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FOURIER COEFFICIENTS OF AUTOMORPHIC L-FUNCTIONS OVER PRIMES IN

RAY CLASSES

AMIR AKBARY AND PENG-JIE WONG

ABSTRACT. We prove Siegel-Walfisz type theorems (over long and short intervals) for the Fourier

coefficients of certain automorphic L-functions and Rankin-Selberg L-functions over number fields.

1. INTRODUCTION

Let p and γ denote primes and positive real numbers, respectively, and let q ą 0 and a be coprime

integers. The uniform version of the prime number theorem in arithmetic progressions, known as

the Siegel-Walfisz theorem, provides the existence of a constant c :“ cpγq ą 0, depending only on

γ, such that if q ď plog xqγ , then

(1.1)
ÿ

pďx
p”a pmod qq

log p “
x

φpqq
` O

´

x exp
´

´cplog xq
1
2

¯¯

,

where φp.q is Euler’s totient function (see [5, p. 133]). The short interval version of this theorem

states that for y “ xθ, with θ ą 7{12, one has

(1.2)
ÿ

x´yăpďx
p”a pmod qq

log p „
y

φpqq
,

as x Ñ 8, uniformly for q ď plog xqγ (see [26, p. 316]). Our goal in this paper is to prove

theorems analogous to the above results for the Fourier coefficients of automorphic L-functions

and Rankin-Selberg L-functions over number fields. Previous work on automorphic extensions of

(1.1) (for example [22] and [11]) treats only the classical modular forms or as [27] is under the

assumption of the Generalized Ramanujan Conjecture. Here, we prove unconditionally extensions

of (1.1) and bounds of correct order of magnitude for the sum in (1.2), for certain L-functions of

degree less than or equal to four. Our focus here is on non-abelian L-functions. For results related

to degree one L-functions, see [18] and [7]. In order to state our results, we start with introducing

some terminology and notation.

Let F be a number field, and set nF “ rF : Qs. Let π be an irreducible cuspidal automorphic

representation of GLmpAF q with unitary central character. We shall call such representations, for

short, cuspidal representations of GLmpAF q. Associated to π, there is an integer Aπ ě 1, called

the conductor of π, and a collection of complex numbers απpj, pq, for 1 ď j ď m, called the

local parameters, such that for any p ∤ Aπ, we have απpj, pq ‰ 0. We call a prime p ∤ Aπ an

unramified prime. The Generalized Ramanujan Conjecture (GRC) states that, for 1 ď j ď m,

|απpj, pq| “ 1 for unramified primes p, and |απpj, pq| ď 1 for ramified primes p. The truth of GRC

is known form “ 1 and for cuspidal representations that can be associated to Galois representations

(for instance, the cuspidal representations arising from modular forms). Corresponding to each

cuspidal representation π, there is a cuspidal representation π̌, the contragredient representation.

2010 Mathematics Subject Classification. 11F30, 11M41, 11N13.

Research of the first author is partially supported by NSERC. The second author is currently an NCTS postdoctoral

fellow; he was supported by a PIMS postdoctoral fellowship and the University of Lethbridge during part of this

research.

1

http://arxiv.org/abs/2103.15713v1


2 AMIR AKBARY AND P.J. WONG

The collection of the local parameters for π̌ coincides with the collection of the complex conjugates

of the local parameters for π (i.e., tαπ̌pj, pqu “ tαπpj, pqu). For integer k ě 1, we set

aπppkq “
m
ÿ

j“1

απpj, pqk.

For a cuspidal representation π and an idéle class character ψ, the twist of π by ψ, denoted π b ψ,

is the representation of GLnpAF q defined by pπ b ψqpgq “ ψpdetpgqqπpgq for g P GLnpAF q.

Let π and π1, respectively, be cuspidal representations of GLmpAF q and GLm1pAF q of conductor

Aπ and Aπ1 . Let Lps, πˆπ1q denote the Rankin-Selberg L-function associated with π and π1, where

s “ σ ` it is a complex variable. For Repsq ą 1, we have

´
L1

L
ps, π ˆ π1q “

ÿ

n‰0

Λpnqaπˆπ1pnq

Nns
,

where Nn is the norm of the ideal n, Λpnq is the number field analogue of the von Mangoldt function

(i.e., Λppkq “ logNp and Λpnq “ 0 if n is not a power of a prime ideal), and

aπˆπ1ppkq “ aπppkqaπ1ppkq

for p ∤ pAπ, Aπ1q. It is known that Lps, π ˆ π1q has an analytic continuation to the whole complex

plane with possible simple poles at s “ iτ or s “ 1 ` iτ for some τ P R, where poles exist if and

only if π1 » π̌ b | ¨ |´iτ . In particular, Lps, π ˆ π̌q has only a simple pole at s “ 1. Throughout

this paper we assume, unless otherwise stated, that π and π1 are normalized such that their central

characters are trivial on the diagonally embedded copy of the positive reals. This normalization

will ensure that the possible simple pole of Lps, π ˆ π1q at s “ 1 ` iτ can only occur at s “ 1.

(For a review of the basic properties of the Rankin-Selberg L-functions, see [12, Chapter 5].) We

set Lps, πq “ Lps, π ˆ 1q, where 1 is the trivial representation.

If a representation π is isomorphic to ‘k
i“1πi, for cuspidal representations πi of GLmi

pAF q, then

π is called an (isobaric) automorphic representation of GLm1`¨¨¨`mk
pAF q. For π and π1 as above

with 1 ď m ď 2 and 1 ď m1 ď 3, it is known that there exist an automorphic representation of

GLmm1pAF q, denoted by πb π1, such that Lps, πb π1q “ Lps, πˆ π1q and aπbπ1 “ aπˆπ1 (see [23]

and [13]).

We call a cuspidal representation π self-dual if π » π̌. Also, a cuspidal representation π is called

essentially self-dual if π » π̌ b ψ for some idèle class character ψ of F . A cuspidal representation

π of GL2pAF q is called dihedral if it admits a non-trivial self-twist (i.e., π » π b ψ for some

non-trivial idèle class character ψ of F ). We say that two cuspidal representations π and π1 are

twist-equivalent if π1 » π b ψ for some idèle class character ψ of F .

We are ready to state our first result.

Theorem 1.1. Assume that for an automorphic representation Π, one of the following hold:

(a) Π » π, where π is a cuspidal representation of GLmpAF q for 2 ď m ď 3, or π is a cuspidal

representation of GL4pAF q that is not essentially self-dual.

(b) Π » π b π̌, where π is a non-dihedral cuspidal representation of GL2pAF q.

(c) Π » π b π1, where π and π1 are non-dihedral cuspidal representations of GL2pAF q that

are not twist-equivalent.

