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Preface

In May 2006, I gave four lectures on classical analytic theory of L-functions at IPM. The

following pages are notes that I prepared for those lectures. As you will see these notes are

brief and do not follow a textbook style treatment of the subject. My goal was to give a

quick introduction to L-functions, by selecting some fundamental topics from the classical

theory. The lectures are interrelated and should be read in progression. Many statements

are given as exercises. These notes should be read in a slow pace and I encourage the

reader to do the exercises. I hope that these notes serve as a guideline for the beginners

interested in the theory of L-functions.

Let me give a brief overview of the contents. In the first lecture we set up our notation and

terminology. Here we consider L-functions as complex functions that satisfy some nice

analytic properties. Following Iwaniec and Kowalski, we axiomatize a class of L-functions,

which is basically a class of complex functions satisfying properties similar to automorphic

L-functions. Next we introduce the Rankin-Selberg convolution of two L-functions in this

class. The fundamental role of these convolutions in the theory of L-functions and their

many applications form the main theme of these lectures. We illustrate the importance

of these convolutions by describing their relations with the problem of finding sharp

estimates for some arithmetic functions. Moreover, in the second lecture we show that

how the existence of these convolutions will guarantee the non-vanishing of L-functions

on the line <(s) = 1, and consequently will lead to the prime number theorem type

results. In the third lecture we show that for two L-functions associated to cusps forms

the Rankin-Selberg convolution exists, and as a consequence of this fact we can apply

the results of Lecture 2 to deduce, in the fourth lecture, the prime number theorem type

estimates for the Fourier coefficients of a cusp form.

Lectures 1 and 2 are based on chapter 5 of [IK]1, [R1], [O] and [GHL]. The third lecture

gives a detailed exposition of the classical paper of Rankin [R2]. The final lecture is based

1See the list of references at the end of notes.
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on [Mo], [HL] and [R2].

We are using without proof many facts from complex analysis and Fourier analysis. [T] is

a good complex analysis reference. [D], [I], [IK], and [M] are good analytic number theory

references. For the basic material on modular forms the reader can consult [B], [CKM],

[Iw], [K], [S], and [Sh].

[GM], [IS] and [Mi] are good survey articles and they include extensive bibliography.

I hope that these notes give a glimpse of this fascinating subject and motivate the reader

for further studies of L-functions.

Amir Akbary

October 2006
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Notation

For two complex-valued functions f and g defined on a set X, f = O(g) (or equivalently

f � g) for all x ∈ X means that there exists a C ≥ 0 such that |f(x)| ≤ Cg(x) for all

x ∈ X. We call C an implied constant. The dependence of C on other parameters is

indicated by subscripts (for example Oε(), �f ).

f = o(g) means that limx→∞ f(x)/g(x) = 0. If f 6= o(g), we say f = Ω(g). If f = g+o(g),

we say f ∼ g.

d(n) denotes the number of divisors of n, and φ(n) is the Euler function.

Γ(s) denotes the gamma function, and ζ(s) is the Riemann zeta function.
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Lecture 1

General Setting

1. Notation and Terminology

L(f, s) denotes an L-function. It is a Dirichlet series defined on the half plane <(s) > 1.

More precisely,

L(f, s) =
∞∑

n=1

λf (n)

ns
=
∏

p

(
1− α1(p)

ps

)−1(
1− α2(p)

ps

)−1

· · ·
(

1− αd(p)

ps

)−1

,

where λf (1) = 1, αi(p), λf (n) ∈ C and <(s) > 1. The λf (n)’s are called coefficients,

αi(p)’s , 1 ≤ i ≤ d, are called the local parameters, and we have

|αi(p)| < p.

d is called the degree of L(f, s). The series and the Euler product are both absolutely

convergent for <(s) > 1.

Exercise 1 Show that the existence of the above Euler product implies that λf (n) is a

multiplicative arithmetic function. (i.e. λf (mn) = λf (m)λf (n), whenever gcd(n, m) = 1.)

The following exercise describe the intimate connection between analytic properties of an

L-function and the size of its coefficients.

Exercise 2 Show that since L(f, s) =
∑∞

n=1
λf (n)

ns is absolutely convergent on <(s) > 1,

then for ε > 0, ∑
n≤x

|λf (n)| = O(x1+ε).
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From here conclude that

λf (n) = O(n1+ε).

Moreover, construct a sequence λf (n) such that
∑∞

n=1
λf (n)

ns is absolutely convergent on

<(s) > 1, however

λf (n) = Ω(n1−ε).

Complex Analysis 3 The Gamma Function Γ(s) is the meromorphic function defined

on C by the product formula

1

Γ(s)
= seγs

∞∏
n=1

(1 + s/n)e−s/n,

where γ is the Euler constant. Γ(s) has simple poles at s = 0,−1,−2, · · · .

Stirling’s formula

Γ(s) =
√

2πe−sss− 1
2

(
1 + O

(
1

|s|

))
,

uniformly on angle |args| < π − δ for δ > 0, as |s| → ∞.

Stirling’s formula (Horizontal Version)

|Γ(σ + it)| ∼
√

2πe−σσσ− 1
2 ,

for fixed t as σ →∞.

Stirling’s formula (Vertical Version)

|Γ(σ + it)| ∼
√

2π|t|σ−
1
2 e

−π
2
|t|,

for fixed σ as |t| → ∞.

A gamma factor is defined as

γ(f, s) = π−ds/2

d∏
j=1

Γ(
s + κj

2
),

where κj ∈ C are called the local parameters of L(f, s) at ∞. Moreover, we assume that

either κj ∈ R or they come as conjugate pairs and also <(κj) > −1.

Note A gamma factor is nonzero on C and has no pole on <(s) ≥ 1.
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An integer q(f) ≥ 1 denotes the conductor of L(f, s). This integer has the property that

for 1 ≤ i ≤ d, αi(p) 6= 0 for p - q(f). A prime p - q(f) is said to be unramified.

The dual of L(f, s) is an L-function L(f̄ , s) defined by L(f̄ , s) = L(f, s̄). The following

are parameters of L(f̄ , s).

λf̄ (n) = λf (n), , (ᾱi(p))f̄ = (αi(p))f γ(f̄ , s) = γ(f, s), q(f̄) = q(f).

If L(f̄ , s) = L(f, s) then L(f, s) is called self dual.

We define the complete L-function Λ(f, s) by

Λ(f, s) = q(f)
s
2 γ(f, s)L(f, s).

It is clear that Λ(f, s) is holomorphic on <(s) > 1.

Complex Analysis 4 Let f : C → C be a non-constant entire function. Let M(r) =

max{|f(s)|, where |s| = r}. By the Maximum Modulus Principle and Liouville’s theorem,

we know that

lim
r→∞

M(r) = ∞.

Now if there is a β ≥ 0 such that

f(s) = O(e|s|
β

)

as |s| → ∞, we say that f is of finite order. We set

ord(f) = inf{β ≥ 0; f(s) = O(e|s|
β

) as |s| → ∞}.

It is clear that if f is of finite order then ord(f) ≥ 0.

Examples Polynomials have order zero. es, sin s, cos s and 1/Γ(s) have order 1. ees
has

infinite order.

2. Iwaniec-Kowalski Class

In their book (Analytic Number Theory, AMS, 2004) Iwaniec and Kowalski consider the

following class of L-functions.

7



Definition 5 We say that an L-function L(f, s) with the gamma factor γ(f, s), the con-

ductor q(f), and complete L-function Λ(f, s) is in class IK if it satisfies the following

three conditions.

• Holomorphy: Λ(f, s) admits a meromorphic continuation to the whole complex plane

with at most poles at s = 0 or s = 1.

• Functional Equation: Λ(f, s) satisfies a functional equation

Λ(f, s) = ε(f)Λ(f̄ , 1− s),

where ε(f) is a complex number with |ε(f)| = 1. ε(f) is called the root number of

L(f, s).

• Growth: (s(1− s))rΛ(f, s) is an entire function of order 1, where r is the order of

pole or zero of Λ(f, s) at s = 1. ( If Λ(f, s) has a pole at s = 1, then r > 0 and if

Λ(f, s) has a zero at s = 1 then r < 0, otherwise r = 0.)

Exercise 6 a) Let r0(f) be the order of pole or zero of Λ(f, s) at s = 0. Show that

r0(f) = r.

b) Show that r is also the order of pole or zero of L(f, s) at s = 1.

Exercise 7 Show that (s(1− s))rL(f, s) is an entire function of finite order. What is the

order of this function?

Exercise 8 a) Show that the class IK is closed under multiplication. Also show that if

L(f, s) ∈ IK then L(f̄ , s) ∈ IK.

b) If L(f, s) ∈ IK is entire, then for any t ∈ R, L(f, s + it)L(f̄ , s− it) ∈ IK.

Exercise 9 Show that if L(f, s) is self dual then ε(f) = ±1. Moreover in this case if

ε(f) = −1 then L(f, 1
2
) = 0.

Exercise 10 Show that if s0 6= 0 is a pole of γ(f, s) then L(f, s0) = 0. Such zero is called

a trivial zero of L(f, s).
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3. Fundamental Conjectures

We describe some fundamental conjectures regarding the size of the local parameters and

the coefficients of an L-function in IK.

Ramanujan-Petersson Conjecture For all p - q(f) we have |αi(p)| = 1 and for all

p | q(f) we have |αi(p)| ≤ 1.

The following exercise describes the consequence of the Ramanujan-Petersson Conjecture

for the coefficient λf (n).

Exercise 11 Let τd(n) denote the number of representations of n = pa1
1 pa2

2 · · · par
r as the

product of d natural numbers. Then

(i) Show that τd(n) =
(

a1+d−1
d−1

)(
a2+d−1

d−1

)
· · ·
(

ar+d−1
d−1

)
.

