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Abstract. Let E be a CM elliptic curve defined over Q and of conductor N . We establish an
asymptotic formula, uniform in N and with improved error term, for the counting function of primes p
for which the reduction mod p of E is cyclic. Our result resembles the classical Siegel-Walfisz theorem
regarding the distribution of primes in arithmetic progressions.

1. Introduction

Let E be an elliptic curve defined over Q and of conductor N . For a prime of good reduction p, let
Ē be the reduction of E mod p. Let Ē(Fp) be the group of rational points of Ē with coordinates in
Fp. Let

C(x,E) := #{p ≤ x : p - N, Ē(Fp) is cyclic}.
The GRH in this paper stands for the assumption of the Generalized Riemann Hypothesis for the
Dedekind zeta functions of the extensions Q(E[m])/Q, where E[m] is the group of m-torsion points
of E and m = 1 or m is square free.

Since E[2] is isomorphic to Z/2Z⊕ Z/2Z and prime to p-torsions have trivial intersection with the
kernel of reduction mod p map, it is clear that if Q(E[2]) = Q then C(x,E) = 0 or 1. Serre [12] proved
that, under the assumption of the GRH, if Q(E[2]) 6= Q then

C(x,E) = cE li(x) + o

(
x

log x

)
,

where the density cE > 0. Here li(x) =
∫ x
2 dt/ log t, and we recall that f(x) = o(g(x)) means

limx→∞ f(x)/g(x) = 0; similarly f(x) = OA(g(x)) (or equivalently f(x) �A g(x)) means that the
function |f(x)/g(x)| is bounded by a constant depending on A as x →∞.

In fact the proof of Theorem 2 of R. Murty [10] shows that, under GRH,

C(x,E) = cE li(x) + OE

(
x log log x

(log x)2

)
,

where

cE =
∞∑

k=1

µ(k)
[Q(E[k]) : Q]

.

Here µ(.) is the Möbius function.
One can show that the above series representing cE is absolutely convergent (see [10, Proof of

Theorem 2]). Moreover, for odd k, we have E[2k] = E[2] ⊕ E[k]. If the elements of E[2] are defined
over Q, then it follows that Q(E[2k]) = Q(E[k]). So for odd squarefree k, the terms corresponding to
k and 2k in the series add to zero. Thus, the series defining cE is seen to be equal to zero in this case.
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The error term in the above formula has been improved significantly by Cojocaru and R. Murty
in [3] under various assumptions on the Artin L- functions associated to the extensions Q(E[m])/Q.
Moreover the dependence of the error term on the conductor of E has been made explicit.

There are also several unconditional results on this problem. Firstly, one can show that the constant
cE (defined by the above series) is positive if and only if Q(E[2]) 6= Q (see [3, Section 6] for a proof).
More precisely, if Q(E[2]) 6= Q, in the CM case cE ≥ 1/4, and in the non-CM case cE � 1/ log log N .

Secondly Gupta and R. Murty [5] proved that the number of primes p ≤ x for which Ē(Fp) is cyclic
is � x/(log x)2.

Stronger unconditional results are known for elliptic curves with complex multiplication. In [10],
R. Murty removed the dependence on GRH in Serre’s theorem for CM elliptic curves though he did
not provide an error term. Cojocaru [2] established an unconditional asymptotic formula for cyclicity
of CM curves with an error term

ON

(
x

(log x) log log log x

)
.

More precisely, she proved

(1.1) C(x,E) = cE li(x) + O

(
x

(log x) log log log x
N2

log log x

log log x
N2

)
,

where the implied constant is absolute.
In this paper we improve the error term in the above asymptotic formula. Our result is uniform

in N , so it is applicable to all CM elliptic curves of conductor N in a certain range. To show the
dependence on the conductor N we use the notation C(x,N,E) for our counting function.

We prove the following:

Theorem 1.1. Let E denote a CM elliptic curve defined over Q of conductor N and with complex
multiplication by the full ring of integers OK of an imaginary quadratic field K. Let A,B > 0 and
N ≤ (log x)A, then we have

C(x,N,E) = cE li(x) + OA,B

(
x

(log x)B

)
,

uniformly in N , where

cE =
∞∑

k=1

µ(k)
[Q(E[k]) : Q]

,

and the implied constant depends only on A and B.