Then, for any γ ą 0, there exists c :“ cpΠq ą 0 such that for any ideal q, with Nq ď plog xqγ , and

any ideal a relatively prime to q, we have

(1.3)
ÿ˚

Npďx
p„a pmod qq

ΛppqaΠppq “
δpΠq

hpqq
x` OΠ,γ

´

x exp
´

´cplog xq
1
2

¯¯

,
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where, as later, the superscript “˚” in the above sum means that the sum is taken over primes p

that p ∤ pAπ, Aπ1q, p „ a pmod qq means that p and a belong to the same ray class of the ray class

group modulo q, hpqq is the number of ray classes modulo q, δpΠq “ 0 in (a) and (c), and δpΠq “ 1

in (b).

Remarks 1.2. (i) In the above theorem, δpΠq is the order of ´L1

L
ps,Πq at s “ 1.

(ii) In the case F “ Q, the asymptotic formula (1.3) becomes

ÿ˚

pďx
p”a pmod qq

plog pqaΠppq “
δpΠq

φpqq
x` OΠ,γ

´

x exp
´

´cplog xq
1
2

¯¯

for q ď plog xqγ . In particular, if π is a non-dihedral cuspidal representation of GL2pAQq, we have,

unconditionally,

ÿ˚

pďx
p”a pmod qq

plog pq|aπppq|2 “
1

φpqq
x ` Oπ,γ

´

x exp
´

´cplog xq
1
2

¯¯

,

for q ď plog xqγ . This removes the assumption of the GRC in [27, Theorem 1].

(iii) An examination of the proof of Theorem 1.1 shows that, in accordance with (1.1), it would

be possible to remove the dependence in γ of the implied constant in the error term of (1.3), by

making the constant c in the error term to be dependent in γ. We prefer (1.3) as it provides an error

formula independent of γ.

(iv) The main obstacles for proving a Siegel-Walfisz type result for general automorphic L-

functions are the lack of information on the size of their coefficients and the absence of the Siegel-

type bounds for their possible exceptional zeros. The current known bounds towards the GRC

together with the non-existence of exceptional zeros for degrees two and three L-functions, Siegel-

type bounds for degree one L-functions, and the theory of Rankin-Selberg L-functions provide us

with the needed tools in proving such a theorem for certain automorphic L-functions.

The proof of Theorem 1.1 is done along the classical lines by studying the analytic properties

of the Rankin-Selberg L-functions twisted by the characters of the ray class groups. It is known

that if π is a cuspidal representation of GLmpAF q, then π b ψ is also a cuspidal representation of

GLmpAF q for any idéle class character ψ of F . Thus, we can define

(1.4) Lps, π ˆ π1 ˆ ψq :“ Lps, pπ b ψq ˆ π1q.

Throughout the paper, we let Lps, πˆπ1 ˆχq be the L- function (1.4) attached to π, π1, and the idéle

class character associated with the ray class character χ. Theorem 1.1 is, in fact, a consequence of

a more general theorem which we state now.

Theorem 1.3. Let π and π1 be cuspidal representations of GLmpAF q and GLm1pAF q, respectively.

Let χ denote a ray class character modulo q. Assume the following hold:

(i) There is ǫ0 :“ ǫ0pπ, π1q ą 0 such that
ÿ˚

xăNnďx`u

Λpnq|aπˆπ1pnq| !π,π1 u log x

for x1´ǫ0 ď u ď x.

(ii) The L-functions Lps, π ˆ π1 ˆ χq are holomorphic everywhere except possibly having a

simple pole at s “ 1 for exactly one ray class character χ “ η modulo q.

(iii) There is a positive constant cπ,π1 , depending only on π and π1, such that for any ray class

character χ modulo q, the L-function Lps, π ˆ π1 ˆ χq has either no zeros or possibly only
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one simple real zero βχ :“ βpπ, π1, χq in the region

(1.5) σ ě 1 ´
cπ,π1

log ppNqqp|t| ` 3qq
.

Then there exists c :“ cpπ, π1q ą 0 such that for any ideal q, with Nq ď exppplog xq1{2q, and any

ideal a relatively prime to q, we have

ÿ˚

Nnďx
n„a pmod qq

Λpnqaπˆπ1pnq “
δpπ, π1, q, aq

hpqq
x´

1

hpqq

ÿ

χ pmod qq

χpaq
xβχ

βχ

` Oπ,π1

´

x exp
´

´cplog xq
1
2

¯¯

,

(1.6)

where the term xβχ

βχ
should be omitted if βχ does not exist. Here δpπ, π1, q, aq “ η̄paqδpπ ˆ π1 ˆ ηq,

where δpπˆ π1 ˆ ηq is the order of ´L1

L
ps, πˆ π1 ˆ ηq at the pole s “ 1 for the possible unique ray

class character η modulo q described in (ii), and δpπ, π1, q, aq “ 0 otherwise.

Moreover, under the additional condition to (iii):

(iv) If such βχ exists, then for any ǫ ą 0, there is a constant κpǫ, π, π1q, depending on ǫ, π, and

π1, such that

(1.7) βχ ď 1 ´
κpǫ, π, π1q

Nqǫ
.

Then, for any γ ą 0, there exists c :“ cpπ, π1q ą 0 such that for any ideal q, with Nq ď plog xqγ ,

and any ideal a relatively prime to q, we have

(1.8)
ÿ˚

Nnďx
n„a pmod qq

Λpnqaπˆπ1pnq “
δpπ, π1, q, aq

hpqq
x` Oπ,π1,γ

´

x exp
´

´cplog xq
1
2

¯¯

,

where δpπ, π1, q, aq is as defined above.

For simplicity of referring to (1.5), throughout the paper, the region given by (1.5) is called the

classical zero-free region of Lps, π ˆ π1 ˆ χq. Also the bound for βχ given in (1.7) is called a

Siegel-type bound for the exceptional zero βχ.

In this paper, we shall also prove an estimate of correct order of magnitude towards (1.2) for

automorphic L-functions. In [21], Motohashi proved such an estimate for the sum of Hecke-Maass

eigenvalues τV ppq, associated with an irreducible representation V of PSL2pRq, with spectral data

νV , squared over primes in short intervals. The following is [21, Theorem 1].

Theorem 1.4 (Motohashi). There exist constants c0, θ0 ą 0 such that uniformly for plog xq´1{2 ď
θ ď θ0, |νV |1{θ ď x, one has

ÿ

x´yďpďx

τ 2V ppq “
y

log x

`

1 ` Ope´c0{θq
˘

, y “ x1´θ.

For results similar to the above in the context of automorphic L-functions, see [2] and [14]. The

main ingredients of the proof of such results are an explicit formula similar to the classical explicit

formula for the prime counting function ψpxq, a classical zero-free region, and a log-free zero-

density estimate. The possibility of obtaining such estimates using a log-free zero-density estimate

was first noted by Moreno [19].

