by Griffin
and later was explored by Lehmer [7] and Moree [12]. We now consider this problem.

Let f(x) be a prime producing polynomial with integer coefficients and g be an integer.
Consider the sequence (f(n))∞n=0. Let pi(g, f) be the i-th prime in this sequence which is
also relatively prime to g. Let

ℓg(f) = min{i ∈ N; pi(g, f) is not an Artin prime for g} − 1.

If the above minimum does not exist we set ℓg(f) = ∞. We call ℓg(f) the Artin prime
production length of f(x) with respect to g. A natural question to ask is whether it is
possible to find polynomials f(x) and integers g with very large Artin prime production
length. The first known attempt for finding a polynomial f(x) and an integer g with
large ℓg(f) was carried out by Raymond Griffin. In 1957, he proposed that the decimal
expansion of 1/p should have period length p− 1 for all primes of the form 10n2 + 7. This
is equivalent to saying that the polynomial 10x2 + 7 with g = 10 has infinite Artin prime
production length, although with modern computers we can quickly determine that this
length is only 16. The problem of finding f(x) and g with ℓg(f) = ∞ is known as Griffin’s
dream. Moree has conjectured that Griffin’s dream cannot be realized for prime producing
quadratic polynomials. Lehmer [7] considered this problem and showed that for g = 326,
primes produced by the polynomial 326x2+3 are expected to be Artin primes for 326 with
a probability of 0.99337... (This value is corrected to 0.99323 · · · in [12]). It turns out that
the first 206 primes produced by 326x2+3 have 326 as a primitive root. This is remarkable
keeping in mind that by the classical Artin conjecture the likelihood that 206 primes are
Artin primes for 326 is roughly

(

3

8

)206

≈ 0.1780086686× 10−87.

In 2007 Moree [12] generalized the method used by Lehmer in order to find many quadratic
polynomials f(x) and integers g with large ℓg(f).

Note that the problem of finding f(x) and g with large ℓg(f) is intimately related to
finding f(x) and g with a large density δg(f). In fact the expected value of ℓg(f) can be
approximated by the sum

(1.2)
∞
∑

j=1

jδg(f)
j(1− δg(f)) =

δg(f)

1− δg(f)
.

So a value of δg(f) close to 1 will result in a large value for the expected Artin prime
production length ℓg(f).
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We can use the density expression (1.1) in order to find f(x) and g with large δg(f) as
long as all primes produced by f(x) (except finitely many) stay inert in Q(

√
g). In other

words we should have
(

D
p

)

= −1 for all (except finitely many) primes p = f(n), where

D is the discriminant of Q(
√
g). It is clear that this happens, under the assumption of

Conjecture 1.3, if and only if τ−D (f) = 1, where

τ−D (f) =
#{r (mod D)|

(

D
f(r)

)

= −1}
#{r (mod D)|(f(r), D) = 1} .

Here
(

D
.

)

denotes the Kronecker symbol. By the quadratic reciprocity and under the
assumption of Conjecture 1.3 one can find expressions for τ−D (f) in terms of quadratic
character sums with polynomial arguments (see Theorem 2.2). The computations of these
sums for general polynomials are difficult, however for linear, quadratic, and some special
cubics one can find explicit expressions for τ−D (f). We can then use these expressions to
prove the following useful result.

Proposition 1.6. Assume that f(x) = axn + b produces infinitely many primes and that
the primes produced by f(x) are uniformly distributed among allowable congruence classes.
Let D be a fundamental discriminant.

(i) If n = 1 and τ−D (f) = 1, then D | a.
(ii) If n = 2 and τ−D (f) = 1, then D | 24a2b.
(iii) If n = 3 and τ−D (f) = 1, then D | 56a.
The above proposition plays a fundamental role in our search for integers g and poly-

nomials f(x) with large ℓg(f). Part (ii) of the above proposition for a general quadratic
polynomial is proved in [12, Proposition 3]. The proofs of parts (i) and (iii) are given in
Sections 3 and 5. The proof in the cubic case involves a careful analysis of the character
sum

ψq,3(E) =

q−1
∑

u=1

(

u3 + E

q

)

,

and its associated Jacobsthal sum

φq,3(E) =

q−1
∑

u=1

(

u

q

)(

u3 + E

q

)

,

where q ≡ 1 (mod 3) is prime and u and E are integers. A section of this paper (Section 5)
is devoted to the calculation of these character sums. Generalizations of these computations
to the case of a full cubic f(x) = ax3 + bx2 + cx+ d seem to be difficult. This is the reason
that we restricted our attention in this paper to special cubics of the form f(x) = ax3 + b.

Another approach to the problems considered in this paper would be to study convenient
ways for producing many Artin primes. Our examples of prime producing polynomials with
a high density of Artin primes for an integer g provide a simple way of producing many
Artin primes. We can also do similar experiments by other functions, for example one can
consider Artin primes associated to linear recurrences.

The structure of the paper is as follows. We will review Lehmer’s results and Moree’s
generalization in Section 2 and based on the ideas in [12] we describe a general method for
finding Artin prime producing polynomials of a given degree with large lengths. We next
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demonstrate this method for linear polynomials in Section 3 and in Table 2 provide the top
five linear polynomials found in our search. In Section 4 we present our modification of the
presented method in [12] for quadratic polynomials. Using our modified procedure, we find
a quadratic polynomial f(x) and an integer g with ℓg(f) = 37951. The top three quadratic
polynomials f(x) of negative discriminant and their corresponding integers g found in our
search are presented in Table 3. In Section 5 we prove specific results for the case of cubic
polynomials and present the cubic

f(x) = 16735790906636782452200520x3+41975422096126566714360524823960x2

+35093173864667750962440687534348342360x

+977977739033023039412995828230137416763737,

which has g = 11045 as a primitive root for the first 10011 primes produced by f(x). In
Section 6 we finish the article with some remarks and questions for future research.

A database of results found in this research, which includes lists of linear, quadratic,
and cubic polynomials with large Artin prime production lengths and experimental data
regarding the value of δ(f) is available at www.cs.uleth.ca/∼akbary/APPP.

Notation 1.7. Throughout this article p and q denote prime numbers, ā denotes the mod-
ular inverse of a with respect to a given modulus, Fp denotes the finite field of p elements,

and
(

.
p

)

denotes the Legendre symbol.

2. A General Method

2.1. Lehmer’s Example. We start by reviewing Lehmer’s result from [7] which states
that a very large proportion of primes in the form 326n2+3 are Artin primes for 326. The
following elementary lemma provides a criterion for Artin primes.

Lemma 2.1. Let p ∤ 2g. Then p is not an Artin prime for g if and only if there exists a

prime q such that q | p− 1 and g
p−1
q ≡ 1 (mod p).