We view this theorem as an elliptic analogue of the classical Siegel-Walfisz theorem for distribution of
prime numbers in an arithmetic progression. Indeed, let us denote by π(x, q, a) the number of primes
≤ x that are congruent to a (mod q). The Siegel-Walfisz theorem implies that for any A,B > 0,
uniformly for q ≤ (log x)A we have

π(x, q, a) =
1

ϕ(q)
li(x) + OA,B

(
x

(log x)B

)
.

In fact, the Siegel-Walfisz theorem gives a stronger result. Given any A > 0 there exists a constant
C = C(A) so that uniformly for q ≤ (log x)A, we have

π(x, q, a) =
1

ϕ(q)
li(x) + O(x exp(−C(log x)1/2)).
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We do not know how to obtain this stronger version in our setting.

As an application of our theorem, we have a new proof of positivity of cE in the case that the CM
curve E has an irrational 2-torsion point.

Corollary 1.2. cE 6= 0 ⇐⇒ Q(E[2]) 6= Q.

Proof. As we said above if Q(E[2]) = Q then C(x,N,E) = 0 or 1, and so cE = 0.
On the other hand if Q(E[2]) 6= Q and cE = 0, our theorem states that

C(x,N,E) � x

(log x)3
,

however from [5, Theorem 1], we know that

C(x,N,E) � x

(log x)2
.

This is a contradiction. So cE 6= 0. �

Let P (N,E) denote the smallest prime p for which Ē(Fp) is cyclic. In [3], Cojocaru and R. Murty,
as an elliptic curve analogue of Linnik’s problem, considered the problem of finding upper bounds for
P (N,E). They proved, under GRH, that if E has an irrational 2-torsion point then

P (N,E) = Oε

(
(log N)4+ε

)
for non-CM elliptic curves, and

P (N,E) = Oε

(
(log N)2+ε

)
for CM elliptic curves.

As a direct corollary of our theorem we have the following unconditional result for CM elliptic
curves.

Corollary 1.3. Let ε > 0 and Suppose that Q(E[2]) 6= Q. Then

P (N,E) = Oε (exp (N ε)) .

Proof. We assume that 0 < ε < 1 and in Theorem 1.1 let A = 1/ε. Then for x ≥ exp (N ε) we have

C(x,N,E) = cE li(x) + Oε

(
x

(log x)1/ε

)
.

Now since cE ≥ 1/4 (see [3, Section 6]) we have that C(x,N,E) > 0 for large values of x (depending
only on ε). So Ē(Fp) is cyclic for primes of size Oε (exp (N ε)). �

Observe that (1.1) gives the weaker unconditional result

P (N,E) = O
(
exp

(
N2
))

,

for CM curves.
The main tools used in Cojocaru’s proof of (1.1) are an unconditional version of the Chebotarev

density theorem and the sieve of Eratosthenes. The method of our proof is a simplified version of
the method used in [10] which employs the results that are consequence of the large sieve inequality
in algebraic number fields. The improvement in the range of N , in Theorem 1.1, is a consequence of
applying a sharp upper bound for the possible exceptional zero of the Dedekind zeta function of the
extension Q(E[2])/Q (see the proof of Lemma 2.3). The improvement of the error term in Theorem
1.1 is achieved by employing a version of the Bombieri-Vinogradov theorem in number fields due to
Huxley (see Lemma 2.9).
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In the next section we prove some lemmas that will be needed in the proof of our main result.
Section 3 gives a proof of Theorem 1.1.

Notation 1.4. Unless otherwise stated, p and q are rational primes, and m is a squarefree integer.
K is an imaginary quadratic field with the ring of integers OK , N(a) denote the norm of an ideal a of
OK , p is a prime ideal of OK , and m = mOK . E is an elliptic curve defined over Q and of conductor
N , and E[m] denotes the group of m-torsion points of E. Moreover for a prime of good reduction p,
Ē denotes the reduction of E mod p, and Ē(Fp) is the group of rational points of Ē with cooordinates
in Fp. Finally dm denotes the discriminant of Q(E[m])/Q and nm = [Q(E[m]) : Q] denotes the degree
of the extension Q(E[m])/Q.

2. Preliminaries

Lemma 2.1. Let p 6= q be primes, and p - N . Then Ē(Fp) contains a subgroup isomorphic to
Z/qZ⊕ Z/qZ ⇐⇒ p splits completely in Q(E[q]).

Proof. See [10, Lemma 2]. �

Our next lemma provides a criterion for the cyclicity of Ē(Fp).

Lemma 2.2. Suppose that p - N . Then Ē(Fp) is cyclic if and only if p does not split completely in
Q(E[q]) for any prime q.