Our next result is inspired by Theorem 1.4.
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Theorem 1.5. Let Π be as described in Theorem 1.1 and let γ, ν ą 0. Then there are positive

constants c0 :“ c0pΠq, c :“ cpΠq, and θ0 :“ θ0pΠq such that, for

plog xq´1{2 ď θ ď θ0,

y “ x1´θ, any ideal q with Nq ď plog xqγ , and any ideal a relatively prime to q, we have

(1.9)
ÿ˚

x´yăNpďx
p„a pmod qq

ΛppqaΠppq “ y

ˆ

δpΠq

hpqq
` OΠ,γ,ν

`

exp
`

´cplog xq1´ν
˘˘

` OΠ

`

e´c0{θ
˘

˙

,

where δpΠq is as defined in Theorem 1.1.

The above theorem is also a consequence of the following more general assertion.

Theorem 1.6. Let π and π1 be cuspidal representations of GLmpAF q and GLm1pAF q, respectively.

Assume the following hold:

(i) There is ǫ0 :“ ǫ0pπ, π1q ą 0 such that
ÿ˚

xăNnďx`u

Λpnq|aπˆπ1pnq| !π,π1 u log x

for x1´ǫ0 ď u ď x.

(ii) The L-functions Lps, π ˆ π1 ˆ χq are holomorphic everywhere except possibly having a

simple pole at s “ 1 for exactly one ray class character χ “ η modulo q.

(iii) There is a positive constant cπ,π1 , depending only on π and π1, such that for any ray class

character χ modulo q, the L-function Lps, π ˆ π1 ˆ χq has either no zeros or possibly only

one simple real zero βχ :“ βpπ, π1, χq in the region

σ ě 1 ´
cπ,π1

log ppNqqp|t| ` 3qq
.

(iv) There is a positive constant dπ,π1 such that for T ě 1 and 0 ď σ ď 1, we have

Npσ, T, π ˆ π1 ˆ χq !π,π1 ppNqqT qdπ,π1 p1´σq
,

where

Npσ, T, πˆπ1 ˆχq “ #tρ “ Repρq ` iImpρq | Lpρ, πˆπ1 ˆχq “ 0, Repρq ě σ, |Impρq| ď T u.

Then there exists a positive constant c0 :“ c0pπ, π
1q such that, for

plog xq´1{2 ď θ ď min

"

1

10dπ,π1

,
ǫ0

4

*

and y “ x1´θ, we have

(1.10)

ÿ˚

x´yăNnďx
n„a pmod qq

Λpnqaπˆπ1pnq “ y

¨

˝

δpπ, π1, q, aq

hpqq
` O

¨

˝

1

hpqq

ÿ

χ pmod qq

xβχ´1

˛

‚` Oπ,π1

`

e´c0{θ
˘

˛

‚,

uniformly for all q, with Nq ď xθ, where δpπ, π1, q, aq is as defined in Theorem 1.3.

Moreover, under the additional condition to (iii):

(v) If the possible exceptional zero βχ of Lps, π ˆ π1 ˆ χq exists, then for any ǫ ą 0, there is a

constant κpǫ, π, π1q, depending on ǫ, π, and π1, such that

βχ ď 1 ´
κpǫ, π, π1q

Nqǫ
.
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Then, for any γ, ν ą 0, there exists c :“ cpπ, π1q ą 0 such that

(1.11)
ÿ˚

x´yăNnďx
n„a pmod qq

Λpnqaπˆπ1pnq “ y

ˆ

δpπ, π1, q, aq

hpqq
` Oπ,π1,γ,ν

`

exp
`

´cplog xq1´ν
˘˘

` Oπ,π1

`

e´c0{θ
˘

˙

,

uniformly for all q, with Nq ď plog xqγ , where δpπ, π1, q, aq is as defined in Theorem 1.3.

Remark 1.7. We note that by the work of Soundararajan and Thorner [25, Theorem 2.4 and Corol-

lary 2.6], the condition (i) of Theorem 1.3 and conditions (i) and (iv) of Theorem 1.6 hold, uncon-

ditionally, whenever F “ Q. Also, recently, Humphries and Thorner [10, Theorem 2.4] showed

that the classical zero-free region (the condition (iii) in Theorems 1.3 and 1.6) and the Siegel-type

bound (the condition (iv) of Theorem 1.3 and the condition (v) of Theorem 1.6) are valid if π1 “ π̌,

pq, Aπq “ 1, and F “ Q. Thus, by Theorem 1.3, for any cuspidal representation π of GLmpAQq
and γ ą 0, there exists c :“ cpπq ą 0 such that

ÿ˚

pkďx

pk”a pmod qq

plog pq|aπppkq|2 “
1

φpqq
x ` Oπ,γ

´

x exp
´

´cplog xq
1
2

¯¯

for q ď plog xqγ with pq, Aπq “ 1. Moreover, it follows from Theorem 1.6 that there are positive

constants c0 :“ c0pπq, c :“ cpπq, and θ0 :“ θ0pπq such that, for plog xq´1{2 ď θ ď θ0, y “ x1´θ,

γ, ν ą 0, and any q ď plog xqγ with pq, Aπq “ 1, we have

ÿ˚

x´yăpkďx

pk”a pmod qq

plog pq|aπppkq|2 “ y

ˆ

1

φpqq
` Oπ,γ,ν

`

exp
`

´cplog xq1´ν
˘˘

` Oπ

`

e´c0{θ
˘

˙

.

In addition, by Proposition 2.2, for 1 ď m ď 4, the same estimates hold for the corresponding sums

only supported over primes.

In the rest of the paper, we prove Theorems 1.1 and 1.5. The structure of the paper is as follows.

In Section 2, we start by reviewing some facts and results from the theory of automorphic forms

that will be used in the proofs of our main assertions. In Section 3 we show that Theorem 1.1 is

a consequence of Theorem 1.3 and then in Section 4 we give a proof of Theorem 1.3. Similarly

we describe in Section 5 that Theorem 1.6 implies Theorem 1.5 and then in Section 6 we prove

Theorem 1.6.

Notation 1.8. Throughout the paper F is a number field of degree nF , p is a prime ideal of F , Nq

is the norm of an ideal q of F , π, π1 are cuspidal representations, Aπ and qpπq are respectively the

conductor and the analytic conductor of π, Lps, πq is the automorphic L-function associated with

π, π b ψ is the twist of π by an idéle class character ψ, π ‘ π1 is the isobaric sum of two cuspidal

representations, πbπ1 is the automorphic representation associated to two cuspidal representations

if it exists, Lps, π ˆ π1q is the Rankin-Selberg L-function associated with π and π1, Aπˆπ1 and

qpπˆπ1q are respectively the conductor and the analytic conductor of πˆπ1, Λp¨q is the number field

von Mangoldt function, hpqq is the number of ray classes modulo q, χ and η are ray class characters

modulo q, and ψ is an idéle class character of F . We use the Landau big-O and Vinogradov !
notations with their usual meanings. The dependence of the implied constants on the parameter t is

denoted by Otp¨q or !t. Throughout the paper we have suppressed the dependence of the constants

to the base field F .