(ii) Show that τd(n) = Oε,d(n
ε), where the implied constant depends only on ε and d.

(iii) Conclude that if L(f, s) satisfies the Ramanujan-Petersson conjecture then

λf (n) = Oε,d(n
ε).

Ramanujan-Petersson Conjecture at ∞ (or Generalized Selberg Conjecture)

For any j, <(κj) ≥ 0.

Equivalently the Ramanujan-Petersson Conjecture at ∞ states that γ(f, s) has no pole

for <(s) > 0.

Complex Analysis 12 (The Phragmen-Lindelöf principal for a strip ) Let f be

an entire function of finite order. Assume that

|f(a + it)| ≤ Ma(|t|+ 1)α, and |f(b + it)| ≤ Mb(|t|+ 1)β

for t ∈ R. Then

|f(σ + it)| ≤ M l(σ)
a M

1−l(σ)
b (|t|+ 1)αl(σ)+β(1−l(σ)),

for all s = σ + it in the strip a ≤ σ ≤ b, where l is the linear function such that l(a) = 1

and l(b) = 0.

Exercise 13 Use the Phragmen-Lindelöf principal for a strip to show that any L(f, s) ∈
IK is polynomially bounded (equivalently Λ(f, s) is bounded) in the vertical strip s = σ+it
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with a ≤ σ ≤ b, |t| ≥ 1. Moreover, show that if L(f, s) satisfies the Ramanujan-Petersson

conjecture then there is A > 0 such that

L(f, σ + it) �d (q(f)
d∏

j=1

(|s + κj|+ 1))A ,

for all s = σ + it with a ≤ σ ≤ b, |t| ≥ 1, where the implied constant depends only on d.

The next conjecture can be considered as a global version of the Ramanujan-Petersson

Conjecture.

Lindelöf Hypothesis (Conjecture)

L(f,
1

2
+ it) �ε (q(f)

d∏
j=1

(|it + κj|+ 1))ε .

The implied constant depends only on ε.

4. What are the principal arithmo-geometric L-functions?

In [Se], Selberg introduced a certain class of L-functions (Selberg class) and he made

some conjectures regarding the elements of this class. Conjecturally all the principal

arithmetic and geometric L-functions are in this class. Here, we introduce this class

and the Selberg Orthogonality Conjecture to motivate our future discussion of Ranking-

Selberg L-functions.

Selberg Class The Selberg class S consists of functions L(f, s) of a complex variable s

satisfying the following properties:

1. (Dirichlet series): For <(s) > 1, L(f, s) =
∑∞

n=1
λf (n)

ns where λf (1) = 1.

2. (Analytic continuation): For some integer m ≥ 0, (s− 1)mL(f, s) extends to an entire

function of finite order.

3. (Functional equation): There are numbers Q(f) > 0, δj > 0, rj ∈ C with <(ri) ≥ 0

such that

Λ(f, s) = Q(f)s

d∏
j=1

Γ(δjs + rj)L(f, s)

satisfies the functional equation

Λ(f, s) = ε(f)Λ̄(f, 1− s)
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where ε(f) is a complex number with |ε(f)| = 1 and Λ̄(f, s) = Λ(f, s̄).

4. (Euler product): For <(s) > 1, L(f, s) =
∏

p Lp(f, s), where

Lp(f, s) = exp

(
∞∑

k=1

bpk

pks

)

and bpk = O(pkθ) for some θ < 1/2, and p denotes a prime number here.

5. (Ramanujan hypothesis): For any fixed ε > 0, λf (n) = Oε(n
ε).

Exercise 14 Let L(f, s) ∈ IK be an L-function that satisfies the Ramanujan-Petersson

Conjecture and the Generalized Selberg Conjecture. Moreover assume that L(f, s) does

not have a pole at s = 0. Then show that L(f, s) ∈ S.

Note that the functional equation for L(f, s) ∈ S is not unique, by virtue of Legendre’s

duplication formula (i.e.
√

πΓ(2s) = 22s−1Γ(s)Γ(s + 1
2
)). However, one can show that the

sum of δj’s is well defined. We define the degree of L(f, s) ∈ S by

deg L(f, s) = 2
d∑

j=1

δj.

An element L(f, s) ∈ S is called primitive if L(f, s) 6= 1 and L(f, s) = L(f1, s)L(f1, s)

implies L(f1, s) = 1 or L(f2, s) = 1.

Selberg Orthogonality Conjecture If L(f, s), L(g, s) ∈ S are primitive functions then

∑
p≤x

λf (p)λg(p)

p
= δf,g log log x + O(1)

as x →∞, where δf,g =

{
1 if L(f, s) = L(g, s)

0 if L(f, s) 6= L(g, s)
.

5. Ranking-Selberg L-functions

Let L(f, s), L(g, s) ∈ IK be L-functions of degree d and e, with local parameters (αi(p))

and (βj(p)) and local parameters at ∞, κi and νj respectively. For p - q(f)q(g), let

Lp(f ⊗ g, s) =
∏
i,j

(1− αi(p)βj(p)p−s)−1.
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Definition 15 We say that f and g have a Ranking-Selberg convolution if there exists

an L-function L(f ⊗ g, s) in IK that satisfies the following conditions:

• L(f ⊗ g, s) is a degree de L-function. More precisely

L(f ⊗ g, s) =
∏

p-q(f)q(g)

Lp(f ⊗ g, s)
∏

p|q(f)q(g)

Hp(p
−s),

where

Hp(p
−s) =

de∏
j=1

(1− γj(p)p−s)−1 with |γj(p)| < p.

• The gamma factor is written as

γ(f ⊗ g, s) = π−des/2
∏
i,j

Γ(
s + µi,j

2
),

where <(µi,j) ≤ <(κi + νj) and |µi,j| ≤ |κi|+ |νj|.

• q(f ⊗ g) | q(f)eq(g)d, where q(f ⊗ g) is the conductor of f ⊗ g.

• If f = g then L(f ⊗ g, s) has a pole at s = 1.

6. What Rankin-Selberg L-functions got to do with it

?

Next we show that the existence of Ranking-Selberg L-functions provides valuable infor-

mation regarding the size of the coefficients of an L-function.

Exercise 16 Show that for (n, q(f)) = 1, λf⊗f (n) ≥ 0.

Exercise 17 Show that if L(f ⊗ f, s) or L(f ⊗ f̄ , s) exists, then |αi(p)| < √
p for p - q(f)

and <(κi) > −1
2
.

Definition 18 The Ramanujan τ -function is defined by the formal generating function

x

{
∞∏

n=1

(1− xn)

}24

=
∞∑

n=1

τ(n)xn = x(1− 24x + 252x2 − 1472x3 + 4830x4 · · · ).

For historical background about τ(n) see Chapter 10 of [H].
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Definition 19 τ ∗(n) = τ(n)

n
11
2

.

Some questions regarding τ ∗(n):

1) What is the order of τ ∗(n)?

2) What is the order of
∑

n≤x |τ ∗(n)|?
3) What is the order of

∑
n≤x τ ∗(n)?

4) What is the order of
∑

p≤x
p,prime

τ ∗(p)?

Exercise 20 a) Show that

∞∏
n=1

(1− xn)3 =
∞∑

n=0

(−1)n(2n + 1)x
n(n+1)

2 .

b) Show that
∞∑

n=0

(2n + 1)x
n(n+1)

2 = O

(
1

1− x

)
as x → 1.

Proposition 21 τ ∗(n) = O(n
5
2 ).

Proof From the previous exercise we have

|τ(n)|xn ≤
∞∑

n=1

|τ(n)|xn ≤ x

(
∞∑

n=0

(2n + 1)x
n(n+1)

2

)8

≤ A
x

(1− x)8

for some constant A > 0 as x → 1−. So

|τ(n)| ≤ A

xn−1(1− x)8

as x → 1−. Taking x = 1− 1
n

implies the result. �

Exercise 22 Show that L(τ ∗ × τ ∗, s) =
∑∞

n=1
(τ∗(n))2

ns is convergent for <(s) > 6. Show

that if L(τ ∗ × τ ∗, s) has an analytic continuation to <(s) > 1, then for ε > 0∑
n≤x

(τ ∗(n))2 = O(x1+ε).

Theorem 23 ( Hardy )
∑

n≤x(τ
∗(n))2 = O(x).
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Proof (Sketch) Let f(q) =
∑∞

n=1 τ(n)qn for |q| < 1. We note that q = e2πiz gives a

map from the upper half-plane H = {x + iy : y > 0} to the punctured open unit disc

centered at the origin. So we can consider

f̃(z) =
∞∑

n=1

τ(n)e2πinz

from H to C. It is clear that f̃(z + 1) = f̃(z). In other words for fixed y,

˜̃f(x) = f̃(x + iy)

is a periodic function on R so it has a Fourier expansion. Thus

˜̃f(x) =
∞∑

n=1

a(n)e2πinx =
∞∑

n=1

τ(n)e−2πnye2πinx.

Here a(n) = τ(n)e−2πny is the n-th Fourier coefficient of ˜̃f(x). So by Parseval identity we

have
∞∑

n=1

(τ(n)e−2πny)2 =

∫ 1

0

| ˜̃f(x)|2dx =

∫ 1

0

|f̃(z)|2dx. (1)

One can show that f̃(z) has the following transformation property

f̃(
−1

z
) = z12f̃(z).

From here one can conclude that y6|f̃(z)| is invariant under action of the group Γ =

SL2(Z) on the upper half plane. So y6|f̃(z)| is a Γ-periodic function that vanishes at the

cusp at ∞ and therefore it is bounded on H. Thus

y6|f̃(z)| � 1.