Proof. If Ē(Fp) is cyclic then Ē(Fp) does not contain a subgroup isomorphic to Z/qZ⊕ Z/qZ for any
prime q. So by Lemma 2.1, p does not split completely in Q(E[q]) for any q 6= p. Moreover, since
Q(ζp) ⊆ Q(E[p]), p ramifies in Q(E[p]) as it ramifies in Q(ζp). This shows that p does not split
completely in Q(E[p]).

Conversely, if p does not split completely in Q(E[q]) for any prime q. Then, by Lemma 2.1, Ē(Fp)
does not contain a subgroup isomorphic to Z/qZ⊕Z/qZ for any prime q 6= p. Moreover the p-primary
part of Ē(Fp) is a subgroup of Ē[p] (the group of p-torsion points of Ē) which itself is isomorphic to a
subgroup of Z/pZ. So Ē(Fp) does not contain a subgroup isomorphic to Z/qZ⊕ Z/qZ for any prime
q, and thus it is cyclic. �

Since Q(E[q1q2]) = Q(E[q1])Q(E[q2]) for primes q1 6= q2, it is plain to deduce from the above
lemma that for a prime of good reduction p, Ē(Fp) is cyclic if and only if p does not split completely
in Q(E[m]) for any square free m.

For square free m, let

P (x,m) = #{p ≤ x; p - N, p split completely in Q(E[m])}.

We also define
P (x, 1) = #{p ≤ x; p - N}.

From Lemma 2.1 we deduce that if a prime of good reduction p splits completely in Q(E[m]) then
m2 | #Ē(Fp) (Note that if p splits completely in Q(E[m]) then (p, m) = 1 as Q(ζm) ⊆ Q(E[m])). From
Hasse’s bound we know that #Ē(Fp) ≤ (

√
p + 1)2, so if m2 | #Ē(Fp) we have m ≤ √p + 1 ≤ 2

√
p.

This shows that
m > 2

√
x =⇒ P (x,m) = 0.

Let nm = [Q(E[m]) : Q] and dm be the discriminant of Q(E[m])/Q. In the next lemma we employ an
unconditional version of the Chebotarev density theorem to give an asymptotic formula for P (x, 2).
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Lemma 2.3. Let E denote an elliptic curve defined over Q of conductor N . Let A,B > 0 and suppose
that x satisfies N ≤ (log x)A. Then

P (x, 2) =
1
n2

li(x) + OA,B

(
x

(log x)B

)
+ O (log N) ,

uniformly in N , where the implied constant depends only on A and B.

Proof. First of all note that since Gal(Q(E[2])/Q) is a subgroup of GL2(Z/2Z), we have n2 = 1, 2, 3,
or 6. So by [8, Theorem 1.3], for |d2| ≤ exp((log x)1/2/

√
60) we have

(2.1) P (x, 2) =
1
n2

li(x)− 1
n2

li(xβ) + O
(
x exp(−c1

√
log x/n2)

)
+ O(log N),

where β is the possible exceptional zero of the Dedekind zeta function of Q(E[2])/Q and c1 and the
implied constants are absolute. We know that for any ε > 0 there is an absolute positive constant c(ε)
such that

β ≤ 1− c(ε)
|d2|ε

,

(see [4, Page 426] for a proof). Taking ε = 1/12A in the above bound for β, and applying it in (2.1)
will imply the result as long as |d2| � (log x)6A. Observing that |d2| ≤ (12N)6 (see [2, Section 3.1])
will establish the result for N ≤ (log x)A. �

Lemma 2.4. If m ≥ 3 is square free and p - 6N is a prime that splits completely in Q(E[m]), then p
is an ordinary prime.

Proof. We prove this by contradiction. Suppose p - 6N is a supersingular prime. So #Ē(Fp) = p + 1
since p 6= 2, 3 (see [13, Page 145, Exercise 5.10.(b)]). Now since p splits completely in Q(E[m]) and
m ≥ 3 is square free, there is a prime q 6= 2 such that p splits completely in Q(E[q]). So by Lemma
2.1, q2 | #Ē(Fp) = p + 1. On other hand since the cyclotomic field Q(ζq) ⊆ Q(E[q]) then p also splits
completely in Q(ζq), and so q | p − 1. Thus q | (p + 1) − (p − 1) = 2 which is a contradiction, since
q 6= 2. So p is not supersingular. �

From now on we assume that E/Q has CM by OK . In this case it is known that K has class
number 1, and moreover we know that if p is an ordinary prime then p splits in OK ([9, Page 182,
Theorem 12]). So Lemma 2.4 establishes a close connection between the primes that split completely
in Q(E[m]) and the primes that split completely in K.