Acknowledgement. The authors would like to thank Jesse Thorner for the valuable comments and

suggestions in an earlier version of this paper.
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2. PRELIMINARIES

In this section, we review some results from the theory of automorphic representations which we

will need in the proof of our theorems. Let π be a cuspidal representation of GLmpAF q with local

parameters απpj, pq. For cuspidal representations π and π1 and integer k ě 1, we set

aπˆπ1ppkq “
m
ÿ

i“1

m1
ÿ

j“1

απˆπ1pi, j, pqk.

Here, tαπˆπ1pi, j, pq | 1 ď i ď m and 1 ď j ď m1u is the collection of local parameters of

Lps, π ˆ π1q at the prime p. For p ∤ pAπ, Aπ1q, 1 ď i ď m and 1 ď j ď m1, we have

απˆπ1pi, j, pq “ απpi, pqαπ1pj, pq.

The best general known bound for aπˆπ1ppkq is

(2.1) |aπˆπ1ppkq| ď mm1pNpkq
1´ 1

m2`1
´ 1

pm1q2`1 ,

see [4, Formula (4)]. We denote by Aπˆπ1 the conductor of πˆπ1. The analytic conductor of πˆπ1

is

qpπ ˆ π1q “ Aπˆπ1

m
ź

i“1

m1
ź

j

ź

vPS8

p|κπˆπ1pi, j, vq| ` 3q,

where S8 is the collection of infinite places of F and the κπˆπ1pi, j, vq’s are the parameters of

Lps, π ˆ π1q at infinity. We set qpπq :“ qpπ ˆ 1q. It is shown in [9, Lemma A.2] that

(2.2) qpπ ˆ π1q ď Cm`m1

0 qpπqm
1

qpπ1qm,

for an absolute constant C0 ą 0. The parameters at infinity satisfy the bound

(2.3) |Repκπˆπ1pi, j, vq| ď 1 ´
1

m2 ` 1
´

1

pm1q2 ` 1

analogous to (2.1) (see [4, Formula (6)]). Also, from the functional equation of the ray class L-

function Lps, χq, we know that the parameters at infinity of χ are either zero or one (see [12, p.

129]). Thus, following an analysis of the parameters at infinity of Rankin-Selberg L-functions, as

done in [9, pp. 1119-1121], we have that

(2.4) κπˆπ1ˆχpi, j, vq “ κπˆπ1pi, j, vq ` c,

where c belongs to a finite set depending only on π and π1.

The following estimate on the average size of aπˆπ1pnq over a short interval will play an important

role in the proofs of Theorems 1.1 and 1.5.

Proposition 2.1. Let π and π1 be cuspidal representations of GLmpAF q and GLm1pAF q, respec-

tively. Assume that there is ǫπ,π1 ą 0 such that

(2.5)
ÿ

rě2

ÿ˚

Nprďx

Λpprq|aπˆπ1pprq| !π,π1 x1´ǫπ,π1 .

Suppose that x1´ǫ ď u ď x, where

0 ă ǫ ă min

"

1

nF maxtm,m1u2 ` 1
, ǫπ,π1

*

.

Then
ÿ˚

xăNnďx`u

Λpnq|aπˆπ1pnq| !π,π1,ǫ u log x.
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Proof. Let bπˆπ1pnq be the coefficients coming from the formal identity

ÿ

n‰0

bπˆπ1pnq

Nns
“

ź

p

m
ź

i“1

m1
ź

j“1

ˆ

1 ´
απˆπ1pi, j, pq

Nps

˙´1

.

From the number field analogue of [17, Eq. (1.10)], we have

(2.6)
ÿ

Nnďx

bπˆπ̌pnq “ cπx` Oπ,λ

ˆ

x
nFm2´1

nFm2`1
`λ

˙

,

for some cπ ą 0 and any λ ą 0. We note that by [8, Lemma a], each bπˆπ̌pnq is non-negative,

also bπˆπ1ppq “ aπppqaπ1ppq for p ∤ pAπ, A
1
πq. Thus, by employing (2.5), the Cauchy-Schwarz

inequality, and (2.6), we have
ÿ˚

xăNpmďx`u

plogNpq|aπˆπ1ppmq| ! plog xq
ÿ˚

xăNpďx`u

|aπppqaπ1ppq| ` x1´ǫπ,π1

! plog xq

˜

ÿ

xăNnďx`u

bπˆπ̌pnq

¸ 1
2

˜

ÿ

xăNnďx`u

bπ1ˆπ̌1pnq

¸ 1
2

` x1´ǫπ,π1

! plog xqu
1
2u

1
2 ` x1´ǫπ,π1

!π,π1,ǫ u logx,

as long as x1´ǫ ď u ď x. �

We next note that the truth of (2.5) is known for some smallm andm1. The following is a number

field adaptation of [28, Lemma 3.1] (combined with the Cauchy-Schwarz inequality).

Proposition 2.2. The assertion (2.5) holds for m,m1 P t1, 2, 3, 4u.

We continue with an important theorem on the automorphy of Lps, π ˆ π1q for GL2 representa-

tions.

Theorem 2.3. (i) Let π and π1 be cuspidal representations of GL2pAF q. Then there is an automor-

phic representation πb π1 of GL4pAF q for which Lps, πb π1q “ Lps, πˆπ1q. In addition, if π and

π1 are non-dihedral, then π b π1 is cuspidal whenever π and π1 are not twist-equivalent.

(ii) Let π be a non-dihedral cuspidal representation of GL2pAF q. Then there is a cuspidal rep-

resentation Adpπq of GL3pAF q such that

Lps, π ˆ π̌ ˆ ψq “ Lps,Adpπq b ψqLps, ψq

for any idéle class character ψ of F .

Proof. Part (i) is contained in Theorem M of [23]. Part (ii) is a consequence of [6, Theorem

9.3]. �

We next state several results on the existence of the classical zero-free region for Lps, π ˆ π1q.

The following theorem is Theorem A.1 of [9].

Theorem 2.4. Let π and π1 be cuspidal representations of GLmpAF q and GLm1pAF q, respectively.

Assume as usual that both π and π1 are normalized such that their central characters are trivial on

the diagonally embedded copy of the positive reals. Assume that π1 is self-dual. Then there is an

effective absolute constant c ą 0 such that Lps, π ˆ π1q is not vanishing for all s “ σ ` it P C
satisfying

σ ě 1 ´
c

pm` m1q3 log pqpπqqpπ1qp|t| ` 3qmnF q
,

with the possible exception of one real zero whenever π is also self-dual.



FOURIER COEFFICIENTS OF AUTOMORPHIC L-FUNCTIONS OVER PRIMES IN RAY CLASSES 9

Proof. The proof is given in [9, Appendix A]. �

Corollary 2.5. If π is a cuspidal representation of GLmpAF q, then Lps, πˆχq satisfies a classical

zero-free region for any given ray class character χ modulo q. Moreover, if π b χ is not self-dual,

then Lps, π ˆ χq admits no exceptional zero.