Applying this bound in (1) implies that

∞∑
n=1

(τ(n))2e−4πny � y−12.

Now taking y = 1/x implies the result. �

The following is a direct consequence of the previous theorem and the Cauchy-Schwarz

inequality.
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Corollary 24
∑

n≤x |τ ∗(n)| = O(x).

Corollary 25 τ ∗(n) = O(n
1
2 ).

Proof From Theorem 23 we have

(τ ∗(n))2 =
∑
m≤n

(τ ∗(m))2 −
∑

m≤n−1

(τ ∗(m))2 � n.

�

Exercise 26 Let A(x) =
∑

n≤x an = O(xδ). Show that for <(s) > δ,

∞∑
n=1

an

ns
= s

∫ ∞

1

A(t)

ts+1
dt.

Hence the Dirichlet series converges for <(s) > δ. Conclude that the Dirichlet series

L(τ ∗, s) =
∑∞

n=1
τ∗(n)

ns is absolutely convergent for <(s) > 1.

Two of our goals in the remaining lectures are proving the following theorems.

Theorem 27 ( Rankin ) L(τ ∗, s) 6= 0 on the line <(s) = 1.

Proof See Theorem 35 and Lecture 3. �

Theorem 28 ( Rankin ) τ ∗(n) = O(n
3
10 ).

Proof See Corollary 99. �

Note Deligne proved that |τ ∗(n)| ≤ d(n). Note that d(n) = Oε(n
ε) for any ε > 0.
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Lecture 2

Zeros of L-functions

In this lecture we show that upon existence of Rankin-Selberg L-functions and some other

conditions, an L-function has no zero on the line <(s) = 1 and a narrow region to the left

of this line. All the L-functions in this lecture are in IK class.

7. Zeros of Λ(f, s)

Recall that Λ(f, s) is a complete L-function in IK class. We list some elementary prop-

erties of zeros of Λ(f, s). These properties are direct corollary of definition of the class

IK and the following complex analysis fact regarding entire functions of order 1.

Complex Analysis 29 If the relation f(s) = O(e|s|) does not hold for an entire function

of order 1, then ∑
ρ 6=0

1

|ρ|
is divergent,

and ∑
ρ 6=0

1

|ρ|1+ε is convergent,

where ρ denotes zeros of the function and ε > 0. So in this case f(s) has infinitely many

zeros.

Exercise 30 (i) Λ(f, s) has infinitely many zeros.

(ii) Λ(f, s) and L(f, s) 6= 0 on the half plane <(s) > 1.

(iii) All zeros ρ of Λ(f, s) are in the critical strip 0 ≤ σ ≤ 1.
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(iv) If <(κj) ≥ 0 for 1 ≤ j ≤ d, then on the strip 0 < <(s) ≤ 1, zeros of Λ(f, s) and zeros

of L(f, s) coincide.

(v)
∑
ρ 6=0

1

|ρ|1+ε
< ∞, where ρ runs over zeros of Λ(f, s) and ε > 0.

(vi) If ρ is a zero of Λ(f, s) then 1− ρ̄ is also a zero of Λ(f, s).

8. Non-vanishing of L-functions on the line <(s) = 1

In this section we give a proof of the classical theorem of Rankin and Ogg for L-functions

in IK.

We define

Λf (n) =


d∑

j=1

αj(p)k log p n = pk

0 otherwise

.

Note that Λf (n) is different from Λ(f, s).

Complex Analysis 31 ( Logarithm of functions ) Let f(s) be a function that is

analytic and never 0 on a simply connected region A. Then there is a function g(s)

analytic on A and unique up to the addition of a constant multiple of 2πi such that

eg(s) = f(s). Any g(s) has formal properties similar to log f(s).

Exercise 32 Let log z denote the principle branch of logarithm. Then − log(1 − z) is

analytic on |z| < 1 and it has the following Taylor expansion

− log(1− z) =
∞∑

k=1

zk

k
.

Use this fact to show that for σ = <(s) > 2, we have

L(f, s) = exp

(∑
p

∞∑
k=1

Λf (p
k)

k log p pks

)
.

Explain why it is reasonable to define for σ > 2

log L(f, s) =
∑

p

∞∑
k=1

Λf (p
k)

log pk pks
.
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Conclude that for σ > 2

−L′

L
(f, s) =

∞∑
n=1

Λf (n)

ns
.

Moreover show that for σ > 2 ∣∣∣∣−L′

L
(f, s)

∣∣∣∣ ≤ dζ ′(σ − 1).

Complex Analysis 33 (Landau’s lemma) A Dirichlet series with non-negative coef-

ficients has a singularity at its abscissa of convergence.

Lemma 34 Let f(s) be a complex function that satisfies the following:

(i) f(s) is analytic on the half-plane <(s) > σ0;

(ii) f(s) has a representation in the form

f(s) = exp

(
∞∑

n=1

c(n)

ns

)
,

with c(n) ≥ 0 on the half-plane <(s) > σ1 (σ1 > σ0).

Then f(s) 6= 0 for <(s) > σ0.

Proof Let σ2 be the abscissa of convergence of
∑∞

n=1
c(n)
ns . We claim that σ2 ≤ σ0.

To prove this let us assume that σ0 < σ2 ≤ σ1. Then for σ > σ2 we have

f(σ) = exp

(
∞∑

n=1

c(n)

nσ

)
. (2)

Now since
∑∞

n=1
c(n)
ns is divergent at σ2 and f(s) is well defined at σ2 the equality (2)

shows that f(σ2) = 0 and limσ→σ2

∑∞
n=1

c(n)
nσ = −∞. (This is true since if f(σ2) 6= 0,

then |f(s)| 6= 0 on a neighborhood of σ2 and so log f(s) gives a holomorphic continuation

of
∑∞

n=1
c(n)
ns to the left of σ2 which is a contradiction.) But limσ→σ2

∑∞
n=1

c(n)
nσ = −∞

is impossible since c(n) ≥ 0. So σ2 ≤ σ0. This shows that
∑∞

n=1
c(n)
ns is convergent for

<(s) > σ0, and

f(s) = exp

(
∞∑

n=1

c(n)

ns

)
for <(s) > σ0. So f(s) 6= 0 on <(s) > σ0. �
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Theorem 35 (Rankin (1939), Ogg (1969) )2 Let L(f, s) be an entire L-function. Let

L(f ⊗ f, s) exists and it has a simple pole at s = 1. Then L(f, 1 + it) 6= 0 for all real t.

Proof Suppose that L(f, 1 + it0) = 0, and let

g(s) = ζ(s) L(f, s + it0) L(f̄ , s− it0) L(f ⊗ f, s).

It is clear that g(s) is entire. Now note that for <(s) > 1,

gunr(s) = exp

 ∑
(p,q(f))=1

∞∑
k=1

|1 +
∑

j αk
j p
−kit0|2

kpks

 = exp

(
∞∑

n=1

c(n)

ns

)

where c(n) ≥ 0. So, gunr(s) satisfies the conditions of Lemma 34 with σ1 = 1, and therefore

gunr(s) and g(s) 6= 0 everywhere. This is a contradiction since g(−2) = 0. �

9. More on zeros of Λ(f, s)

In this section we derive an identity (Lemma 41) regarding the zeros of Λ(f, s). This

identity plays an important role in establishing a zero free region for L(f, s).

Complex Analysis 36 (Weierstrass, Hadamard ) Let f be an entire function of or-

der 1. Then

f(s) = srea+bs
∏
ρ 6=0

(1− s

ρ
)es/ρ,

uniformly and absolutely on all compact subsets of C, where r is the order of the zero of

f at s = 0 and ρ runs over zeros of f different from 0.

As part of Weierstrass’s theory we assume the legitimacy of any formal transformation of

the above product formula.

Theorem 37 There exists constants a = a(f) and b = b(f) such that

(s(1− s))rΛ(f, s) = ea+bs
∏

ρ 6=0,1

(1− s

ρ
)es/ρ,

2Rankin and Ogg proved this theorem for modular L-functions. Rankin proved the case t 6= 0, and
Ogg gave a proof for t = 0. Our proof here is in spirit of Ogg’s proof.
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where ρ ranges over all zeros of Λ(f, s) different from 0 and 1.This expansion is uniformly

and absolutely convergent on compact subsets of complex plane. Moreover, the following

identity is valid on any subset of complex plane that avoids zeros of L(f, s).

−L′

L
(f, s) =

1

2
log q(f) +

γ′

γ
(f, s)− b(f) +

r

s
+

r

s− 1
−
∑
ρ 6=0,1

(
1

s− ρ
+

1

ρ
). (3)

Proof These are consequences of Complex Analysis 36 and logarithmic differentiation.

�

Exercise 38 Utilize the functional equation to show that

<(b(f)) = −
∑

ρ

<(
1

ρ
).

Analytic Conductor (Iwaniec-Sarnak) The conductor of L(f, s) at ∞ is defined as

q∞(f, s) =
d∏

j=1

(|s + κj|+ 3).

The analytic conductor of L(f, s) is defined as

Q(f, s) = q(f)q∞(f, s) = q(f)
d∏

j=1

(|s + κj|+ 3).

We let

Q(f) = Q(f, 0) = q(f)
d∏

j=1

(|κj|+ 3),

and similarly q∞(f) = q∞(f, 0).

Lemma 39 d ≤ log q∞(f) ≤ log Q(f).

Proof We have

q∞(f) =
d∏

j=1

(|κj|+ 3) ≥ 3d.