Proof. See [10, Theorem 4.8]. �

We consider primes of the form p = 326n2 + 3. Conjecture 1.1 predicts that infinitely
many such primes exist. By Lemma 2.1 if p is not an Artin prime for 326 then there exists

a prime q such that q | p−1 and 326
p−1
q ≡ 1 (mod p). We claim that such q cannot be equal

to 2, since otherwise 326
p−1
2 ≡ 1 (mod p) for p = 326n2 + 3 which implies that

(

326
p

)

= 1.

However by the quadratic reciprocity we have
(

326

p

)

=

(

326

326n2 + 3

)

=

(

326n2 + 3

163

)

=

(

3

163

)

= −
(

1

3

)

= −1.

Therefore
(

326
p

)

6= 1 and so q 6= 2.

Now suppose that q > 2 and q | p−1 = 2(163n2+1), which can happen only if
(

−163
q

)

= 1.

Note that the total number of q-allowable residue classes for 326x2+3 is q−
(

1 +
(

−978
q

))

.

So under the condition
(

−163
q

)

= 1 there are exactly two q-allowable residue classes mod

q out of q −
(

1 +
(

−978
q

))

that contains such primes. Thus under the assumption of



ARTIN PRIME PRODUCING POLYNOMIALS 7

Conjecture 1.3 we conclude that the probability that q | p− 1 is 2/
(

q − 1−
(

−978
q

))

. On

the other hand, the probability that 326
p−1
q ≡ 1 (mod p) (i.e. 326 is a q-th power modulo

p) is (p−1)/q
p−1

= 1
q
, since the number of q-th power in F×

p is (p− 1)/q if q | p− 1. Therefore a

good approximation for the proportion of Artin primes of the form 326n2 + 3 for 326 is

∏

(−163
q )=1



1− 2

q
(

q − 1−
(

−978
q

))



 = 0.99323 . . . .

Note that this infinite product coincides, for f(x) = 326x2+3, with the expression for δ(f)
given in (1.1).

2.2. Moree’s Generalization. In [12] Moree generalized Lehmer’s method to an integer
g and an arbitrary prime producing polynomial f(x). Here we describe his generalization.
Suppose that a polynomial f(x) conjecturally produces infinitely primes and has large δ(f)
as given in (1.1). In order to replicate examples similar to Lehmer’s we need to look for a
quadratic field Q(

√
g) of discriminant D with the property that all primes of the form f(n)

remain inert in Q(
√
g) (i.e.

(

D
f(n)

)

= −1). Moree [12] has devised a method for finding

such quadratic fields. Recall that for a fundamental discriminant D and a polynomial f(x)
we defined

τ−D (f) =
#{r (mod D)|

(

D
f(r)

)

= −1}
#{r (mod D)|(f(r), D) = 1} .

Note that τ−D (f) is a rational number. Moreover τ−D (f) = 1 implies that all the primes

p = f(n) in D-allowable classes for f(x) are inert in Q(
√
D). The following result enables

us to calculate τ−D (f).

Theorem 2.2 (Moree). Let D be a fundamental discriminant. Let f(x) be a polynomial
that generates infinitely many primes and assume that the primes of the form f(n) are
uniformly distributed over the D-allowable residue classes for f(x). Let D1 be the largest
odd square-free divisor of D and assume that D1 > 1. For j = 1, 3, 5, and 7, let

αj =
#{s (mod 8)|f(s) ≡ j (mod 8)}
4#{s (mod 2)|f(s) ≡ 1 (mod 2)} .

Then we have

(2.1) 2τ−D (f) =



















1− aD1(f) if D is odd,

1 + (α3 + α7 − α1 − α5)aD1(f) if D ≡ 4 (mod 8),

1 + (α3 + α5 − α1 − α7)aD1(f) if D ≡ 8 (mod 32),

1 + (α5 + α7 − α1 − α3)aD1(f) if D ≡ 24 (mod 32),

where, for odd square-free d, ad(f) is the multiplicative function defined by

(2.2) ad(f) =

∑

r (mod d)

(

f(r)
d

)

#{r (mod d)|(f(r), d) = 1} .

Proof. See [12, Theorem 1]. �
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Using this theorem we can narrow down the search for a fundamental discriminant D
with τ−D (f) = 1.

2.3. Heuristic on Density Expression δ(f). In analogy with Artin’s conjecture here we
describe a heuristic argument that will lead to the density expression (1.1). The elementary
conditions for Artin primes given in Lemma 2.1 have the following interpretation in terms
of the splitting of primes in certain algebraic number fields. Let ζq denote a primitive q-th
root of unity. Consider the Kummerian field Lg,q = Q(ζq, g

1/q). Then g is a primitive root
for a prime p ∤ 2g if and only if there is no prime q for which p splits completely in Lg,q.

Let P(f) be the set of primes produced by f(x), k = q1 · · · qs be a square-free positive
integer, and Lg,k = Lg,q1Lg,q2 · · ·Lg,qs be the compositum of the fields Lg,qi (1 ≤ i ≤ s). Let
dk(g, f) be the density of primes in P(f) that split completely in Lg,k. If f(x) = id(x) = x,
then by the Chebotarev density theorem we know that the density dk(g, id) exists. Let us
assume that dk(g, f) exists in general. So using the splitting criteria for primitive roots
and by employing an inclusion-exclusion argument we arrive at

δg(f) =
∞
∑

k=1

µ(k)dk(g, f),

where µ(.) is the Möbius function. It can be shown that if k = q1 · · · qs is odd and g is
square-free then the fields Lg,q1, · · · , Lg,qs are linearly disjoint over Q and so dk(g, f) =
dq1(g, f) · · ·dqs(g, f). In other words

∞
∑

k=1
2∤k

µ(k)dk(g, f) =
∏

q>2

(1− dq(g, f)).

So if we can choose a square-free integer g such that all the primes produced by f(x)
(except finitely many) stay inert in L2 = Q(

√
g) (in elementary terms this means that the

polynomial x2 − g remains irreducible over Fp for all primes p = f(n)) then

(2.3) δg(f) =
∞
∑

k=1
2∤k

µ(k)dk(g, f) =
∏

q>2

(1− dq(g, f)).

We continue by finding a conjectural explicit expression for dq(g, f). Let d1q(f) be the

density of primes p ∈ P(f) that split completely in Q(ζq)/Q, and let d2q(g) be the density

of prime ideals of Q(ζq) that split completely in Q(ζq, g
1/q)/Q(ζq). Under the assumption

that dq(g, f) and d
1
q(f) exist, it would be plausible to assume that

dq(g, f) = d1q(f)d
2
q(g).