Proof. Recall that π is normalized such that its central character ωπ is trivial on the diagonally

embedded copy of positive reals. Note that π b χ is a cuspidal representation with the central

character ωπbχ, where

(2.7) ωπbχ “ ωπχ
m.

Now, since χ is trivial on the diagonally embedded copy of positive reals, then (2.7) shows that

πbχ is normalized. Thus, by replacing π in Theorem 2.4 with πbχ and π1 with 1 and noting that,

by (2.2),

(2.8) qpπ ˆ χq !π Npqqm,

we will have the desired result. �

Remark 2.6. We note that the L-functions Lps, π b χq, Lps, π ˆ χq, and Lps, π ˆ 1 ˆ χq are the

same. We shall use this fact throughout our discussion.

We also need a result on the classical zero-free region for Lps, πq when π is not necessarily

normalized.

Proposition 2.7. Let π be a cuspidal representation (not necessarily normalized) of GLmpAF q.

Assume, further, that Lps, π ˆ πq is entire if π fi π̌. Then there is an effective absolute constant

c ą 0 such that Lps, πq is non-vanishing for all s “ σ ` it P C satisfying

σ ě 1 ´
c

pm ` 1q3 logpqpπqp|t| ` 3qmnF q
,

with the possible exception of one real zero whenever π is self-dual.

Proof. The proof is the same as the proof of Theorem A.1 in [9], when π1 “ 1. The main facts used

in the proof are that Lps, π ˆ πq is entire if π fi π̌ and Lps, π ˆ π̌q has a simple pole at s “ 1 and

it is holomorphic everywhere else. See also [12, Theorem 5.10]. �

Corollary 2.8. Let π be a self-dual cuspidal representation (not necessarily normalized) of GLmpAF q.

Then Lps, π ˆ χq satisfies a classical zero-free region for any given ray class character χ modulo

q.

Proof. We consider two cases.

Case 1: Assume that π b χ is self-dual. Then by Proposition 2.7 a classical zero-free region is

furnished for Lps, π ˆ χq.

Case 2: Assume that πbχ is not self-dual. We claim that in such case πbχ fi pπ b χq_ b | ¨ |iτ

for any τ P R. Suppose, on the contrary, that π b χ » pπ b χq_ b | ¨ |iτ for some τ P R. As π is

self-dual, we conclude that

π b χ2 » π b | ¨ |iτ .

From here, by employing (2.7), we have

ωπχ
2m “ ωπ| ¨ |imτ .

As π is unitary, the last identity implies that

χ2m “ | ¨ |imτ .

Now, since χ is of finite order, we conclude that τ “ 0 and thus π b χ is self-dual, a contradiction.
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Thus, πbχ fi pπ b χq_ b | ¨ |iτ for any τ P R, which implies the holomorphy of Lps, pπbχq ˆ
pπbχqq everywhere. Therefore, by Proposition 2.7 and (2.8), Lps, πˆχq has a classical zero-free

region. �

The following result shows that, for certain GL2 representations, we can dispensed with the

self-duality condition of π1 in Theorem 2.4.

Theorem 2.9. Let π and π1 be non-dihedral cuspidal representations of GL2pAF q. Assume that π1

is not twist-equivalent to π. Then there is an effective absolute constant c ą 0 such that Lps, πˆπ1q
has no zero in the region

σ ě 1 ´
c

logpAπˆπ1p|t| ` 2 ` λq4nF q
,

where λ is the maximum of the absolute value of the infinite parameters of π and π1.

Proof. This is Theorem 4.12(b) in [24]. �

Remark 2.10. In Theorem 4.12(b) in [24], it is further assumed that π and π̌1 are not twist-

equivalent by a product of a quadratic character and | ¨ |iτ . However, since π1 is a cuspidal rep-

resentation of GL2pAF q, π̌1 » π1 b ω´1
π1 , where ωπ1 is the central character of π1. Thus, if π1 is not

twist-equivalent to π, then π and π̌1 are not twist-equivalent by a product of a quadratic character

and | ¨ |iτ .

Corollary 2.11. Let π and π1 be non-dihedral cuspidal representations of GL2pAF q. Assume that

π1 is not twist-equivalent to π. Then Lps, π ˆ π1 ˆ χq satisfies a classical zero-free region for any

given ray class character χ modulo q.

Proof. Under the given assumptions, π b χ and π1 are non-dihedral, and moreover π1 is not twist-

equivalent to π b χ. In addition, from the theory of Rankin-Selberg L-functions (see, e.g., [12, p.

97] for F “ Q), we have the relation

|κπbχpi, j, vq| ď |κπpi, vq| ` |κχpj, vq| ď |κπpi, vq| ` 1

between the infinite parameters of πbχ and the infinite parameters of π. Thus the claimed assertion

is a direct corollary of Theorem 2.9 and (2.2). �

We next review some results on the existence and the locations of the exceptional zeros of L-

functions. We start by a Siegel-type bound on the location of the exceptional zeros of the ray class

L-functions.

Theorem 2.12. Let χ be a ray class character modulo q. Let βχ be the possible exceptional zero of

Lps, χq. Then, given ǫ ą 0, there is a constant κpǫq, depending only on ǫ, such that

βχ ď 1 ´
κpǫq

Nqǫ
.

Proof. See [18, Section 1, Lemma 11]. �

The following result summarizes some cases for which the non-existence of exceptional zeros is

known.

Theorem 2.13. (i) Let π be a cuspidal representation of GLnpAF q, and assume that either π is not

self-dual or n “ 2, 3. Then Lps, πq does not admit an exceptional zero.

(ii) Let π and π1 be non-dihedral cuspidal representations of GL2pAF q that are not twist-equivalent.

Then Lps, π ˆ π1q admits no exceptional zero.

Proof. Part (i) is a consequence of [8, Corollary 3.2], [8, Theorem C(3)], and [3, Theorem 1]. Part

(ii) follows from [24, Theorem A]. �
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Finally, we deduce a log-free zero-density estimate for an automorphic representation twisted by

a ray class character.

Theorem 2.14. Let F be a number filed of degree nF . Let Π “ ‘iπi be an automorphic represen-

tation for GLmpAF q, where each πi is a cuspidal representation for GLmi
pAF q. Set

Npσ, T,Πq “ #tρ “ Repρq ` iImpρq | Lpρ,Πq “ 0, Repρq ě σ, |Impρq| ď T u.

Then there is an absolute constant c1 ą 0 such that for T ě 1 and 0 ď σ ď 1, one has

Npσ, T,Πq !Π

ÿ

i

m2
i pqpπiqT

nF qc1m
2
i p1´σq.

Consequently, given a ray class character χ modulo q, for T ě 1 and 0 ď σ ď 1, there is a positive

constant dΠ such that

Npσ, T,Π ˆ χq !Π ppNqqT qdΠp1´σq
.