For an ordinary prime p, let πp and π̄p be the roots of the polynomial X2− apX + p ∈ Z[X], where
ap = p+1−#Ē(Fp). From the theory of complex multiplication we know that πp ∈ OK and moreover
we may assume that it represents the Frobenius endomorphism of Ē. Note that N(πp) = πpπ̄p = p
and πp + π̄p = p + 1−#Ē(Fp).

Next observe that if p - N is an ordinary prime then

p splits completely in Q(E[m]) ⇐⇒ πp ≡ 1 mod mOK .

(See Lemma 2.2 of [2] for a proof.)
The next lemma establishes a trivial upper bound for P (x,m).

Lemma 2.5. For square free m, 3 ≤ m ≤ 2
√

x, we have

P (x,m) � x

m2
,

where the implied constant is absolute.
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Proof. For square free m ≥ 3, we have

P (x,m) ≤ #{πp ∈ OK : N(πp) = p ≤ x, p - N, πp ≡ 1 mod mOK}+ 2
≤ #{α ∈ OK : N(α) ≤ x, α ≡ 1 mod mOK}+ 2

By [10, Lemma 5] the last expression

� x

m2
+ 2 � x

m2
,

where the implied constant depends on K. Since E/Q has CM by OK then K is one of the nine
imaginary quadratic fields of class number 1, and so the implied constant above can be replaced by
an absolute constant. �

The following lemma plays a crucial role in the proof of Theorem 1.1.

Lemma 2.6. If m ≥ 3 then Q(E[m]) = K(E[m]).

Proof. See [10, Lemma 6]. �

Using the above lemma we can relate the rational primes that split completely in Q(E[m]) to the
prime ideals of OK that splits completely in K(E[m]). To do this, we first recall some basic facts from
algebraic number theory.

For a totally imaginary field K, we define an equivalence relation on the set of ideals of OK as
follows. We say two ideals a and b are equivalent, written a ∼ b, if there exists α, β ∈ OK such that
(α)a = (β)b, where (α) (resp. (β)) denotes the ideal generated by α (resp. β). This relation gives us
h equivalence classes, where h is called the class number of K (or OK). We also say that two ideals a
and b are equivalent mod q, denoted a ∼ b mod q, if they are relatively prime to q and there exists
α, β ∈ OK , such that α ≡ β ≡ 1 mod q, and (α)a = (β)b. Again this is an equivalence relation and
we have h(q) classes where

h(q) =
hϕ(q)
T (q)

.

Here T (q) is the number of residue classes of elements of OK mod q that contain a unit, and ϕ(q) is
the number field analogue of the Euler function. If K is an imaginary quadratic field then T (q) ≤ 6.
In the sequel, N(a) denotes the norm of an ideal a ∈ OK .

For (a, q) = 1, let

πK(x; q, a) = #{p : prime ideal; N(p) ≤ x, and p ∼ a mod q}.

From now on we denote mOK by m, and f denotes an ideal of OK whose prime divisors are exactly
primes of bad reduction of E over K.

The following lemma gives a descriptions, in terms of ideal classes mod fm, of prime ideals of OK

that split completely in K(E[m]).

Lemma 2.7. Let E/Q have CM by OK and m ≥ 1 be an integer. Then there is an ideal f of OK and
t(m) ideal classes mod fm with the following property:

If p is a prime ideal of OK with p - fm, then,

p splits completely in K(E[m]) ⇐⇒ p ∼ m1, or m2, or · · · , or mt(m) mod fm.

Moreover
t(m) [K(E[m]) : K] = h(fm),
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where

t(m) ≤ c ϕ(f)
∏
p|f

(
1 +

1
N(p)− 1

)
.

Here c is an absolute constant and ϕ(f) is the number field analogue of the Euler function.

Proof. For the first assertion see [10, Lemma 4], or [1, Lemma 3.3]. Next let
(

K(E[m])/K
p

)
be the Artin

symbol (see [14, Page 116] for the definition) of p in the extension K(E[m])/K. We know that p splits
completely in K(E[m]) if and only if

(
K(E[m])/K

p

)
= 1.

Set

φ(x;K(E[m])/K) = #{p : prime ideal of K; N(p) ≤ x, p - fm, and
(

K(E[m])/K

p

)
= 1}.

Then from the first assertion we have

φ(x;K(E[m])/K) =
t(m)∑
i=1

πK(x; fm,mi).