From the Chebotarev density theorem we know that d2q(g) = [Q(ζq, g
1/q) : Q(ζq)] = 1/q. It

is known that an odd prime p splits completely in the cyclotomic field Q(ζm) if and only
if p ≡ 1 (mod m). Also 2 splits completely in Q(ζm) only if m = 1 or 2. So d1q(f) is the
density of primes of the form f(n) such that f(n) ≡ 1 (mod q). Under the assumption of
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Conjecture 1.3 we can conclude that

d1q(f) = lim
x→∞

#{0 ≤ n ≤ x; f(n) is prime and f(n) ≡ 1 (mod q)}
#{0 ≤ n ≤ x; f(n) is prime}

=
#{s (mod q)|f(s) ≡ 1 (mod q)}
#{s (mod q)|f(s) 6≡ 0 (mod q)} .

So

dq(g, f) = d1q(f)d
2
q(g) =

#{s (mod q)|f(s) ≡ 1 (mod q)}
q#{s (mod q)|f(s) 6≡ 0 (mod q)} .

Applying the above expression for dq(g, f) in (2.3) results in (1.1).

2.4. A General Method for finding large ℓg(f). We can now present a general method
for finding an integer g and a prime producing polynomial f(x) with large ℓg(f). The
density expression (1.1) and Theorem 2.2 are the main tools in our search for Artin prime
producing polynomials of large length.

General Procedure

(1) Select a prime producing polynomial f(x) ∈ Z[x] such that

δ(f) =
∏

q>2

(

1− #{s (mod q)|f(s) ≡ 1 (mod q)}
q#{s (mod q)|f(s) 6≡ 0 (mod q)}

)

is very close to 1.
(2) Use Theorem 2.2 to find a fundamental discriminant D such that τ−D (f) = 1 and

then select an integer g such that D is the discriminant of Q(
√
g).

(3) Determine the Artin prime production length of the polynomial f(x) with respect
to g.

We can also use two variations once we have found a polynomial f(x) and an integer
g. Firstly we can consider f1(x) = f(x + d) which is simply a shift applied to f(x) and
repeat step (3) for f1(x) and g. Secondly we can consider g1 = k2g and vary over k ∈ N
and repeat step (3) for f(x) and g1.

2.5. Analysis of the General Procedure. First of all, we note that for a given prime
producing polynomial f(x) it is not always possible to find a fundamental discriminant
D with τ−D (f) = 1. For example by employing Theorem 2.2 and Proposition 3.1 we can
show that for f(x) = ax + 1 where a is a product of distinct primes in the form q ≡ 1
(mod 4), there is no fundamental discriminant D with τ−D (f) = 1. Another such example
is f(x) = x2 + x+ 41 (see [12, Remark 2, p. 119]). So from a theoretical point of view the
success of the above procedure depends on step (2).

Upon finding a fundamental discriminant D with the property τ−D (f) = 1, steps (1)
and (2) produce a polynomial f(x) and an integer g with δg(f) ≈ δ(f) very close to 1
(note that for square-free g we expect δg(f) = δ(f)). Since the expected value of ℓg(f) is
δg(f)/(1− δg(f)) (see (1.2)) by choosing δ(f) close to 1 we expect that ℓg(f) will be large.

We emphasize that a successful implementation of the above procedure will also require
a moderate size for the leading coefficient (and more generally for the coefficients) of the
polynomial f(x) given in step (1). It is easy to find polynomials f(x) of degree n that
conjecturally produce infinitely many primes with corresponding δ(f) arbitrarily close to
1. For example one can consider a polynomial fy(x) = axn + (a + 2) with a = q1q2 · · · qm,
where q1, q2, · · · , qm are all the odd primes not exceeding y. From the definition of δ(f) in
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step (1) it is evident that we can make δ(fy) arbitrarily close to 1 as long as we choose y
large enough. However as y → ∞ the leading coefficient of fy(x) grows significantly and
therefore, even if we can find a suitable D in step (2), the very large size of the primes
produced by fy(x) will make step (3) of the procedure computationally infeasible.

In conclusion, following our general method, the challenge in the search for pairs (f, g)
with large ℓg(f) is twofold. On one hand we should be able to generate prime producing
polynomials f(x) with large δ(f) such that their coefficients are not significantly large,
on the other hand we need to devise ways to efficiently decide on the existence of the
fundamental discriminants D with the property τ−D (f) = 1 and also be able to generate
such D’s.

In the next three sections we surmount some of these difficulties for linear, quadratic,
and some cubic polynomials, by calculating the exact expressions for δ(f) (see (3.1), (4.1),
(5.1)) and computing some concrete character sums in these cases. Similar calculations for
polynomials of higher degrees appear to be difficult. More specifically, Propositions 3.1,
4.1, and 5.6 show that for linear, quadratic, and certain cubic polynomials f(x) there are
only finitely many potential options for a fundamental discriminant D with τ−D (f) = 1.
Using these criteria one can easily generate many examples of pairs f and D with τ−D (f) =
1. Consequently, following our general method, we provide more concrete procedures for
linear, quadratic, and cubic polynomials in order to produce many pairs (f, g) with large
ℓg(f) and report some of the examples we obtained. Our most impressive findings are
for quadratic polynomials. This is partly due to the fact that the expression (4.1) for
δ(f) together with the known examples of the quadratic fields with the property that a
long string of consecutive primes remain inert in them, allow us to find prime producing
quadratic polynomials f(x) with relatively small coefficients and δ(f) very close to 1. In
contrast, in the linear case maximizing the value of (3.1) forces us to consider polynomials
fy,b(x) = ax + b, with a = q1q2 · · · qm, where q1, q2, · · · , qm are all the odd primes not
exceeding y. Because of the large size of a (as y → ∞) in the linear examples, our findings
in the linear case are modest compared to the quadratic case (our top linear example has
length 6355 while our top quadratic example has length 37951). In the cubic case the
expression (5.1) allows us to consider cubic polynomials with smaller leading coefficients
(we can assume that the prime factors of the leading coefficients are not congruent to 1 mod
3) and therefore we can find examples of cubics with the Artin prime production length
almost 1.5 times larger than the length of our findings in the linear case (our top cubic
example has length 10011).

3. The Linear Case

We demonstrate our general procedure by applying it to linear polynomials. Let f(x) =
ax+ b, where (a, b) = 1. By solving the corresponding congruences in (1.1), we find

(3.1) δ(f) =
∏

q>2

q|(a,b−1)

(

1− 1

q

)

∏

q>2

q∤a

(

1− 1

q(q − 1)

)

.