Proof. For each i, [14, Corollary 1.2] asserts that

Npσ, T, πiq ! m2
i pqpπiqT

nF qc1m
2
i p1´σq

for 1{2 ď σ ď 1 and T ě nF . Now the first part of the theorem follows immediately from the

fact that Npσ, T,Πq “
ř

iNpσ, T, πiq. Finally, by employing the bound (2.8) for qpπi ˆ χq, we

conclude the proof. (Note that the above bound trivially extends to 0 ď σ ď 1.) �

3. THEOREM 1.3 IMPLIES THEOREM 1.1

We need to show that the conditions (i), (ii), (iii), and (iv) of Theorem 1.3 hold for pairs π and

π1 associated with Π satisfying either (a), (b), or (c). Note that π1 “ 1 in (a) and π1 “ π̌ in (b). We

observe that, by Propositions 2.1 and 2.2, (i) holds for π and π1 associated with Π in (a), (b), or (c).

We now establish (ii), (iii), and (iv), for corresponding π and π1 in (a), (b), or (c).

(a) The condition (ii) is true, since for any character χ, π b χ is a cuspidal representation of

GLmpAF q, with m ą 1, and thus Lps, π ˆ 1 ˆ χq is holomorphic. Also, by Corollary 2.5, (iii)

holds.

To verify the condition (iv), we first note that, by Theorem 2.13(i), for m “ 2 and 3 none of the

Lps, πˆ1ˆχq’s admit an exceptional zero in their classical zero-free region. If π is not essentially

self-dual, then each π b χ is not self-dual. (Suppose, on the contrary, that for some character χ

the contragredient representation of π b χ is equivalent to π b χ. A direct calculation shows that

π » π̌ b χ̄2, a contradiction.) Therefore, by Corollary 2.5, Lps, π ˆ 1 ˆ χq admits no exceptional

zero if π is not essentially self-dual. Thus, (iv) holds trivially.

(b) Let Π » π b π̌. Then, by Theorem 2.3(ii) we have

(3.1) Lps, π ˆ π̌ ˆ χq “ Lps,Adpπq b χqLps, χq

for any ray class character χ. Since Adpπq is cuspidal, Adpπq b χ is also cuspidal, and so

Lps,Adpπq b χq is holomorphic. Hence, if Lps, π ˆ π̌ ˆ χq admits a pole, then it is contributed by

Lps, χq. This happens only if χ is the principal character χ0. Thus (ii) holds.

To verify (iii), we note that since Adpπq is self-dual, by (3.1), Corollary 2.8, and the classical

zero-free region for Lps, χq, we deduce that Lps, π ˆ π̌ ˆ χq has either no zeros or possibly only

one simple real zero βχ in the region

(3.2) σ ě 1 ´
cπ

log ppNqqp|t| ` 3qq

for some cπ ą 0 only depending on π. More precisely, this region is obtained by the intersection of

the zero-free region for Lps,Adpπq b χq given by Corollary 2.8 with the classical zero-free region

for Lps, χq given in Corollary 2.5. Note that since χ has degree one, then the constant c in the
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classical zero-free region for Lps, χq is absolute, so cπ in (3.2) is independent of χ. Thus, (iii)

holds.

Now, as Adpπq b χ is cuspidal and of degree 3, the first part of Theorem 2.13 yields the non-

existence of the exceptional zero for Lps,Adpπq bχq. Thus, if the exceptional zero βχ of Lps, πˆ
π̌ ˆ χq exists, it has to come from Lps, χq. Therefore, βχ depends only on χ. In this case, by

Theorem 2.12, there is a constant κpǫq, depending only on ǫ, such that

βχ ď 1 ´
κpǫq

Nqǫ
,

where q is the modulus of the ray class character χ. Thus, (iv) holds trivially.

(c) Under the assumptions, we know that πbχ and π1 are non-dihedral cuspidal representations of

GL2pAF q that are not twist-equivalent. Thus, it follows from Theorem 2.3(i) that Lps, πˆπ1 ˆχq “
Lps, pπ b χq b π1q for the cuspidal representation pπ b χq b π1 of GL4pAF q. So, Lps, π ˆ π1 ˆ χq
is entire. This settles (ii).

The condition (iii) is a direct consequence of Corollary 2.11.

Finally, by Theorem 2.13(ii), we know that under the given conditions Lps, π ˆ π1 ˆ χq has no

exceptional zero. Thus, (iv) holds.

Hence, by Theorem 1.3, for Π satisfying either (a), (b), or (c), we have that for any γ ą 0, there

exists c “ cpΠq ą 0 such that for any ideal q, with Nq ď plog xqγ , and any ideal a relatively prime

to q, (1.8) holds. Now (1.3) follows from (1.8) and Proposition 2.2.

4. PROOF OF THEOREM 1.3

In this section, we prove Theorem 1.3. We start by collecting some analytic properties ofLps, πˆ
π1 ˆ χq in the following lemma.

Lemma 4.1. (i) For δ ą 0, let Cpδq denote the set

Czts P C : |s`κπˆπ1ˆχpi, j, vq`2k| ď δ, for v P S8, 1 ď i ď m, 1 ď j ď m1, and integers k ě 0u.

Let σ ď ´1{2. Then for all s “ σ ` it P Cpδq,

L1ps, π ˆ π1 ˆ χq

Lps, π ˆ π1 ˆ χq
!π,π1,δ log ppNqq |s|q.

(ii) For any integer m ě 2, there is Tm, with m ď Tm ď m ` 1, such that

L1pσ ˘ iTm, π ˆ π1 ˆ χq

Lpσ ˘ iTm, π ˆ π1 ˆ χq
!π,π1 log2 ppNqqTmq

uniformly for ´2 ď σ ď 2.

(iii) LetNpt, πˆπ1ˆχq be the number of the zeros ρ ofLps, πˆπ1ˆχq in the region 0 ď Repsq ď 1,

where t ´ 1 ď Impρq ď t` 1. Then

Npt, π ˆ π1 ˆ χq !π,π1 log ppNqqp|t| ` 3qq.

(iv) Let

bπ,π1pχq “ lim
sÑ0

ˆ

L1ps, π ˆ π1 ˆ χq

Lps, π ˆ π1 ˆ χq
´
r

s

˙

,

where the integer r ě 0 is the order of vanishing of Lps, π ˆ π1 ˆ χq at s “ 0. Then

bπ,π1pχq “ Oπ,π1plogNqq ´
ÿ

0ă|Repρq|ď1

|Impρq|ď1

1

ρ
,

where ρ ‰ 0 ranges over the non-trivial zeros of Lps, π ˆ π1 ˆ χq.
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Proof. For (i) see [20, p. 177] for a single GL2 automorphic L-function over F “ Q. The general

case is similar. See [15, Lemma 4.3(a)(d)] for (ii) and (iii) for F “ Q, again the proof for general

F is similar. The assertion (iv) is a consequence [12, Proposition 5.7(2)], (2.2), and (2.4). �

The following lemma evaluates a contour integral that will appear in the proof.