Now the second statement follows by employing the Chebotarev density theorem, the prime ideal
theorem, and comparing the main terms of the two sides of the above identity.

Finally we have

t(m) =
h(fm)

[K(E[m]) : K]

=
hϕ(fm)

T (fm)[K(E[m]) : K]

=
hϕ(f)

T (fm)
∏

p|(f,m)

(
1− 1

N(p)

) ϕ(m)
[K(E[m]) : K]

.

Since T (fm) ≥ 1 and h = 1, the result follows if we can show that ϕ(m)/[K(E[m]) : K] is absolutely
bounded (i.e. independent of K, E, and m). To show this let E0 be a fixed elliptic curve defined over
Q with CM by OK . Then for any other elliptic curve E defined over Q and with CM by OK , there is an
extension L of K such that [L : K] ≤ 6 and E is isomorphic to E0 over L. Thus L(E[m]) = L(E0[m])
and

[K(E0[m]) : K] ≤ [L(E0[m]) : K] = [L(E[m]) : K] = [L(E[m]) : K(E[m])][K(E[m]) : K]
≤ 6[K(E[m]) : K].

So we have
ϕ(m)

[K(E[m]) : K]
=

ϕ(m)
[K(E0[m]) : K]

[K(E0[m]) : K]
[K(E[m]) : K]

≤ 6
ϕ(m)

[K(E0[m]) : K]
.

By a theorem of Deuring (see [11, Section 4.5]) we know that ϕ(m)/[K(E0[m]) : K] is bounded by a
constant which depends only on E0. Since E0 is fixed for given K, and K is one of the nine imaginary
quadratic field of class number 1, we conclude that ϕ(m)/[K(E[m]) : K] is absolutely bounded. This
completes the proof of the assertion regarding t(m). �

Remark 2.8. In the previous lemma f can be taken as the conductor of the Grössencharacter asso-
ciated to E (see [10, Page 163]). Then we have N = N(f)|dK | where dK is the discriminant of the
quadratic imaginary field K.
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The following extension of the Bombieri-Vinogradov theorem to K is due to Huxley.

Lemma 2.9. For each positive constant B, there is a positive constant C = C(B) such that

∑
N(q)≤Q

max
(a,q)=1

1
T (q)

∣∣∣∣πK(x; q, a)− li(x)
h(q)

∣∣∣∣� x

(log x)B
,

where Q = x
1
2 (log x)−C . The implied constant depends only on B and on the field K.

Proof. See [7], Theorem 1. �

We are ready to prove the main result of this paper.

3. Proof of Theorem 1.1

Proof. First of all note that in light of Lemma 2.2 we have

C(x,N,E) = #{p ≤ x; p - N, p does not split completely in Q(E[q]) for any prime q}.

Recall that for square free m, we set

P (x,m) = #{p ≤ x; p - N, p splits completely in Q(E[m])}.

So by an application of the inclusion-exclusion argument described in [10, Section 3] we have

C(x,N,E) =
2
√

x∑
m=1

µ(m)P (x,m).

The upper index can be chosen as 2
√

x since P (x,m) = 0 for m > 2
√

x (see the discussion after
Lemma 2.2).

In the following computation f is the ideal given in Lemma 2.7, A,B > 0 are arbitrary positive
numbers, and C = C(A,B) is the corresponding number to A + B + 1 in Lemma 2.9. Also we denote
log x by L.

Next by employing Lemma 2.5 we have

C(x,N,E) =
∑

1≤m≤ x1/4

N(f)LC/2

µ(m)P (x,m) + O

 2
√

x∑
m> x1/4

N(f)LC/2

x

m2


=

∑
1≤m≤ x1/4

N(f)LC/2

µ(m)P (x,m) + O
(
N(f)x3/4(log x)C/2

)
.
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Now we apply the prime number theorem and Lemma 2.3 to evaluate the terms P (x, 1) and P (x, 2).
We have, uniformly for N ≤ (log x)A,

C(x,N,E) = P (x, 1)− P (x, 2) +
∑

3≤m≤ x1/4

N(f)LC/2

µ(m)P (x,m) + O
(
N(f)x3/4(log x)C/2

)

=
(

1− 1
[Q(E[2]) : Q]

)
li(x) + OA,B

(
x

(log x)B

)
+ O(log N)

+
∑

3≤m≤ x1/4

N(f)LC/2

µ(m)P (x,m).(3.1)

Here we used the fact that N(f) ≤ N (see Remark 2.8).
For square free m ≥ 3, we note that the primes that split completely in Q(E[m]) are closely related

to the prime ideals of OK that split completely in K(E[m]). Observe that by Lemma 2.6, for m ≥ 3
we have Q(E[m]) = K(E[m]), and by Lemma 2.4 a prime that splits completely in Q(E[m]) it will
split completely in OK also. Thus, if we let

P̃ (x,m) = #{p : N(p) ≤ x, p - fm, p splits completely in K(E[m])},
we have

(3.2) P (x,m) =
1
2
P̃ (x,m) + O

(
x1/2

log x

)
+ O(log N).