Let q > 2. We can easily establish the following character sum identity.

q−1
∑

m=0

(

am+ b

q

)

=

{

q
(

b
q

)

if q | a,
0 if q ∤ a.
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Using this sum we evaluate (2.2) for odd primes q and for f(x) = ax+ b to deduce that

aq(f) =

{
(

b
q

)

if q | a,
0 if q ∤ a.

Note that ad(f) is multiplicative on odd square free integers d, so if we let D be a funda-
mental discriminant and D1 > 1 be the largest odd square-free divisor of D, we get

aD1(f) =

{
(

b
D1

)

if D1 | a,
0 if D1 ∤ a.

The following simple criterion reduces the search for a fundamental discriminant D with
τ−D (f) = 1 to a finite number of steps.

Proposition 3.1. If τ−D (f) = 1, then D | a.

Proof. From Theorem 2.2 and the above formula for aD1(f) we deduce that if τ−D (f) = 1,
then aD1(f) cannot be equal to 0 for such D1, and so D1 | a. Now if D is odd we are done.
Otherwise either D = 4D1 and D1 = 4k + 3 or D = 8D1 and D1 = 2k + 1.

Let D = 4D1 and D1 = 4k + 3. Then from (2.1) and the fact that aD1(f) = ±1, we
conclude that if τ−D (f) = 1, then either α1 = α5 = 0 or α3 = α7 = 0. We assume that
α1 = 0, proofs for other cases are similar. Since α1 = 0 then an + b ≡ 1 (mod 8) does not
have any solutions and so 2 | a. Now since a is even and (a, b) = 1 we deduce that b is odd
and therefore 1− b is even. Since an+ b ≡ 1 (mod 8) does not have any solutions we have
that 4 | a which together with D1 | a imply D = 4D1 | a.

Next suppose that D = 8D1 and D1 = 2k + 1. Now if τ−D (f) = 1, from (2.1) we deduce
that one of α1 = α7 = 0, or α3 = α5 = 0, or α5 = α7 = 0, or α1 = α3 = 0 hold. We
assume that α1 = α7 = 0, proofs for other cases are similar. Since α1 = 0 and α7 = 0
then a similar reasoning as above implies that 4 | a. Now suppose that b = 4k + 1, then
since an + b ≡ 1 (mod 8) does not have any solutions we conclude that 8 | a. Similarly if
b = 4k + 3, then since an + b ≡ 7 (mod 8) does not have any solutions we again conclude
that 8 | a. So 8 | a which together with D1 | a imply D = 8D1 | a. �

We next employ the above proposition together with some results from [11] and [13] to
show that under certain assumptions Conjecture 1.5 holds for linear polynomials.

Proposition 3.2. Let f(x) = ax+ b, a > 0, and (a, b) = 1. Let g be a square-free integer
with the property that all the primes produced by f(x) (except finitely many) stay inert in
Q(

√
g). Then, assuming the generalized Riemann hypothesis for Dedekind zeta function of

number fields Q(e2πi/a, e2πi/d, g1/d) with d square-free, we have

#{0 ≤ n ≤ x; an + b = p is an Artin prime for g} =
aδ(f)

ϕ(a)

x

log x
+ o

(

x

log x

)

,

where ϕ(.) is the Euler function and

δ(f) =
∏

q>2

q|(a,b−1)

(

1− 1

q

)

∏

q>2

q∤a

(

1− 1

q(q − 1)

)

.
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Proof. Under our assumptions by [11, Theorem 2] the density δg(f) of Artin primes pro-
duced by f(x) for g exists. Moreover since all the primes produced by f(x) (except finitely
many) stay inert in Q(

√
g) we conclude that τ−D (f) = 1, where D is the discriminant of

Q(
√
g), and so by Proposition 3.1 we have D | a. Therefore g = 4k + 1, or g = 4k + 2 and

8 | a, or g = 4k + 3 and 4 | a. For all these cases from [13, Theorem 3] we have

(3.2) δg(f) =
∏

q|(a,b−1)

(

1− 1

q

)

∏

q∤a

(

1− 1

q(q − 1)

)

(

1−
(g

b

))

.

We observe that in all the cases
(

g
b

)

= −1. For example if g = 4k + 3 and 4 | a then for a
prime in the form an+ b we have

−1 =

(

D

an + b

)

=

(

D

Da1n+ b

)

=

(

D

b

)

=
(g

b

)

.

So in (3.2) we have
(

g
b

)

= −1 and thus δg(f) = δ(f). �

We now give a procedure for finding linear Artin prime producing polynomials of large
length.

Linear Procedure

(1) Select an integer a > 0 which is the product of many small primes.
(2) Select an integer B such that (a, B + 1) = 1 and moreover either (a, B) = 1 or a

and B only have very large common prime divisors.
(3) Form f(n) = an+ b where b = B + 1.
(4) Search through divisors D of a that are fundamental discriminants and find ones sat-

isfying τ−D (f) = 1, then select g such that Q(
√
g) has the fundamental discriminant

D.
(5) Compute ℓg(f).

Note that the conditions on a and b in steps (1) and (2) ensure that δ(f) given in
(3.1) is large, and step (4) guarantees that the hypotheses of Conjecture 1.5 hold, so that
δ(f) = δg(f). So it is very likely that ℓg(f) is very large.

We have implemented the above procedure and produced many examples of Artin prime
producing linear polynomials of large length. In particular we found a linear polynomial
that has 1008420 as a primitive root for the first 6355 primes produced by the polynomial.
We present a sample of our results in Table 2. In the second example in Table 2 we have
a =

∏

3≤q≤127 q and in all others a =
∏

3≤q≤101 q.

4. The Quadratic Case

In [12] a method for generating integers g and quadratic polynomials f(x) with large ℓg(f)
is presented and reported that Yves Gallot by implementing that method has found the
quadratic f(x) = 54151x2+160744427648x+119471867164612830 of negative discriminant
and g = 17431902 with ℓg(f) = 31082. Here we give a modification of the method presented
in [12] to include a different range of quadratic polynomials. We then employ our modified
method to find quadratics with large Artin prime production lengths. The three quadratic
f(x) of negative discriminant and integers g with ℓg(f) > 31082 found in our search are
presented in Table 3. We will make use of the following result.
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f(x) g ℓg(f) δ(f)
116431182179248680450031658440253681535x+ 1008420 6355 0.998271

33158669235192590202725416070516726471730038

2007238469666518094547220599513022568322942623865x+ 5 6205 0.998680

11969745093777650688032495128870012351454520519469655612

116431182179248680450031658440253681535x+ 9680 5872 0.998271

24446589597448128439371347196066304497192128

116431182179248680450031658440253681535x+ 19773 5788 0.998271

28924300001697674192118664716361580581665158

116431182179248680450031658440253681535x+ 887040 5749 0.998271

44080845573063550418381985885480043829165318

Table 2. Linear Polynomials With Long Artin Prime Production Lengths

Proposition 4.1. (Moree) Assume that f(x) = ax2 + bx + c produces infinitely many
primes and that the primes produced by f(x) are uniformly distributed among allowable
congruence classes. Let d = b2 − 4ac be the discriminant of f(x). Let aD1(f) be as defined
in Theorem 2.2. Then

aD1(f) =

(

c

(D1, a, d)

)(

a

D1/(D1, a, d)

)

∏

q|D1
q∤ad

−1

q − 1−
(

d
q

) .