Lemma 4.2. Let b ą 1, 2 ď T ď x, and Nq ď x. We have

1

2πi

ż b`iT

b´iT

´
L1

L
ps, π ˆ π1 ˆ χq

xs

s
ds “ δpπ ˆ π1 ˆ χqx ´

ÿ

0ă|Repρq|ď1

|Impρq|ďT

xρ

ρ

´ bπ,π1pχq ` Oπ,π1

ˆ

x log x

T

˙

` Oπ,π1

´

x
1´ 1

m2`1
´ 1

pm1q2`1

¯

,

(4.1)

where δpπˆπ1 ˆχq is 1 if Lps, πˆπ1 ˆχq has a simple pole at s “ 1 and is zero otherwise, ρ ‰ 0

ranges over the non-trivial zeros of Lps, π ˆ π1 ˆ χq, and bπ,π1pχq is the expression defined in part

(iv) of Lemma 4.1.

Proof. The proof is standard and follows closely the arguments given in [5, Chapter 19] for the case

π “ π1 “ 1 over F “ Q and the arguments given in Proposition 4.2 of [1] for a single automorphic

L-function π over F “ Q. In fact (4.1) is a consequence of computing the residues of the integrand

upon moving the line of integration to the left and employing (2.3) and parts (i), (ii), and (iii) of

Lemma 4.1. Note that the errors terms

Oplog xq ` Oπ,π1

ˆ

x log2ppNqqT q

T log x

˙

` Oπ,π1

ˆ

x logppNqqT q

T

˙

appearing in the process can be combined as the first error term in (4.1) under the assumptions

T ď x and Nq ď x. See [1, Proposition 4.2] for details. �

We also need a version of the truncated Perron’s formula due to Liu and Ye [16, Theorem 2.1].

Lemma 4.3. Let fpsq “
ř8

n“1
an
ns be an absolutely convergent series in the half-plane σ ą σa. Let

Bpσq “
ř8

n“1

|an|
nσ for σ ą σa. Then for b ą σa, x ě 2, T ě 2, and H ě 2,

ÿ

nďx

an “
1

2πi

ż b`iT

b´iT

fpsq
xs

s
ds ` O

¨

˝

ÿ

x´x{Hănďx`x{H

|an|

˛

‚` O

ˆ

HxbBpbq

T

˙

.

We now have all the necessary tools for the proof in our disposal.

Proof of Theorem 1.3. We only describe the proof that implies (1.8). The argument can be adjusted

to obtain (1.6). Let ǫ0 ą 0 be as given in the assumption (i) in the statement of the theorem. Assume

that x ě 2, T ě 4, T ď xǫ0 , and Nq ď x. In Lemma 4.3, set H “ T 1{2, b “ 1 ` 1{ log x, and

fpsq “ ´L1

L
ps, π ˆ π1 ˆ χq. Then employing Proposition 2.1 for u “ x{T 1{2 and the bound (2.1)

for p | pAπ, Aπ1q yield

ÿ˚

Nnďx

Λpnqaπˆπ1pnqχpnq “
1

2πi

ż b`iT

b´iT

´
L1

L
ps, π ˆ π1 ˆ χq

xs

s
ds

` Oπ,π1

ˆ

x log x

T 1{2

˙

` Oπ,π1

´

x
1´ 1

m2`1
´ 1

pm1q2`1 plog xq2
¯

.

(4.2)

For the integral in (4.2), by employing Lemma 4.2 and part (iv) of Lemma 4.1, we deduce
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1

2πi

ż b`iT

b´iT

´
L1

L
ps, π ˆ π1 ˆ χq

xs

s
ds “ δpπ ˆ π1 ˆ χqx ´

ÿ

0ă|Repρq|ď1

|Impρq|ďT

xρ

ρ

`
ÿ

0ă|Repρq|ď1

|Impρq|ď1
ρ‰βχ,1´βχ

1

ρ
`

1

βχ
`

1

1 ´ βχ
` Oπ,π1

ˆ

x log x

T

˙

` Oπ,π1

´

x
1´ 1

m2`1
´ 1

pm1q2`1

¯

,
(4.3)

where βχ is the possible exceptional zero of Lps, πˆπ1 ˆχq, and, as later, all terms contributed by

βχ should be omitted if βχ does not exist.

Next we focus on the sums in (4.3) involving the non-trivial zeros ρ. First of all, by the assump-

tion (iii) and the symmetry of the non-trivial zeros respect to line Repsq “ 1{2, for any low-lying

zero ρ ‰ βχ, 1 ´ βχ, we have ρ´1 “ O plog Npqqq. Thus, by Lemma 4.1(iii), we deduce that

(4.4)
ÿ

0ă|Repρq|ď1

|Impρq|ď1
ρ‰βχ,1´βχ

1

ρ
“ Oπ,π1plog2Nqq,

so this term can be absorbed in the second error term in the right-hand side of (4.3). Secondly, by

Lemma 4.1(iii), we have

ÿ

0ă|Repρq|ď1

3ă|Impρq|ďT

1

|ρ|
!

ÿ

3ďtăT

Npt, π ˆ π1 ˆ χq

t
!π,π1 plog T q log ppNqqT q.

This together with the assumption (iii), the classical zero-free region of Lps, π ˆ π1 ˆ χq, gives

(4.5)
ÿ

0ă|Repρq|ď1

3ă|Impρq|ďT

ˇ

ˇ

ˇ

xρ

ρ

ˇ

ˇ

ˇ
!π,π1 plog T qplogppNqqT qqx1´cπ,π1plogppNqqpT`3qqq´1

.

Similarly, for non-exceptional zeros ρ with |Impρq| ď 3, the assumption (iii) yields

(4.6)
ÿ

0ă|Repρq|ď1

|Impρq|ď3
ρ‰βχ,1´βχ

ˇ

ˇ

ˇ

xρ

ρ

ˇ

ˇ

ˇ
!π,π1 plog2Nqqx1´cπ,π1 plogp6Nqqq´1

,

where βχ is the possible exceptional zero of Lps, π ˆ π1 ˆ χq. Now let T “ exppplog xq1{2q. Then,

for Nq ď exppplog xq1{2q, (4.5) and (4.6) yield

(4.7)
ÿ

0ă|Repρq|ď1

|Impρq|ďT
ρ‰βχ,1´βχ

ˇ

ˇ

ˇ

xρ

ρ

ˇ

ˇ

ˇ
!π,π1 x expp´ĉπ,π1plog xq1{2q

for a constant ĉπ,π1 depending only on π and π1.

Recall that χ is of modulus q and that by the assumption (iv), for any ǫ ą 0, there is a constant

κpǫq :“ κpǫ, π, π1q, so that the exceptional zero βχ of Lps, πˆπ1 ˆχq satisfies βχ ď 1´κpǫqNq´ǫ.