Justification for this identity is the following. Since m ≥ 3, then any prime p (6= 2, 3) in the set that
P (x,m) counts is an ordinary prime and so pOK = pp̄ in OK . So such a prime p splits completely
in Q(E[m]) = K(E[m]) if and only if p splits completely in K(E[m]). However p splits completely in
K(E[m]) if and only if p̄ splits completely in K(E[m]), this explains the coefficient 1/2 of P̃ (x,m) in
the above identity. Also we use the fact that the number of prime ideals p of OK with degree 2 over
Q and N(p) ≤ x is O(x1/2/ log x).

Now an application of (3.2) yields∑
3≤m≤ x1/4

N(f)LC/2

µ(m)P (x,m) =
1
2

∑
3≤m≤ x1/4

N(f)LC/2

µ(m)
li(x)

[K(E[m]) : K]

+
1
2

∑
3≤m≤ x1/4

N(f)LC/2

µ(m)
(
P̃ (x,m)−

li(x)
[K(E[m]) : K]

)
+ O

(
x3/4

(log x)1+C/2

)

+O

(
log N

x1/4

(log x)C/2

)
.(3.3)

Observe that by Lemma 2.7 we have

P̃ (x,m)− li(x)
[K(E[m]) : K]

=
t(m)∑
i=1

(
πK(x, fm,mi)−

li(x)
h(fm)

)
.
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So ∑
3≤m≤ x1/4

N(f)LC/2

∣∣∣∣P̃ (x,m)− li(x)
[K(E[m]) : K]

∣∣∣∣ ≤
∑

N(fm)≤x1/2

LC

t(m)∑
i=1

∣∣∣∣πK(x, fm,mi)−
li(x)
h(fm)

∣∣∣∣ ,
which is

≤ c ϕ(f)
∏
p|f

(
1 +

1
N(p)− 1

) ∑
N(q)≤x1/2

LC

max
(a,q)=1

∣∣∣∣πK(x; q, a)− li(x)
h(q)

∣∣∣∣ ,(3.4)

by Lemma 2.7. We know that N = N(f)|dK | (see Remark 2.8). So ϕ(f) ≤ N(f) ≤ N and∏
p|f

(
1 +

1
N(p)− 1

)
≤ 2

∏
p|f

(
1 +

1
N(p)

)
≤ 2

∑
N(a)≤N(f)

1
N(a)

�K log N(f) �K log N.

Putting these together, and applying Lemma 2.9 in (3.4) yields∑
3≤m≤ x1/4

N(f)LC/2

∣∣∣∣P̃ (x,m)− li(x)
[K(E[m]) : K]

∣∣∣∣ �K,A,B N log N
x

(log x)A+B+1
.(3.5)

Note that T (q) ≤ 6. Again since there are only nine imaginary quadratic fields K of class number 1,
we can assume that the implied constant does not depend on K.

Now from (3.1), (3.3), and (3.5), and for N ≤ (log x)A, we have

C(x,N,E) =
∑

1≤m≤ x1/4

N(f)LC/2

µ(m)
[Q(E[m]) : Q]

li(x) + OA,B

(
N log N

x

(log x)A+B+1

)

=
∑

1≤m≤ x1/4

N(f)LC/2

µ(m)
[Q(E[m]) : Q]

li(x) + OA,B

(
x

(log x)B

)
.

Since by [3, Proposition 3.8], we have nm � ϕ(m)2 � m2/(log log m)2, we can write∑
m> x1/4

N(f)LC/2

µ(m)
[Q(E[m]) : Q]

�
∑

m> x1/4

N(f)LC/2

(log log m)2

m2
� (log x)

A
2

+C
4

x1/8
.

Here we used the inequality m/ϕ(m) � log log m (see [6, Theorem 328]). So we have

C(x,N,E) =
∞∑

m=1

µ(m)
[Q(E[m]) : Q]

li(x) + OA,B

(
x

(log x)B

)
,

for N ≤ (log x)A. �
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