The result follows by taking the logarithm from both sides of this inequality. �

Complex Analysis 40
Γ′(s)

Γ(s)
= log s + O

(
1

|s|

)
,

is valid as |s| → ∞, in the angle −π + δ < args < π − δ, for any fixed δ > 0.
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Estimation of the gamma factors By employing Complex Analysis 40 we can estimate

the gamma factors as follows. For <(s) > 1 we have

γ′

γ
(f, s) � d + log q∞(f, s) +

∑
|s+κj |<1

1

|s + κj|
. (4)

Lemma 41 (Main Identity) On the half-plane <(s) > 1∑
ρ 6=0,1

<(
1

s− ρ
) = <(

r

s− 1
) + <(

r

s
) + O(

∑
|s+κj |<1

1

|s + κj|
) + <(

L′

L
(f, s)) + O(log Q(f, s)),

where ρ ranges over all zeros of Λ(f, s) different from 0 and 1.

Proposition 42 Let ρ = β + iγ denote the zeros of Λ(f, s). Then∑
ρ

1

1 + (T − γ)2
�
∑

ρ

<(
1

3 + iT − ρ
) � log Q(f, iT ).

The implied constant depends only on r.

Note You should not confuse the ordinate γ with the factors γ(f, s).

Proof Let s = 3 + iT in the Main Identity. The result follows. �

Corollary 43 Let N(f, T ) be the number of zeros ρ = β + iγ of L(f, s) such that 0 ≤
β ≤ 1 and 0 ≤ γ ≤ T . Then

N(f, T + 1)−N(f, T ) = O(log Q(f, iT )).

The implied constant depends only on r.

Proof Since zeros of L(f, s) and Λ(f, s) on the critical strip are basically the same (at

most finitely many exceptions), from the previous proposition, we have

N(f, T + 1)−N(f, T ) =
∑

ρ
T<γ≤T+1

1 ≤
∑

ρ

2

1 + (T − γ)2
� log Q(f, iT ).

�

Note One can show that

N(f, T ) =
d

2π
T log T + cT + O(log T ),

as T →∞. Here c is a constant depends on L(f, s).
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10. A zero-free region

In this section following [GHL] and [IK], we show the existence of a zero free region for

L(f, s).

Lemma 44 Q(f, s) ≤ Q(f)(|s|+ 3)d.

Proof We have

Q(f, s) = q(f)
d∏

j=1

(|s + κj|+ 3) ≤ q(f)
d∏

j=1

(|kj|+ 3)(|s|+ 3) = Q(f)(|s|+ 3)d.

�

Let Lr(f, s) (respectively Lur(f, s)) be the Euler product of L(f, s) restricted to ramified

(respectively unramified) primes.

Exercise 45 Assume that for any ramified prime (i.e. p such that (p, q(f)) 6= 1) we have

|αj(p)| ≤ p/2. Then show that for σ > 1

<(
L′r
Lr

(f, σ)) = O(d log q(f)).

Lemma 46 (Goldfeld, Hoffstein and Lieman (1994) via de la Vallée Poussin

(1899)) Suppose that <(Λf (n)) ≥ 0 for (n, q(f)) = 1. Suppose that <(κj) > −1/2 and

at ramified primes |αj(p)| ≤ p/2. Let r be the order of L(f, s) at s = 1. Then

(i) L(f, 1) 6= 0. In other words r is non-negative.

(ii) There exists an effective constant c > 0, depending only on r, such that L(f, s) has

at most r real zeros in the interval

σ ≥ 1− c

d(r + 1) log Q(f)
.

Proof Let 1 < σ < 3
2
. Then from Lemmas 41 and 44∑

ρ 6=0,1

<(
1

σ − ρ
) =

r

σ − 1
+

r

σ
+ O(

∑
|σ+κj |<1

1

|σ + κj|
) + <(

L′

L
(f, σ)) + O(log Q(f)),

where ρ ranges over all zeros of Λ(f, s) different from 0 and 1. Now note that

<(
1

σ − ρ
) > 0, <(

L′ur

Lur

(f, σ)) ≤ 0, and <(
L′r
Lr

(f, σ)) = O(d log q(f)).
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So if βj’s are the zeros of L(f, s) in the interval [1
2
, 1), there exists a constant c1 (depending

only on r) such that ∑
j

1

σ − βj

≤ r

σ − 1
+ c1d log Q(f).

(Note that since <(κj) > −1/2, βj’s are also zeros of Λ(f, s)). Now if σ → 1+ this

inequality shows that r cannot be negative, so r ≥ 0.

Now for δ, c > 0 let σ = 1 + δ/d log Q(f) and m be the number of zeros of L(f, s) in the

interval (1− c/d(r + 1) log Q(f), 1). Then from the previous inequality, we have

m ≤ (δ +
c

r + 1
)(

r

δ
+ c1) = r + δc1 +

c

δ
(

r

r + 1
) +

cc1

r + 1
.

Now let δ < c−1
1 , then we can choose c small enough such that m ≤ r. The proof now is

complete. �

Let L(f, s) be an entire L-function of degree d with at least one non-real coefficient

(i.e L(f, s) is not self-dual). Suppose that the Ranking-Selberg L-functions L(f ⊗ f, s)

and L(f ⊗ f̄ , s) exist. Also suppose that <(µi,j) > −1
2
. (Note that this implies that

<(κj) > −1/4.) Moreover we assume that the pole of L(f ⊗ f, s) at s = 1 is simple

and L(f ⊗ f̄ , s) is entire. Finally we assume that the local parameters αj(p) of L(f, s),

L(f ⊗ f, s) and L(f ⊗ f̄ , s) at the ramified primes satisfy in the inequality |αj(p)| ≤ p/2.

Exercise 47 Q(f ⊗ f) � Q(f)2d.

The next theorem establishes a zero free region for such L-functions.

Theorem 48 There exists an absolute constant c > 0 such that L(f, s) has no zeros in

the region

σ ≥ 1− c

d4 log (Q(f)(|t|+ 3))
.

Proof For t ∈ R , we let

L(g, s) = ζ(s)L(f, s + it)2L(f̄ , s− it)2L(f ⊗ f̄ , s + 2it)L(f̄ ⊗ f, s− 2it)L(f ⊗ f, s)2.

It is clear that L(g, s) is an L-function of degree (1 + 2d)2. By employing Exercise 47 we

have

Q(g) � Q(f)4+8d(|t|+ 3)6d2

.

Also we have Λg(n) ≥ 0 for any n coprime to q(g) (or q(f)).
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Now let ρ = β + iγ be a zero of L(f, s) with β ≥ 1/2. In L(g, s) let t = γ. Then L(g, s)

has a pole of order at most 3 at s = 1 and a zero of order at least 4 at s = β. By Lemma

46 it is clear that

β < 1− c

d2 log Q(g)
< 1− c′

d4 log (Q(f)(|t|+ 3))
,

for some absolute constants c > 0 and c′ > 0. The proof now is complete. �

Let L(f, s) be an entire L-function of degree d with real coefficients (i.e L(f, s) is self-dual).

Suppose that the Ranking-Selberg L-functions L(f ⊗ f, s) exists. Also we suppose that

<(µi,j) > −1
2
. (Note that this implies that <(κj) > −1/4.) Moreover we assume that the

pole of L(f ⊗ f, s) at s = 1 is simple. Finally we assume that the local parameters αj(p)

of L(f, s) and L(f ⊗ f, s) at the ramified primes satisfy in the inequality |αj(p)| ≤ p/2.

The next theorem establishes an almost zero free region for such L-functions.

Theorem 49 There exists an absolute constant c > 0 such that L(f, s) has no zeros in

the region

σ ≥ 1− c

d4 log (Q(f)(|t|+ 3))
,

except possibly for one simple real zero βf < 1.

Proof The proof is the same as the previous theorem. The only difference is that if

t = γ = 0, then L(g, s) has a pole of order at most 5 (in fact exactly 5) at s = 1 and a

zero of order at least 4 at s = β. So by Lemma 46 there is an absolute constant c > 0

such that L(f, s) has no zeros in the region

σ ≥ 1− c

d4 log (Q(f)(|t|+ 3))
,

except possibly for one simple real zero βf . Since L(f, s) is non-vanishing on the line

<(s) = 1, we have βf < 1. �

Note The possible simple real zero βf of L(f, s) is called the exceptional zero or the Siegel

zero.
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Lecture 3

Poles of L-functions, Examples

10. Riemann Zeta Function

In this lecture we turn our attention to the problem of analytic continuation of a Dirichlet

series to the whole complex plane. After reviewing analytic continuation of the Riemann

zeta function, we apply a similar method to deduce analytic continuation of the Epstein

zeta function, modular L-functions, and Rankin-Selberg convolution of two modular L-

functions. This lecture is an exposition of [R2]. For the related historical background see

[D] and chapter 10 of [H].

Fourier Analysis 50 Let S (the Schwartz space) be the vector space of infinitely differ-

entiable functions f : R → C which decreases at infinity faster than any negative power

function, i.e., |x|Nf(x) → 0 as x → ±∞ for all N . For any f ∈ S we define its Fourier

transform f̂ by

f̂(y) =

∫ ∞

−∞
f(x)e−2πixydx.

Exercise 51 Show that f(x) = e−πx2 ∈ S, and f̂ = f .

Fourier Analysis 52 (Poisson Summation Formula ) If f ∈ S, then

∞∑
m=−∞

f(m) =
∞∑

m=−∞

f̂(m).

Definition 53 The theta-function θ(ω) is defined by

θ(ω) =
∞∑

n=−∞

e−πωn2

,

for ω > 0.
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Exercise 54 By employing the Poisson summation formula show that θ(ω) satisfies the

functional equation

θ

(
1

ω

)
=
√

ω θ(ω).