Moreover if τ−D (f) = 1, then D | 24ad. (Note that the first two factors in the formula for
aD1(f) are Kronecker symbols.)

Proof. See [12, Propositions 2 and 3]. �

Our procedure for quadratic polynomials is the following.

Quadratic Procedure

(1) Select an integer ∆ where
(

∆
q

)

= −1 for many consecutive primes q ≥ 3.

(2) Select an even b and express it as b = 2b′.
(3) Factor −∆+ (b′)2 into a(c− 1) such that a > 0, (a, b, c) = 1, 2 ∤ (a+ b, c), b2 − 4ac

is not square, and moreover a does not have small odd prime factors.
(4) Form f(n) = an2 + bn + c.
(5) Search through divisors D of 24a(b2 − 4ac) that are fundamental discriminants and

find ones satisfying τ−D (f) = 1, then select g such that Q(
√
g) has the fundamental

discriminant D.
(6) Compute ℓg(f).

We briefly explain why this works. By employing (1.1) for the polynomial constructed
with our method we obtain

(4.1) δ(f) =
∏

q|a

q|(b,c−1)

(

1− 1

q

)

∏

q|a

q∤b

(

1− 1

q(q − 1)

)

∏

q∤a



1−
1 +

(

4(b′)2−4a(c−1)
q

)

q
(

q − 1−
(

4(b′)2−4ac
q

))



 ,

where q ranges over the odd primes. Since
(

4(b′)2−4a(c−1)
q

)

=
(

∆
q

)

= −1 for many small q

and a does not have small prime factors the value of δ(f) will be close to 1. Therefore this
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f(x) g ℓg(f) δ(f)
x2 + 108656x+ 2038991585917703148 29823674796 37951 0.999553

x2 + 609932x+ 2038991675970432720 70882491394 36041 0.999553

x2 + 172676x+ 2038991590420421808 122605515633473715037016 31801 0.999553

Table 3. Quadratics of Negative Discriminant With Long Artin Prime Production Lengths

polynomial will produce a high proportion of Artin primes for g given in step (5) of the
procedure.

Finding ∆ is a crucial step in this method. Such ∆ is related to finding quadratics with
a large prime producing constant. Algorithms for finding many examples of such ∆ can be
found in [6].

Our method is similar to the one originally presented in [12]. In [12], Moree considered
polynomials of the form f(x) = 2αd1x

2 ± 2αd2 + 1 where d1d2 = ∆ and α ∈ Z+, where
(

∆
p

)

= −1 for many consecutive primes q ≥ 3. The form that we use allows us to

vary over b in the family f(x) = ax2 + bx + c. In [12] it is reported that Yves Gallot
has found the quadratic f(x) = 64d1(x + 728069)2 − 64d2 + 1 of positive discriminant
with d1 = 230849, d1d2 = ∆ = 4472988326827347533 (taken from [6, Table 4.3]) and
g = 66715361 with ℓg(f) = 25581. We also implemented the method given in [12] and
using d1 = 373, ∆ = 2430946649400343037 (taken from [6, Table 4.6]) we found f(x) =
32d1(x + 4685199)2 − 32d2 + 1 of positive discriminant and g = 675 with ℓg(f) = 26187.
By using the same method we also found f(x) = x2 + 3543608x+ 13598861653501886604
of negative discriminant and g = 69870828 with ℓg(f) = 35521.

5. The Cubic Case

In this section we study Artin prime producing polynomials of the form f(x) = ax3 + b.
The following proposition plays an important role in our investigations.

Proposition 5.1. Let q be a prime number not dividing the integer m. The decomposition
of x3 −m modulo q is as follows.

(1) If q ≡ 2 (mod 3), then x3 −m = (x− u)(x2 + ux+ w) in Fq[x].
(2) If q ≡ 1 (mod 3) and m(q−1)/3 ≡ 1 (mod q), then x3 −m = (x− u1)(x− u2)(x− u3)

in Fq[x], where u1, u2, and u3 are distinct elements of Fq.
(3) If q ≡ 1 (mod 3) and m(q−1)/3 6≡ 1 (mod q), then x3 −m is irreducible in Fq[x].
(4) If q = 3, then x3 −m = (x− a)3 in Fq[x].

Proof. See [4, Proposition 6.4.14]. �

5.1. Proportion of Primitive Roots. We evaluate δ(f) for f(x) = ax3+b with (a, b) = 1
by computing the number of solutions to the following two congruence equations using
Proposition 5.1.
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#{s (mod q)| f(s) q≡ 1} =







































1 if q ∤ a, q | (b− 1) (a)
1 if q ∤ a, q = 3 (b)
1 if q ∤ a, q ≡ 2 (mod 3) (c)

3 if q ∤ a, q ≡ 1 (mod 3), (a2(b− 1))
q−1
3 ≡ 1 (mod q) (d)

0 if q ∤ a, q ≡ 1 (mod 3), (a2(b− 1))
q−1
3 6≡ 1 (mod q) (e)

q if q | a, q | (b− 1) (f)
0 if q | a, q ∤ (b− 1) (g)

#{s (mod q)| f(s) q≡ 0} =































1 if q ∤ a, q | b (A)
1 if q ∤ a, q = 3 (B)
1 if q ∤ a, q ≡ 2 (mod 3) (C)

3 if q ∤ a, q ≡ 1 (mod 3), (a2b)
q−1
3 ≡ 1 (mod q) (D)

0 if q ∤ a, q ≡ 1 (mod 3), (a2b)
q−1
3 6≡ 1 (mod q) (E)

0 if q | a (F )

Then the cubic version of (1.1) is

δ(f) =
∏

(a),((B) or (C))
(b),((A) or (B))

(c),((A) or (C))

(

1− 1

q(q − 1)

)

∏

(a),(D)

(

1− 1

q(q − 3)

)

∏

(a),(E)

(

1− 1

q2

)

∏

(d),(A)

(

1− 3

q(q − 1)

)

∏

(d),(D)

(

1− 3

q(q − 3)

)

∏

(d),(E)

(

1− 3

q2

)

∏

(f),(F )

(

1− 1

q

)

,(5.1)

where q ranges over the odd primes. The letters in the subscripts of the products re-
fer to the conditions in the number of solutions of congruences modulo q. For example
(a), ((B) or (C)) indicates that q either satisfies the conditions (a) and (B) or it satisfies
the conditions (a) and (C).