Thus, for Nq ď plog xqγ , we have

(4.8)
xβχ ´ 1

βχ
`
x1´βχ ´ 1

1 ´ βχ
ď 2

xβχ ´ 1

1 ´ βχ
!
x1´κpǫqplog xq´ǫγ

κpǫqplog xq´ǫγ
.
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For γ ą 0, let ǫ “ 1{3γ. Then, for x satisfying plog xqγ ď exppplog xq1{2q, T “ exppplog xq1{2q,

and Nq ď plog xqγ , from (4.7) and (4.8), we get

ÿ

0ă|Repρq|ď1

|Impρq|ďT
ρ‰βχ,1´βχ

ˇ

ˇ

ˇ

xρ

ρ

ˇ

ˇ

ˇ
`

ˇ

ˇ

ˇ

ˇ

xβχ ´ 1

βχ
`
x1´βχ ´ 1

1 ´ βχ

ˇ

ˇ

ˇ

ˇ

!π,π1 x
`

expp´ĉπ,π1plog xq1{2q ` κp1{3γq´1plog xq1{3 expp´κp1{3γqplog xq2{3q
˘

.

(4.9)

Let C :“ Cpπ, π1, γq be a positive constant such that for x ą C,

(4.10) maxt4, plog xqγu ď T “ exppplog xq1{2q ď xǫ0.

Thus, for x ą C, T as in (4.10), and Nq ď plog xqγ , by employing (4.9) in (4.3), the asymptotic

formula (4.2) can be written as

(4.11)
ÿ˚

Nnďx

Λpnqaπˆπ1pnqχpnq “ δpπ ˆ π1 ˆ χqx ` Oπ,π1,γ

`

x exp
`

´cplog xq1{2
˘˘

for some c :“ cpπ, π1q ą 0.

The final result follows from (4.11), the orthogonality property of ray class characters, i.e.,

(4.12)
ÿ˚

Nnďx
n„a pmod qq

Λpnqaπˆπ1pnq “
1

hpqq

ÿ

χpmod qq

χpaq
ÿ˚

Nnďx

Λpnqaπˆπ1pnqχpnq,

and the assumption (ii) in the statement of the theorem. �

5. THEOREM 1.6 IMPLIES THEOREM 1.5

It is enough to show that the conditions (i), (ii), (iii), (iv), and (v) of Theorem 1.6 hold for pairs

π and π1 associated with Π in Theorem 1.5. Then (1.11) together with Proposition 2.2 imply (1.9).

Note that (i), (ii), (iii) and (v) of Theorem 1.6 are the same as (i), (ii), (iii) and (iv) in Theorem

1.3. So following the arguments of Section 3, the conditions (i), (ii), (iii), and (v) hold for π and π1

associated with Π in Theorem 1.5. Since Π in (a) is cuspidal and, by Theorem 2.3(i), in (b) (resp.,

(c)) is automorphic (resp., cuspidal), then, by Theorem 2.14, the condition (iv) of Theorem 1.6 also

holds for the corresponding π and π1.

6. PROOF OF THEOREM 1.6

Proof of Theorem 1.6. We only describe the proof that implies (1.11) since the argument can be

adjusted to establish (1.10). The proof closely follows the proof of Theorem 1 in [21]. Let ǫ0 ą 0

be as given in the assumption (i) of the theorem and without loss of generality assume that 0 ă
ǫ0 ď 4{5. Let x, T , Nq, H , b, and fpsq be as in the beginning of the proof of Theorem 1.3, so by

following the initial steps of the proof of Theorem 1.3 we get (4.2) and (4.3). Let 0 ă θ ď ǫ0{4,

T “ x4θ, y “ x1´θ, and Nq ď xθ. Then, from (4.2), (4.3), and (4.4), we deduce

(6.1)
ÿ˚

x´yăNnďx

Λpnqaπˆπ1pnqχpnq “ δpπ ˆ π1 ˆ χqy ´
ÿ

0ă|Repρq|ď1

|Impρq|ďT

ĝpρq ` Oπ,π1pyx´θ log xq,

where ĝ is the Mellin transform of g “ 1px´y,xs (the indicator function of the interval px ´ y, xs).
Next, we note that for T ě 4 we can find a constant c̃π,π1 such that

cπ,π1

log ppNqqpT ` 3qq
ě

c̃π,π1

log ppNqqT q
,
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where cπ,π1 is the constant given in the assumption (iii).

To control the zero-sum in (6.1), we shall apply the assumptions (iii) and (iv) of the theorem, and

[12, Theorem 5.8] together with (2.2), to deduce

ÿ

ρ‰βχ

|ĝpρq| ď

ż x

x´y

plog tq

¨

˝

ż 1´
c̃
π,π1

logppNqqT q

0

Npσ, T, π ˆ π1 ˆ χqtσ´1dσ

˛

‚dt

` Np0, T, π ˆ π1 ˆ χq

ż x

x´y

dt

t

!π,π1 yplogxq

ż 1´
c̃
π,π1

logppNqqT q

0

ppNqqT qdπˆπ1p1´σqxσ´1dσ ` py{xqT log ppNqqT q ,

where βχ is the possible exceptional zero of Lps, π ˆ π1 ˆ χq. Now let θ ď 1{p10dπ,π1q so that

ppNqqT qdπ,π1 ď x1{2. (Recall that Nq ď xθ and T “ x4θ.) With these choices, we get

(6.2)
ÿ

ρ‰βχ

|ĝpρq| !π,π1 y exp
´

´
c0

θ

¯

` yx4θ´1 log x

for a constant c0 depending on π and π1. Now, by choosing x such that plog xq´1{2 ď θ we deduce

x´θ log x ă expp´1{2θq. So, by adjusting c̃π,π1 , we see that the error terms Oπ,π1pyx´θ log xq in

(6.1) and Oπ,π1pyx4θ´1 log xq in (6.2) can be absorbed in the term y exp
`

´ c0
θ

˘

in (6.2). (Note that

x4θ´1 ď x´θ since θ ď ǫ0{4 ď 1{5.) Thus, inserting the derived bound for
ř

ρ‰βχ
|ĝpρq| in (6.1)

yields

(6.3)
ÿ˚

x´yăNnďx

Λpnqaπˆπ1pnqχpnq “ δpπ ˆ π1 ˆ χqy ` Op|ĝpβχq|q ` O
´

y exp
´

´
c0

θ

¯¯

.

To treat the term involving |ĝpβχq|, observe that the mean value theorem implies that

|ĝpβχq| “

ż x

x´y

tβχ´1dt “
xβχ ´ px ´ yqβχ

βχ
“ yξβχ´1,

for some ξ P px ´ y, xq. We conclude that

|ĝpβχq| “ Opyxβχ´1q.

Now inserting this bound in (6.3) and employing the orthogonality relation (4.12), together with

the assumptions (ii) and (v) in the statement of the theorem, imply the result. �
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