Recall that the Riemann zeta function is defined by

ζ(s) =
∞∑

n=1

1

ns
,

for <(s) > 1. We next start with the definition of the gamma-function at point
s

2
,

Γ
(s

2

)
=

∫ ∞

0

e−tt
s
2
−1dt.

Using the change of variable t 7→ πn2x, multiplying both sides by π−
s
2 n−s and taking sum

over n’s, for <(s) > 1, we arrive at

π−
s
2 Γ
(s

2

)
ζ(s) =

∫ ∞

0

(
x

s
2
−1

∞∑
n=1

e−πn2x

)
dx. (5)

Next by letting η(x) =
θ(x)− 1

2
, and utilizing the transformation property of the theta

function (Exercise 54), we derive the following integral representation for the zeta-function,

π−
s
2 Γ
(s

2

)
ζ(s) =

∫ ∞

1

η(x)
(
x

s−2
2 + x−

s+1
2

)
dx +

1

s(s− 1)
.

This representation holds for <(s) > 1. But the integral on the right converges absolutely

for any s, and converges uniformly with respect to s in any bounded part of the plane

since

η(x) = O(e−πx)

as x → ∞. Hence, the integral represents an everywhere analytic function of s, and the

above formula gives the analytic (meromorphic) continuation of ζ(s) to the whole plane.

Since the right side of this integral representation is unchanged when s is replaced by

1− s, it also gives the functional equation

Λ(s) = Λ(1− s) (6)

where

Λ(s) = π−
s
2 Γ
(s

2

)
ζ(s).
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11. Epstein Zeta Function

Definition 55 For any z = x + iy ∈ H = {x + iy : y > 0} and for s = σ + it ∈ C, we

define the Epstein zeta function by

E(z, s) =
∑
m,n

′ 1

|mz + n|2s

where the dash means that m and n run through all integer pairs except (0, 0).

Exercise 56 Prove that for any z ∈ H, the above double series is absolutely and uniformly

convergent in the half-plane <(s) > 1, and therefore E(z, s) is an analytic function of s

on this half-plane.

Our goal here is to prove that the Epstein zeta function has an analytic continuation

and it satisfies a functional equation. Both of these statements are consequences of the

transformation property of the following theta-function.

Definition 57 For ω > 0 and z = x + iy ∈ H, the theta-function Θ(ω) is defined by the

following infinite sum

Θ(ω) = Θ(z, ω) =
∑
m,n

′
exp

{
−πω

y
|mz + n|2

}
.

Here dash has the same meaning as in the definition of E(z, s).

The first target here is to establish the transformation property of Θ(ω). To do this, first

we recall some facts about the Fourier transform. For simplicity, we set e(z) = e2πiz.

Fourier Analysis 58 Let f : Rn → C be bounded, smooth (i.e., all partial derivatives

exist and are continuous), and rapidly decreasing (i.e., for any N , |x|Nf(x) tends to zero

when |x| goes to infinity). The Fourier transform of f is defined by

f̂(y) =

∫
Rn

e(−xty)f(x)dx.

Here, x = (x1, ..., xn)t, y = (y1, ..., yn)t, xty =
n∑

j=1

xjyj, |x| = (xtx)
1
2 , dx =

n∏
j=1

dxj and

“t” stands for transposition.
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Exercise 59 It can be proved that for f(x) = e−πxtx we have f̂ = f .

Recall that throughout this lecture ω is a positive real number.

Lemma 60 Let A be a real symmetric matrix of size n with positive eigenvalues, and let

g(x) = e

(
i

2
ωxtAx

)
= e−πωxtAx.

Then we have

ĝ(y) = |A|−
1
2

(
1

ω

)n
2

e

(
i

2ω
ytA−1y

)
= |A|−

1
2

(
1

ω

)n
2

e−
π
ω
ytA−1y.

Here, |A| is the determinant of A.

Proof By the principal axis theorem, there exists an orthogonal matrix U such that

A = U tDU

where D = diag[λ1, ..., λn] is a diagonal matrix and λi’s are the eigenvalues of A. Let

B = diag[
√

λ1, ...,
√

λn]U = (bij)n×n.

B is invertible and A = BtB. Consider the change of variable u = ω
1
2 Bx, and let v =

ω−
1
2 (Bt)−1y. We have the following

utu = ωxtAx, vtv =
1

ω
ytA−1y, xty = utv.

Also for the Jacobian matrix J we have

J =

(
∂ui

∂xj

)
n×n

=
(
ω

1
2 bij

)
n×n

= ω
1
2 B,

and therefore

du = |J |dx = ω
n
2 |B|dx = ω

n
2 |A|

1
2 dx.
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Applying this change of variable in the Fourier transform of g yields

ĝ(y) =

∫
Rn

e(−xty)e−πωxtAxdx

= |A|−
1
2

(
1

ω

)n
2
∫
Rn

e(−utv)e−πutudu

= |A|−
1
2

(
1

ω

)n
2

f̂(v)

= |A|−
1
2

(
1

ω

)n
2

e−πvtv

= |A|−
1
2

(
1

ω

)n
2

e−
π
ω
ytA−1y.

The proof is complete. �

Proposition 61 The theta-function Θ(ω) satisfies the following transformation property

1 + Θ(ω) =
1

ω

(
1 + Θ

(
1

ω

))
.

Proof In Lemma 60 put

A =

(
|z|2
y

x
y

x
y

1
y

)
where z = x + iy ∈ H. A has positive eigenvalues and we have

A−1 =

(
1
y

−x
y

−x
y

|z|2
y

)
, n = 2, |A| = 1,

and so

g(x) = e−πωxtAx = e−
πω
y
|x1z+x2|2 ,

ĝ(y) =
1

ω
e−

π
ω
ytA−1y =

1

ω
e−

π
yω
|y1−y2z|2 .

By applying the Poisson summation formula, i.e.,∑
m∈Z2

g(m) =
∑

m∈Z2

ĝ(m),

we have ∑
m,n

e−
πω
y
|mz+n|2 =

1

ω

∑
m,n

e−
π

yω
|m−nz|2
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or

1 + Θ(ω) =
1

ω

(
1 + Θ

(
1

ω

))
.

The proof is complete. �

Exercise 62 Show that for −1 ≤ Re(z) ≤ 1,

Θ(ω) �
(
1 + ω−1 + y

1
2 ω−

1
2 + y−

1
2 ω−

1
2

)(
e−

πyω
2 + e−

πω
2y

)
. (7)

Now we are ready to prove the main result of this section.

Proposition 63 (i) The Epstein zeta function can be analytically continued to the whole

complex plane, except for a simple pole at s = 1 with residue
π

y
.

(ii) Put

ξ(z, s) =

(
π

y

)−s

Γ(s)E(z, s).

We have the following integral representation for ξ(z, s)

ξ(z, s) =

∫ ∞

1

Θ(ω)(ωs−1 + ω−s)dω +
1

s(s− 1)

and so, ξ(z, s) is analytic everywhere, except for simple poles at s = 0, 1 with residue 1.

(iii) ξ(z, s) is unchanged under the replacing of s by 1− s. This means that

ξ(z, s) = ξ(z, 1− s).

In other words, the Epstein zeta function satisfies the following functional equation(
π

y

)−s

Γ(s)E(z, s) =

(
π

y

)s−1

Γ(1− s)E(z, 1− s).

Proof For <(s) > 0, we have

Γ(s) =

∫ ∞

0

e−uus−1du.

We apply the change of variable u 7→ π
y
|mz + n|2ω, to get

Γ(s) =

(
π

y

)s

|mz + n|2s

∫ ∞

0

e−
πω
y
|mz+n|2ωs−1dω,
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or (
π

y

)−s

|mz + n|−2sΓ(s) =

∫ ∞

0

e−
πω
y
|mz+n|2ωs−1dω.

This implies

ξ(z, s) =

(
π

y

)−s

Γ(s)E(z, s)

=

(
π

y

)−s

Γ(s)
∑
m,n

′ 1

|mz + n|2s

=
∑
m,n

′
(

π

y

)−s

Γ(s)|mz + n|−2s

=
∑
m,n

′
∫ ∞

0

exp

{
−πω

y
|mz + n|2

}
ωs−1dω.

Now note that the inequality (7) allows us to interchange the order of summation and

integration. So

ξ(z, s) =

∫ ∞

0

∑
m,n

′
exp

{
−πω

y
|mz + n|2

}
ωs−1dω

=

∫ ∞

0

Θ(ω)ωs−1dω

=

∫ 1

0

Θ(ω)ωs−1dω +

∫ ∞

1

Θ(ω)ωs−1dω.

Changing variable ω 7→ 1
u

in the first integral, and applying the transformation property

of Proposition 61 yield

ξ(z, s) =

∫ ∞

1

Θ(ω)ωs−1dω +

∫ 1

∞
Θ

(
1

u

)(
1

u

)s−1(
− 1

u2

)
du

=

∫ ∞

1

Θ(ω)ωs−1dω +

∫ ∞

1

{ω (1 + Θ(ω))− 1}
(

1

ω

)s+1

dω

=

∫ ∞

1

Θ(ω)ωs−1dω +

∫ ∞

1

Θ(ω)ω−sdω +

∫ ∞

1

(
ω−s − ω−s−1

)
dω

=

∫ ∞

1

Θ(ω)
(
ωs−1 + ω−s

)
dω +

1

s(s− 1)
. (8)

Note that the inequality (7) also shows that∫ ∞

1

∣∣Θ(ω)(ωs−1 + ω−s)
∣∣ dω
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�
∫ ∞

1

(
1 + ω−1 + y

1
2 ω−

1
2 + y−

1
2 ω−

1
2

)(
e−

πyω
2 + e−

πω
2y

) (
ωσ−1 + ω−σ

)
dω.