Observe that for f(x) = ax3 + b we have

C(f) =
1

3

∏

(E) or (F )

(

1 +
1

q − 1

)

∏

(D)

(

1− 2

q − 1

)

,

where q ranges over the odd primes. For f1(x) = ax3 + (b − 1) note that if C(f1) is large

then we expect that (a2(b− 1))
q−1
3 6≡ 1 (mod q) for many small consecutive primes q where

q ∤ a and q ≡ 1 (mod 3). Considering this fact in (5.1) shows that if (a, b − 1) does not
have small odd prime divisors, then δ(f) will be more likely to be large. So the problem
of finding f(x) = ax3 + b with large δ(f) is related to finding integers a and b such that
f1(x) = ax3 + (b− 1) has large C(f1).

5.2. A formula for aD1(f). In order to find an expression for τ−D (f) for cubic polynomials
we need to compute some special character sums. For prime q ≡ 1 (mod k) the Jacobsthal
sum φq,k(E) and its associated sum ψq,k(E) are defined as

φq,k(E) =

q−1
∑

u=1

(

u

q

)(

uk + E

q

)

, and ψq,k(E) =

q−1
∑

u=1

(

uk + E

q

)

.
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For odd k it is known that

ψq,k(E) =

(

E

q

)

φq,k(E)

where E is the modular inverse of E mod q (see [8, page 104, equation (5)]). For k = 3
this latter identity in combination with the definition of ψq,k(E) implies

(5.2)

q−1
∑

m=0

(

m3 + E

q

)

=

(

E

q

)

(1 + φq,3(Ē)).

Note that φq,3(E) can be explicitly evaluated. We will describe its computation in the next
section.

Lemma 5.2. Let q be an odd prime. Then

q−1
∑

m=0

(

am3 + b

q

)

=















q
(

b
q

)

if q | a,
0 if q ∤ a and ( q | b or q = 3 or q ≡ 2 (mod 3) ),
(

b
q

)

(1 + φq,3(ā
2b̄)) if q ∤ a, q ∤ b, q ≡ 1 (mod 3).

Proof. If q | a then
q−1
∑

m=0

(

am3 + b

q

)

=

q−1
∑

m=0

(

b

q

)

= q

(

b

q

)

.

If q = 3 or q ≡ 2 (mod 3) then the map x → x3 from Fq → Fq is one to one (see [10,
Theorem 4.13]). So if q ∤ a we have

(

a2

q

) q−1
∑

m=0

(

am3 + b

q

)

=

q−1
∑

k=0

(

k3 + a2b

q

)

= 0.

Finally assume that q ∤ a and q ≡ 1 (mod 3). Then from (5.2) we have
(

a2

q

) q−1
∑

m=0

(

am3 + b

q

)

=

q−1
∑

k=0

(

k3 + a2b

q

)

=

(

b

q

)

(1 + φq,3(ā
2b̄)).

�

Recall from Theorem 2.2 that for odd square-free d the multiplicative function ad(f) is
defined by

ad(f) =

∑

r (mod d)

(

f(r)
d

)

#{r (mod d)|(f(r), d) = 1} .

We next find a formula for aq(f) for odd prime q.

Lemma 5.3. Let q be an odd prime and f(x) = ax3 + b where (a, b) = 1.

aq(f) =



























(

b
q

)

if q | a,
0 if q ∤ a and ( q | b or q = 3 or q ≡ 2 (mod 3) ),
( b
q )(1+φq,3(ā2 b̄))

q−3
if q ≡ 1 (mod 3), a2b is a cubic residue mod q,

( b
q )(1+φq,3(ā2 b̄))

q
if q ≡ 1 (mod 3), a2b is a cubic non-residue mod q.
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Proof. The result follows from a straightforward application of Lemma 5.2 and Proposition

5.1. Note that when q ≡ 1 (mod 3), E is a cubic residue mod q if and only if E
q−1
3 ≡ 1

(mod q) (see [10, Theorem 4.13]). Also since q is a prime in the form 3k+1 then k = (q−1)/3
is even, so −a2b is a cubic residue mod q if and only if a2b is a cubic residue. �

The following proposition is a simple consequence of Lemma 5.3 and the multiplicativity
of ad(f) for odd values of d.

Proposition 5.4. Let D1 be an odd square-free integer. If D1 has a prime divisor q such
that q ∤ a and one of the conditions q | b, q = 3, or q ≡ 2 (mod 3) holds, then aD1(f) = 0.
Otherwise

aD1(f) =

(

b

(D1, a)

)

∏

q|D1,q∤a

(1)

(

b
q

)

(1 + φq,3(ā
2b̄))

q − 3

∏

q|D1,q∤a

(2)

(

b
q

)

(1 + φq,3(ā
2b̄))

q
,

where (1) is the condition that q ≡ 1 (mod 3) and a2b is a cubic residue mod q and (2) is
the condition that q ≡ 1 (mod 3) and a2b is a cubic non-residue mod q.

5.3. Computing the Jacobsthal sum φq,3(E). The formula for aD1(f) given in Proposi-
tion 5.4 will be useful only if we can compute the Jacobsthal sum φq,3(E) for q ≡ 1 (mod 3).
In this section we obtain formulas to compute φq,3(E). If q ≡ 1 (mod 3) then there are
integers A and B uniquely defined by

q = A2 + 3B2, A ≡ −1 (mod 3), B > 0.

(See [2, Theorems 3.0.1 and 3.1.1] for a proof.) The following proposition provides conve-
nient formulas for φq,3(E) in terms of the representation q = A2 + 3B2.

Proposition 5.5. Let E be an integer not divisible by prime q ≡ 1 (mod 3), then

φq,3(E) =







−1 + 2A if E(q−1)/3 ≡ 1 (mod q),
−1 −A− 3B if E(q−1)/3 ≡ (A−B)/2B (mod q),
−1 −A + 3B if E(q−1)/3 ≡ (−A− B)/2B (mod q).

Proof. See [2, Theorem 6.2.10]. �

Formulas given in Propositions 5.5 can be used in the implementation of our upcoming
cubic procedure.

5.4. Condition for τ−D (f) = 1. We employ Propositions 5.5 to find a condition on the
possible values of D with τ−D (f) = 1.

Proposition 5.6. Assume that f(x) = ax3 + b produces infinitely many primes and that
the primes produced by f(x) are uniformly distributed among allowable congruence classes.
Then τ−D (f) = 1 implies D | 56a.