After expanding the right-hand side, we come to a finite sum of integrals in the form of∫ ∞

1

e−aωωbdω

where a ∈ R+ and b ∈ R. Since these integrals are convergent, the first summand on the

right-hand side of (8) is an entire function of s. This proves (ii).

The identity (8) also proves (iii), because the right-hand side of (8) is invariant under the

replacing of s with 1− s.

To prove (i), note that by (ii) the only possible poles for E(z, s) are s = 0, 1. At s = 0 since

both Γ(s) and ξ(z, s) have simple poles with residue 1, E(z, s) is analytic and E(z, 0) = 1.

At s = 1, Γ(s) has a value of 1 and ξ(z, s) has a simple pole with residue 1. Therefore

E(z, s) has a simple pole with residue
π

y
.

This completes the proof. �

Selberg’s Analytic Continuation of the Non-holomorphic Eisenstien Series Let

Ẽ(z, s) =
1

2

(y

π

)s

Γ(s)E(z, s).

Ẽ(z, s) is called the non-holomorphic Eisenstien Series for SL2(Z), where SL2(Z) is the

multiplicative group of 2× 2 matrices with integer entries and determinant 1.

Exercise 64 Show that Ẽ(z, s) is a meromorphic function with two simple poles at s = 0

and s = 1 and with the residue 1
2

at s = 1. Moreover show that

Ẽ(γz, s) = Ẽ(z, s)

for any γ ∈ SL2(Z).

In the sequel, following Selberg, we describe a different approach regarding the meromor-

phic continuation of Ẽ(z, s). First of all note that since Ẽ(z + 1, s) = Ẽ(z, s), Ẽ(z, s) has

a Fourier expansion in the form

∞∑
n=−∞

an(y, s)e2πinx. (9)
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For <(s) > 1. One can explicitly calculate the Fourier coefficients and deduce that

a0(y, s) = π−sΓ(s)ζ(2s)ys + πs−1Γ(1− s)ζ(2− 2s)y1−s,

and for n 6= 0,

an(y, s) = 2
√

y|n|s−1/2σ1−2s(|n|)Ks−1/2(2π|n|y).

Here

σ1−2s(n) =
∑
m|n

m1−2s,

and Ks(y) is the K-Bessel function defined by

Ks(y) =
1

2

∫ ∞

0

e
−y(t+t−1)

2 ts−1dt.

If y > 0, Ks(y) is well defined for all values of s. Moreover if y > 4, we have

|Ks(y)| ≤ e−y/2Kσ(2),

where s = σ + it.

Now note that each individual term of the series (9) has analytic continuation to the

whole complex plane, except that a0(y, s) has simple poles at s = 0 and s = 1. (Each of

the two terms in a0(y, s) has a pole at s = 1/2, but these cancel.) The convergence of the

Fourier expansion follows from the rapid decay of the K-Bessel functions. Thus in this

way we obtain the analytic continuation of Ẽ(z, s).

To get the functional equation, it is enough to observe that

an(y, s) = an(y, 1− s).

This is clear since nsσ−2s(n) = n−sσ2s(n) and K−s(y) = Ks(y).

Exercise 65 Show that the functional equation of Ẽ(z, s) implies the functional equation

of ζ(s).

Exercise 66 For even integer k ≥ 4, let

Gk(z) =
′∑

m,n

1

(mz + n)k
.

Gk(z) is called the Eisenstein series of weight k for SL2(Z). Show that for any γ =
(

a b
c d

)
∈

SL2(Z) we have

Gk(γz) = (cz + d)kGk(z).
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12. Modular L-functions

Let H denote the upper half-plane

H = {x + iy : y > 0}.

Let GL+
2 (R) be the multiplicative group of 2 × 2 matrices with real entries and positive

determinant. Then GL+
2 (R) acts on H as a group of analytic functions

γ : z 7→ az + b

cz + d
, γ =

(
a b

c d

)
∈ GL+

2 (R).

Let H∗ denote the union of H and the rational numbers Q together with a symbol ∞ (or

i∞). The rational numbers together with ∞ are called cusps.

Let f be an analytic function on H and k a positive integer. For

γ =

(
a b

c d

)
∈ GL+

2 (R)

define the stroke operator “|k” as

(f |kγ)(z) = (detγ)
k
2 (cz + d)−kf

(
az + b

cz + d

)
.

Sometimes, we simply write f |γ for f |kγ. Note that (f |γ)|σ = f |γσ.

Let Γ = SL2(Z) be the multiplicative group of 2 × 2 matrices with integer entries and

determinant 1 and let Γ′ be a subgroup of finite index of it. Suppose f is an analytic

function on H such that f |γ = f for all γ ∈ Γ′. Since Γ′ has finite index,(
1 1

0 1

)M

=

(
1 M

0 1

)
∈ Γ′

for some positive integer M . Hence f(z +M) = f(z) for all z ∈ H. So f can be expressed

as a function of qM = e
2πiz
M , which we will denote by f̃ . More precisely, there is a function

f̃ such that

f(z) = f̃(qM).

The function f̃ is analytic in the punctured disc 0 < |qM | < 1. If f̃ extends to a mero-

morphic (resp. an analytic) function at the origin, we say, by abuse of language, that f is
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meromorphic (resp. analytic) at infinity. This means that f̃ has a Laurent expansion in

the punctured unit disc. Therefore, f has a Fourier expansion at infinity in the form of

f(z) = f̃(qM) =
∞∑

n=−∞

âf (n)qn
M , qM = e

2πiz
M

where âf (n) = 0 for all n ≤ n0 (n0 ∈ Z) if f is meromorphic at infinity; and âf (n) = 0

for all n < 0 if f is analytic at infinity. We say that f vanishes at infinity if âf (n) = 0

for all n ≤ 0.

Let σ ∈ Γ. Then σ−1Γ′σ also has finite index in Γ and (f |σ)|γ = f |σ for all γ ∈ σ−1Γ′σ.

So f |σ also has a Fourier expansion at infinity. We say that f is analytic at the cusps if

f |σ is analytic at infinity for all σ ∈ Γ. We say that f vanishes at the cusps if f |σ vanishes

at infinity for all σ ∈ Γ.

Now for N ≥ 1, let

Γ0(N) =

{(
a b

c d

)
∈ SL2(Z); c ≡ 0 (mod N)

}
.

Note that Γ0(N) is of finite index in Γ.

A modular form of weight k and level N is an analytic function f on H such that

(i) f |γ = f for all γ ∈ Γ0(N);

(ii) f is analytic at the cusps.

Such a modular form is called a cusp form if it vanishes at the cusps.

The modular forms of weight k and level N form a finite dimensional vector space Mk(N)

and this has a subspace Sk(N) consisting of cusp forms. Note that since
(−1 0
0 −1

)
is the

same as
(
1 0
0 1

)
in Γ0(N), (i) shows that Mk(N) = {0} if k is odd. So from now on we

assume that k is even.

Also, one can define an inner product called Petersson inner product on Sk(N) by

〈f, g〉 =

∫∫
D0(N)

f(z)g(z)yk dxdy

y2

where D0(N) is a closed simply connected region in H with the following two properties:

(i) For any z ∈ H there is a γ ∈ Γ0(N) and a z1 ∈ D0(N) such that z = γ(z1);

(ii) If z1 = γ(z2) where z1, z2 ∈ D0(N) and γ ∈ Γ0(N), then z1 and z2 are on the

boundary of D0(N). D0(N) is called a fundamental domain for Γ0(N).
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Let f ∈ Sk(N). Since
(
1 1
0 1

)
∈ Γ0(N), the Fourier expansion of f at infinity is in the form

of

f(z) =
∞∑

n=1

âf (n)e(nz), e(z) = e2πiz.

Attached to f , we define the L-function associated to f by the Dirichlet series

L(f, s) =
∞∑

n=1

af (n)

ns

where af (n) =
âf (n)

n
k−1
2

for n = 1, 2, 3, · · · . We call âf (n) the n-th Fourier coefficient and

af (n) the n-th coefficient of f .

Exercise 67 (i) Show that f is a cusp form if and only if the Γ-invariant function g(z) =

yk/2|f(z)| is bounded on H.

(ii) Show that
∑

n≤x(âf (n))2 �f xk.

(iii) Show that âf (n) �f x
k
2 .

(iv) Show that L(f, s) is absolutely convergent for <(s) > 1 and so it represents an analytic

function on <(s) > 1.

Let

WN =

(
0 −1

N 0

)
.

This is not an element of Γ unless N = 1. However,

WNΓ0(N)W−1
N = Γ0(N).

Moreover, f |W 2
N = f . WN is called the Fricke ( or Atkin-Lehner) involution. Note that

since f 7→ f |WN defines a self-inverse linear operator on Sk(N), it decomposes the space

of cusp forms Sk(N) to two complementary subspaces corresponding to the eigenvalues

±1. Set

S+
k (N) =

{
f ∈ Sk(N); f |WN = (−1)

k
2 f
}

,

S−k (N) =
{

f ∈ Sk(N); f |WN = (−1)
k
2
+1f
}

,

and notice that Sk(N) = S+
k (N) ⊕ S−k (N). The following Theorem of Hecke guarantees

the analytic continuation of L(f, s) for f ∈ S±k (N).
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Theorem 68 (Hecke) Let f ∈ S±k (N). Then L(f, s) extends to an entire function and

Λ(f, s) =
(

2π√
N

)−s

Γ(s + k−1
2

)L(f, s) satisfies the following functional equation

Λ(f, s) = ±Λ(f, 1− s).