Proof. From the definition of αj in Theorem 2.2, we conclude that (α3 + α7 − α1 − α5),
(α3+α5−α1−α7), and (α5+α7−α1−α3) are at most 1 and at least −1. Thus from (2.1)
we deduce that if τ−D (f) = 1, then aD1(f) = ±1, where D1 > 1 is the largest odd square
free divisor of D.
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Let q be a divisor of D1 such that q ∤ a. From Lemma 5.3 we know that the only possible
non-zero value of aq(f) are

either
( b
q
)(1 + φq,3(ā

2b̄))

q − 3
, or

( b
q
)(1 + φq,3(ā

2b̄))

q
.

In the former case q ≡ 1 (mod 3) and a2b is a cubic residue mod q and in the latter case
q ≡ 1 (mod 3) and a2b is a cubic non-residue mod q. From Proposition 5.5 we know that if
a2b is a cubic residue mod q then (1+ φq,3(ā

2b̄)) is equal to 2A. So in this case aq(f) = ±1
implies

∣

∣

∣

(

b
q

)

(1 + φq,3(ā
2b̄))

∣

∣

∣

q − 3
=

∣

∣

∣

(

b
q

)

(2A)
∣

∣

∣

q − 3
= 1.

Since |A| ≤ √
q (recall that q = A2 + 3B2), from the above identity we conclude that

2
√
q ≥ q − 3 and so 4q ≥ (q − 3)2. Because q ≡ 1 (mod 3), this is only true if q = 7.
Next if a2b is a cubic non-residue modulo q, then from Lemma 5.3 we conclude that if

aq(f) = ±1 then

(5.3)

∣

∣

∣

(

b
q

)

(1 + φq,3(ā
2b̄))

∣

∣

∣

q
= 1,

which implies |1 + φq,3(ā
2b̄)| = q. From Proposition 5.5 we know that 1 + φq,3(ā

2b̄) is equal

to −A ± 3B. So |1 + φq,3(ā
2b̄)| = | − A ± 3B| = q. Since |A| ≤ √

q and |B| ≤ (1/
√
3)
√
q

(recall that q = A2 +3B2) we have q = | −A± 3B| ≤ (1+
√
3)
√
q. Because q ≡ 1 (mod 3),

this is only true if q = 7.
In summary if q ∤ a and aq(f) = ±1, then q = 7. This shows that if aD1(f) = ±1, then

D1 | 7a. Finally since D is a fundamental discriminant, 8 is the greatest power of 2 that
divides D. This implies that if τ−D (f) = 1, then D | 56a. �

The above result gives us a convenient way to find a D such that τ−D (f) = 1.

5.5. The Cubic Procedure. We are ready to present our algorithm for finding prime
producing cubic polynomials f(x) = ax3 + b and integers g with large δ(f) and ℓg(f).

Cubic Procedure

(1) Select coprime integers A > 0 and B such that:
(i) The smallest prime factor of B is large.
(ii) 3 and many consecutive primes q ≡ 2 (mod 3) divide A.

(iii) For many consecutive primes q ≡ 1 (mod 3) we have (A2B)
q−1
3 6≡ 1 (mod 3).

(2) Set a = 2αA, b = 2αB+1, and choose α such that (a, b) = 1 and a2b is not a perfect
cube. Then form f(x) = ax3 + b.

(3) Search through divisors D of 56a that are fundamental discriminants and find ones
satisfying τ−D (f) = 1. Then select g such that Q(

√
g) has fundamental discriminant

D.
(4) Compute ℓg(f).

We briefly explain why this works. Recall that our aim is to make δ(f) in (5.1) as close
as possible to 1. In order to do this we need to ensure that #{s (mod q)|f(s) ≡ 1 (mod q)}
is zero for as many small primes q as possible. For q = 3 and q ≡ 2 (mod 3), the equation
f(n) ≡ 1 (mod q) has no solutions only if q | a and q ∤ b − 1. Now because of our choice
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of A, we have that many such small primes (i.e. 3 and odd primes q ≡ 2 (mod 3)) divide
A. Since (a, b − 1) = 2α(A,B) = 2α we conclude that such q does not divide b − 1. Thus
#{s (mod q)|f(s) ≡ 1 (mod q)} is zero for such small prime q as we required. For q ≡ 1
(mod 3), we have

(a2(b− 1))
q−1
3 = (2q−1)α(A2B)

q−1
3 ≡ (A2B)

q−1
3 (mod q).

Since A and B are such that (A2B)
q−1
3 6≡ 1 (mod q) for many small q ≡ 1 (mod 3), expres-

sion in (5.1) shows that such a q does not reduce the value of δ(f). So we expect a large
value for δ(f). So for this f and g found in step (3) of the procedure we expect to obtain
a large ℓg(f).

We implemented this procedure and found many examples of cubics f(x) and integers g
with large δ(f) and ℓg(f). A sample of our findings is given in Table 4. Note that these
polynomials are all in the form a(x+ d)3 + b for integers b and d and

a = 23 × 3×
∏

5≤q≤113
q≡2 (mod 3)

q.

f(x) g ℓg(f) δ(f)
16735790906636782452200520x

3
+41975422096126566714360524823960x

2
+

35093173864667750962440687534348342360x+ 11045 10011 0.999103

9779777390330230394129958282301374167637377

16735790906636782452200520x
3
+35691015460148108446082064160320x

2
+

25371743542186406147283249113774999040x+ 3380 9938 0.999103

6012020691773711636910512621335820375159417

16735790906636782452200520x
3
+13889869662963197596203821574000x

2
+

3842632442258768614989787238447100000x+ 45 9472 0.999103

354354755050296112445641546505463407638457

16735790906636782452200520x
3
+8188671868499217922819644631320x

2
+

1335547815736616945558115580434398040x+ 1445 8499 0.999103

72607947367731671323230658940703008348417

16735790906636782452200520x
3
+39188360629071623422248215626800x

2
+

30587691121809274229767399743186204000x+ 10125 8243 0.999103

7958203517101930938186782840516375938678457

Table 4. Cubic Polynomials With Long Artin Prime Production Lengths

6. Concluding Remarks

In this paper we focused on the problem of maximizing δ(f), as defined in (1.1) for any
prime producing polynomial f(x), when f(x) varies over prime producing polynomials of
fixed degrees. We note that δ(f) is well defined for any polynomial f(x) with the property
that Nq(f) 6= q for any primes q ≥ 3. From the above investigations we speculate that

sup
f,deg(f)=n

δ(f) = 1,

for n = 1, 2, or 3. More generally one can ask the following question:
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Question 6.1. Is it true that supf,deg(f)=n δ(f) = 1 and inff,deg(f)=n δ(f) = 0?