Proof We assume that f ∈ S+
k (N), the proof of the other case is similar.

One can formally deduce that for <(s) > 3
2

Λ(f, s) =

(
2π√
N

)−s

Γ

(
s +

k − 1

2

)
L(f, s) = (2π)

k−1
2 N

s
2

∫ ∞

0

f(iy)ys+ k−1
2
−1dy.

Since f(iy) � e−2πy as y → ∞, one can show that the above identities are in fact valid

on <(s) > 3
2
.

Next by breaking the integral at 1/
√

N and employing change of variable y = 1/Nt, we

have

Λ(f, s) = (2π)
k−1
2 N

s
2

(∫ 0

1/
√

N

f

(
i

Nt

)(
1

Nt

)s+ k−1
2
−1

(− 1

Nt2
)dt +

∫ 1/
√

N

0

f(iy)ys+ k−1
2
−1dy

)
.

Now note that

f

(
i

Nt

)
= f

(
−1

Nyi

)
= N− k

2 (Nyi)k(−1)
k
2 f(it).

Replacing this identity in the above integral yields

Λ(f, s) = (2π)
k−1
2

∫ ∞

1/
√

N

f(iy)y
k−1
2

(
N

1−s
2 y−s + N

s
2 y−(1−s)

)
dy.

Since f(iy) has exponential decay as y →∞, the above integral represents an everywhere

analytic function, and so this gives an analytic continuation of Λ(f, s) to the whole com-

plex plane. Since the integral is invariant under transformation s → 1 − s we have the

functional equation. �

The root number of L(f, s) is the sign appearing in the functional equation of L(f, s).

Corollary 69 Let f ∈ Sk(N). Then L(f, s) extends to an entire function.

Note Our definition of S+
k (N) and S−k (N) is slightly different from the conventional ones

that denote them as subspaces corresponding to the eigenvalues +1 and −1 for operator

WN , so for k
2

odd, our S±k (N) is the conventional S∓k (N). In our notation S±k (N) is the

set of cusp forms whose L-functions have root number ±1, respectively.
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Hecke Operators Let f ∈ Mk(N). Let p and q be primes such that p - N and q | N .3

The Hecke operators Tp and Uq are defined by

f | Tp = p
k
2
−1

[
f |

(
p 0

0 1

)
+

p−1∑
e=0

f |

(
1 e

0 p

)]
,

f | Uq = q
k
2
−1

[
q−1∑
e=0

f |

(
1 e

0 q

)]
.

We can show that f | Tp and f | Uq are also modular forms of weight k and level N , and

furthermore they are cusp forms if f is a cusp form.

Let f ∈ Sk(N). We will say that f is an eigenform if f is an eigenvector for all the Hecke

operators {Tp (p - N), Uq (q | N)}. The following theorem gives the main property of

eigenforms.

Theorem 70 (Hecke) The following conditions are equivalent.

(i) f is an eigenform and af (1) = 1.

(ii) Coefficients af (n) satisfy the following three properties:

(a) They are multiplicative, i.e., if g.c.d.(m, n) = 1, then af (mn) = af (m)af (n);

(b) For q | N , af (q
l) = af (q)

l;

(c) For p - N , af (p
l) = af (p)af (p

l−1)− af (p
l−2).

(iii) Lf (s) has a product of the form

Lf (s) =
∏
q|N

(
1− af (q)q

−s
)−1
∏
p-N

(
1− af (p)p−s + p−2s

)−1
,

which converges absolutely for <(s) > 1.

We call the product given in part (iii) of the above theorem an Euler product. Also any

f satisfying the above equivalent conditions is called a normalized eigenform. It can be

proved that if f is an eigenform, then af (1) 6= 0. So we can always assume that an

eigenform f is normalized.

The coefficients of modular forms satisfy some important inequalities. The following

statement, known as the Ramanujan-Petersson Conjecture, gives the best possible bounds

for the coefficients of cusp forms.

3Here a | b means that a is a divisor of b and a - b means that a is not a divisor of b.
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Theorem 71 (Deligne) (i) If f is a normalized eigenform, then

|af (n)| ≤ d(n)

where d(n) is the number of the divisors of n.

(ii) If f is a cusp form, then for any ε > 0,

af (n) � nε.

Now suppose f is a normalized eigenform. From the above inequality it follows that if

p - N , then af (p) can be written in the form of

af (p) = εp + ε̄p

where εp ∈ C and |εp| = 1. In fact, εp and ε̄p are the roots of the quadratic equation

1− af (p)x + x2 = 0.

Corollary 72 If f is a normalized eigenform, then its L-function has the following Euler

product, valid for <(s) > 1,

Lf (s) =
∏
p|N

(1− af (p)p−s)−1
∏
p-N

(1− εpp
−s)−1(1− ε̄pp

−s)−1.

Inspired by the above theorems we may think of finding a basis for Sk(N) consisting

of eigenforms for all the operators {Tp (p - N), Uq (q | N), WN}. We can show that

there exists a basis for Sk(N) consisting of eigenforms for all the operators {Tp (p - N)}
and the operator WN . The existence of such a basis is the consequence of the fact that

{Tp (p - N), WN} form a commuting family of Hermitian linear operators (with respect to

the Petersson inner product) and therefore from a theorem of linear algebra the space of

cusp forms is diagonalizable under these operators. Unfortunately the operators {Uq (q |
N)} are not Hermitian for Sk(N) and we can not diagonalize Sk(N) with respect to the

operators {Tp (p - N), Uq (q | N), WN}. However, we may find such a basis for a certain

subspace of Sk(N).

It can be proved that the Fourier coefficient af (n) of a normalized eigenform f is real.

This is a consequence of the fact that the operators {Tp (p - N)} are Hermitian, and the

fact that the coefficients af (q) (q | N) are real.

Oldforms and Newforms Atkin and Lehner constructed a subspace of Sk(N) that is

diagonalizable under the operators {Tp (p - N), Uq (q | N), WN}. More precisely, they
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showed that there exists a subspace of Sk(N) whose eigenspaces with respect to the Hecke

operators {Tp (p - N)} are one dimensional. We call such a property, for a subspace of

Sk(N), “multiplicity one”. Now since the operators {Uq (q | N), WN} commute with the

operators {Tp (p - N)}, an eigenform for the operators {Tp (p - N)} is an eigenform for

the operators {Uq (q | N), WN} too.

Let N ′ | N (N ′ 6= N) and suppose that the {gi} is a basis consisting of eigenforms for the

operators {Tp (p - N ′)}. It can be proved that if d is any divisor of N
N ′ then gi(dz) ∈ Sk(N).

Set

Sold
k (N) = span

{
gi(dz) : for any N ′ | N (N ′ 6= N), d | N

N ′

}
.

We call Sold
k (N) the space of oldforms. Its orthogonal complement under the Petersson

inner product is denoted by Snew
k (N) and the eigenforms in this space are called newforms.

So we have

Sk(N) = Sold
k (N)⊕ Snew

k (N).

Since the space of newforms has multiplicity one, the set of normalized newforms of weight

k and level N is uniquely determined. We denote it by FN . From the above discussion it

is clear that if f ∈ FN , Lf (s) satisfies a functional equation and has an Euler product on

the half-plane <(s) > 1.

13. Rankin-Selberg Convolution

Let z = x + iy be a point in the upper half-plane H, and let s = σ + it be a point in the

complex plane C. Let

f(z) =
∞∑

n=1

âf (n)e2πinz

and

g(z) =
∞∑

n=1

âg(n)e2πinz

be cusp forms of weight k and level N . We set

δ(f, g) = yk−2f(z)g(z).

Recall that for <(s) > 1, the L-functions attached to f and g are defined by

L(f, s) =
∞∑

n=1

af (n)

ns
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and

L(g, s) =
∞∑

n=1

ag(n)

ns

where

af (n) =
âf (n)

n
k−1
2

, ag(n) =
âg(n)

n
k−1
2

for n = 1, 2, 3, · · · .

Definition 73 The Rankin-Selberg convolution of L(f, s) and L(g, s) is defined by

L(f × g, s) =
∞∑

n=1

af (n)ag(n)

ns
.

The modified Rankin-Selberg convolution of L(f, s) and L(g, s) is defined by

L(f ⊗ g, s) = ζN(2s)L(f × g, s) = ζN(2s)
∞∑

n=1

af (n)ag(n)

ns

where ζN(s) =
∞∑

n=1
g.c.d.(n,N)=1

1

ns
=
∏
p-N

(
1− 1

ps

)−1

is the Riemann zeta function with the Eu-

ler p-factors corresponding to p | N removed.

The main goal of this section is to study the analytic properties of L(f × g, s). We

will see that the analytic continuation and the functional equation of the Epstein zeta

function E(z, s) will result in the analytic continuation and the functional equation for

the Rankin-Selberg convolution L(f × g, s).

In Lemma 75 we will relate the Rankin-Selberg convolution L(f×g, s) to a double integral

on a certain region of the upper half-plane. To do this we need the following lemma.

Lemma 74 For any fixed y > 0,∫ 1
2

− 1
2

f(z)g(z)dx =
∞∑

n=1

âf (n)âg(n)e−4πny.

Proof We have∫ 1
2

− 1
2

f(z)g(z)dx =

∫ 1
2

− 1
2

(
∞∑

m=1

âf (m)e2πim(x+iy)

∞∑
n=1

âg(n)e2πin(x+iy)

)
dx

=

∫ 1
2

− 1
2

(
∞∑

m=1

∞∑
n=1

âf (m)âg(n)e2πi(m−n)xe−2π(m+n)y

)
dx.
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Interchanging the order of summation and integration yields∫ 1
2

− 1
2

f(z)g(z)dx =
∞∑

m=1

∞∑
n=1

(
âf (m)âg(n)e−2π(m+n)y

∫ 1
2

− 1
2

e2πi(m−n)xdx

)

=
∞∑

n=1

âf (n)âg(n)e−4πny.