It turns out that the answer to the infimum question for the linear, quadratic, and cubic
polynomials is simple. We need only to consider the term

∏

q>2

q|(a,b−1)

(

1− 1

q

)

that is present in equations (3.1), (5.1), and in (4.1) for f(x) = ax2 + b. Since
∏

q>2(1 −
1/q) = 0 by defining integer a as a product of consecutive primes starting from 3 and setting
b = a+ 1, we find f(x) = axn + b with δ(f) arbitrarily close to 0. So inff,deg(f)=n δ(f) = 0,
for n = 1, 2, or 3.

The answer to the supremum question for polynomials of degree n is positive. In order to
see this, for y > 0 let q1, q2, . . . , qm be all the odd primes not exceeding y. Let a = q1q2 . . . qm.
Take an integer b such that b ≡ 2 (mod a). Note that (a, b) = (a, b − 1) = 1. Form
fy(x) = axn + b. From (1.1) we have

δ(fy) =
∏

q>y

(

1− 1

q(q −Nq(fy))

)

,

where Nq(fy) 6= q. It is clear that δ(fy) → 1 as y → ∞.
We also note that it is possible to construct quadratic polynomials fy(x) = x2 + bx + c

with b 6= 0 and δ(fy) arbitrarily close to one. In order to do this let ∆ be an integer with

the property that
(

∆
qi

)

= −1 for i = 1, . . . , m (the existence of such ∆ is a consequence of

the law of quadratic reciprocity, see [9] for details). Choose integers b′ 6= 0 and c such that

(b′)2 −∆ = c− 1,

and set b = 2b′. Now for fy(x) = x2 + bx+ c from (4.1) we have

δ(fy) =
∏

q>y



1−
1 +

(

∆
q

)

q
(

q − 1−
(

∆
q

))



 .

It is clear that δ(fy) → 1 as y → ∞.
We can also consider the following question.

Question 6.2. Is it true that for any polynomial f(x) we have 0 < δ(f) < 1?

For linear f(x) the answer is yes by (3.1) and the fact that we have

0 <
∏

q

(

1− 1

q(q − 1)

)

= A < 1.

In [12, Proposition 4], it is proved that δ(f) < 1 for quadratic polynomials.
The next question is motivated by Question 6.1 and the relation (1.2) between δg(f) and

ℓg(f).

Question 6.3. Is it true that sup
g∈Z

f,deg(f)=n

ℓg(f) = ∞?
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In [12, Theorem 2] it is conditionally proved that for quadratic polynomials the answer
to the above question is positive. It appears that the proof extends to prime producing
polynomials of the form axn + b.

Another question motivated by the size of the leading coefficients a(f) of polynomials
f(x) in our findings in this research is the following.

Question 6.4 Is it true that sup
g∈Z

f,deg(f)=n

ℓg(f)

a(f)
= ∞?

Following the procedure described in this paper one may speculate that for linear poly-
nomials f(x) = ax+b the quantity ℓg(f)/a(f) is bounded. Note that for a prime producing
polynomial fy(x) = ax+b, where a is the product of all the odd primes ≤ y and (a, b−1) = 1,
and a suitable g coming from τ−D (fy) = 1, the ratio of the expected value of ℓg(fy) by a(fy)
can be estimated as

δ(fy)

a(fy)(1− δ(fy))
=

∏

q>y

(

1− 1
q(q−1)

)

(

∏

3≤q≤y q
)(

1−∏

q>y

(

1− 1
q(q−1)

)) ≈ 1− 1/y log y

ey(1/y log y)
.

It is clear that the latter expression approaches zero as y → ∞. So motivated by this
observation we may speculate that the answer to the above question for linear polynomials
is negative. In contrast, our investigations for the quadratic case leave open the possibil-
ity of the existence of sequences of quadratics fn and integers gn with the property that
ℓgn(fn)/a(fn) → ∞ as n→ ∞.

Finally, problems similar to the one discussed in [12] and this paper can be considered
for primes generated by a family of polynomials. For example for two polynomials f1(x)
and f2(x) and a fixed integer g, we can consider integers n where both f1(n) and f2(n)
are prime. Then the Artin prime production length ℓg(f1, f2) is the number of such n in
a row where both primes have g as a primitive root. One can develop procedures, in line
with the one developed in this paper for the case of a single polynomial, for finding integers
g and polynomials f1(x) and f2(x) with large ℓg(f1, f2). We have done some preliminary
experiments for the case of two quadratic polynomials. We present a sample of our results
in Table 5.

f1(x), f2(x) g ℓg(f1, f2)
x2 + 77851376x+ 9829839069358873548

x2 + 77851376x+ 5695745484831292308 7203 11966

x2 + 24444296x+ 9828473241074334108

10597x2 + 259036204712x+ 1583526759288000168 108 10724

x2 + 65043728x+ 13599916185850506684

x2 + 65043728x+ 6850377136300469580 21675 10043

x2 + 64233308x+ 13599889993676627904

x2 + 64233308x+ 6850350944126590800 48 9340

x2 + 4206728x+ 13598862938352588684

x2 + 4206728x+ 6849323888802551580 3468 9247

Table 5. Pair of Quadratics With Long Artin Prime Production Lengths
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décomposition des entiers en facteurs, Mém. Acad. Sci. St. Petersburg, 6 (1857), 305-329.

[4] H. Cohen, A Course in Computational Algebraic Number Theory, Springer-Verlag, 1993.
[5] C. Hooley, On Artin’s conjecture, J. Reine Angew. Math., 225 (1967), 209–220.
[6] M. J. Jacobson and H. C. Williams, New quadratic polynomials with high densities of prime

values, Math. Comp., 72 (2003), 499–519.
[7] D. H. Lehmer, A note on primitive roots, Scripta Math., 26 (1963), 117–119.
[8] E. Lehmer, On the number of solutions of uk+D = w2 (mod p), Pacific J. Math., 5 (1955), 103–118.
[9] D. H. Lehmer, E. Lehmer, and D. Shanks, Integer sequences having prescribed quadratic char-

acter, Math. Comp., 24 (1970), 433–451.
[10] W. J. LeVeque, Fundamentals of Number Theory, Addison-Wesley, 1977.
[11] P. Moree, On primes in arithmetic progression having a prescribed primitive root, J. Number Theory,

78 (1999), 85–98.
[12] P. Moree, Artin Prime Producing Quadratics, Abh. Math. Sem. Univ. Hamburg, 77 (2007), 109–127.
[13] P. Moree, On primes in arithmetic progression having a prescribed primitive root. II, Funct. Approx.

Comment. Math., 39 (2008), 133–144.
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