The proof is complete. �

Lemma 75 For <(s) > 1 we have the following integral representation for the Rankin-

Selberg convolution L(f × g, s)

(4π)−s−k+1Γ(s + k − 1)L(f × g, s) =

∫∫
S

ys+k−2f(z)g(z)dxdy

=

∫∫
S

ysδ(f, g)dxdy

where S is the strip |x| ≤ 1
2

and y > 0.

Proof We have

(4π)−s−k+1Γ(s + k − 1)L(f × g, s) = (4π)−s−k+1Γ(s + k − 1)
∞∑

n=1

af (n)ag(n)

ns

=
∞∑

n=1

{
âf (n)âg(n)

nk−1

(4π)−s−k+1

ns
Γ(s + k − 1)

}

=
∞∑

n=1

{
âf (n)âg(n)(4πn)−s−k+1Γ(s + k − 1)

}
.

Note that by the change of variable t 7→ 4πny, Γ(s + k − 1) can be written as

Γ(s + k − 1) = (4πn)s+k−1

∫ ∞

0

e−4πnyys+k−2dy.

So

(4π)−s−k+1Γ(s + k − 1)L(f × g, s) =
∞∑

n=1

{
âf (n)âg(n)

∫ ∞

0

e−4πnyys+k−2dy

}

=

∫ ∞

0

ys+k−2

{
∞∑

n=1

âf (n)âg(n)e−4πny

}
dy.
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Now by applying Lemma 74 we get

(4π)−s−k+1Γ(s + k − 1)L(f × g, s) =

∫ ∞

0

ys+k−2

{∫ 1
2

− 1
2

f(z)g(z)dx

}
dy

=

∫∫
S

ys+k−2f(z)g(z)dxdy

=

∫∫
S

ysδ(f, g)dxdy.

This completes the proof. �

Our next step is to rewrite the double integral in the statement of the previous lemma as

a new integral on a fundamental domain for Γ0(N).

Lemma 76 We have∫∫
S

ysδ(f, g)dxdy =

∫∫
D0(N)

ysδ(f, g)FN(z, s)dxdy

where

FN(z, s) = 1 +
∞∑

m=1

∞∑
n=−∞

g.c.d.(n,mN)=1

1

|mNz + n|2s

and D0(N) is a fundamental domain for Γ0(N).

Proof Let

Γ∞ = {γ ∈ Γ : γ∞ = ∞} =

{(
1 b

0 1

)
: b ∈ Z

}
.

Γ∞ is a subgroup of Γ and it is clear that the strip S = {(x, y) : |x| ≤ 1
2
, y > 0} is a

fundamental domain for Γ∞. For any two matrices γ=
(

a b
c d

)
and γ′=

(
a′ b′

c′ d′

)
in GL2(Z), the

right cosets Γ∞γ and Γ∞γ′ are equal if and only if (c, d) = ±(c′, d′). So the right cosets of

Γ∞ in Γ0(N) are in one to one correspondence with the pairs (c, d) where c ≥ 0. Therefore

we can choose a set of representative T for the right cosets of Γ∞ in Γ0(N) as follows:

T = {(0, 1)} ∪ {(c, d) : c > 0, N |c, (c, d) = 1} .

We claim that for any pair (c, d) in T , there is a unique transformation

γc,d : z1 → z =
az1 + b

cz1 + d
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that maps D0(N) into S. This is true for the pair (0, 1). For other pairs in T , note that

since ∞ ∈ D0(N), ∣∣∣a
c

∣∣∣ = |γc,d(∞)| ≤ 1

2
.

Since ad− bc = 1, equality holds only if c = 2, a = ±1. We consider two cases.

If c 6= 2, then there is exactly one solution in a, b of the equation ad− bc = 1 for which∣∣∣a
c

∣∣∣ < 1

2
. Since γc,dD0(N) has the unique cusp

a

c
in S, and this cusp is not on either of

the lines |x| = 1
2
, the whole of γc,dD0(N) lies in S.

If c = 2, then a = ±1. Suppose that, for example, γc,d takes ∞ to the cusp −1
2

and takes

D0(N) into S. Then the transformation γc,d(z1) + 1 has the same c, d and maps D0(N)

outside S (touching the line x = 1
2
), and therefore corresponds to the other solution.

Hence exactly one of the transformations γc,d(z1) or γc,d(z1) + 1 has the desired property.

The claim is proved.

This shows that the strip S can be written as the disjoint union of γc,dD0(N)’s

S =
⋃

(c,d)∈T

γc,dD0(N).

Therefore, we have∫∫
S

ysδ(f, g)dxdy =
∑

(c,d)∈T

∫∫
γc,dD0(N)

ysδ(f, g)dxdy.

Now let z1 = x1 + iy1. Changing variable z1 7→ z =
az1 + b

cz1 + d
yields∫∫

S

ysδ(f, g)dxdy =
∑

(c,d)∈T

∫∫
D0(N)

(
y1

|cz1 + d|2

)s

δ(f, g)dx1dy1

=

∫∫
D0(N)

ys
1δ(f, g)

∑
(c,d)∈T

1

|cz1 + d|2s

 dx1dy1.

By considering the definition of T in the last integral, we have

∫∫
S

ysδ(f, g)dxdy =

∫∫
D0(N)

ysδ(f, g)

1 +
∞∑

c=1
N|c

∞∑
d=−∞

g.c.d.(d,c)=1

1

|cz + d|2s

 dxdy

=

∫∫
D0(N)

ysδ(f, g)FN(z, s)dxdy.

The proof is complete. �
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Now we will show that FN(z, s) has a representation in terms of the Epstein zeta function.

First we recall the definition of the Möbius function.

The Möbius function µ(n) is defined by

µ(n) =


1 if n = 1

(−1)r if n = p1p2 · · · pr, pi 6= pj

0 otherwise.

Lemma 77 We have

2ζN(2s)FN(z, s) =
∑
d|N

µ(d)

d2s
E(

N

d
z, s).

Proof The idea is to evaluate the double sum

S =
∑
m,n

(n,N)=1

′ 1

|mNz + n|2s

in two different ways.

On one hand we have

S = 2
∞∑

n=1
g.c.d.(n,N)=1

1

n2s
+

∞∑
m=−∞

m6=0

∞∑
n=−∞

g.c.d.(n,N)=1

1

|mNz + n|2s

= 2ζN(2s) + 2
∞∑

m=1

∞∑
n=−∞

1

|mNz + n|2s

= 2ζN(2s) + 2
∞∑

k=1

∞∑
m=1

∞∑
n=−∞

g.c.d.(n,m)=k

1

|mNz + n|2s
.

Note that since g.c.d.(n, N) = 1, then g.c.d.(n,m) = g.c.d.(n, mN). So

S = 2ζN(2s) + 2
∞∑

k=1

∞∑
m=1

∞∑
n=−∞

g.c.d.(n,mN)=k

1

|mNz + n|2s

= 2ζN(2s) + 2ζN(2s)
∞∑

m=1

∞∑
n=−∞

g.c.d.(n,mN)=1

1

|mNz + n|2s

= 2ζN(2s)FN(z, s).
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On the other hand by applying the classical identity

∑
d|n

µ(d) =

{
1 if n = 1

0 otherwise
,

we have

S =
∑
m,n

′

 1

|mNz + n|2s

∑
d|g.c.d.(n,N)

µ(d)


=

∑
d|N

{
µ(d)

∑
m,n

′ 1

|mNz + n1d|2s

}

where n1 =
n

d
. So

S =
∑
d|N

{
µ(d)

d2s

∑
m,n1

′ 1

|mN
d
z + n1|2s

}

=
∑
d|N

{
µ(d)

d2s
E

(
N

d
z, s

)}
.

This completes the proof. �

We are ready to prove the main result of this lecture.

Theorem 78 (Rankin) The Rankin-Selberg convolution L(f × g, s) has the following

properties:

(i) The series

L(f × g, s) =
∞∑

n=1

af (n)ag(n)

ns

is absolutely and uniformly convergent for <(s) > 1.

(ii) L(f × g, s) has a meromorphic continuation to the whole complex plane.

(iii) L(f × g, s) is analytic at s = 1 if 〈f, g〉 = 0. Otherwise, it has a simple pole at point

s = 1 with the residue

r =
12(4π)k−1

N(k − 1)!
∏

p|N(1 + 1
p
)

∫∫
D0(N)

δ(f, g)dxdy

=
12(4π)k−1

N(k − 1)!
∏

p|N(1 + 1
p
)
〈f, g〉.
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(iv) Let

L(f ⊗ g, s) = ζN(2s)L(f × g, s) = ζN(2s)
∞∑

n=1

af (n)ag(n)

ns

be the modified Rankin-Selberg convolution and for <(s) > 1, let

Φ(s) =

(
2π√
N

)−2s

Γ(s)Γ(s + k − 1)L(f ⊗ g, s)

=

(
2π√
N

)−2s

Γ(s)Γ(s + k − 1)ζN(2s)L(f × g, s).

Then both L(f ⊗ g, s) and Φ(s) are entire functions if 〈f, g〉 = 0. Otherwise, if N = 1

they are analytic everywhere except that L(f ⊗ g, s) has a simple pole at point s = 1 and

Φ(s) has simple poles at points s = 0 and 1, and if N > 1 they are analytic everywhere

except that L(f ⊗ g, s) has a simple pole at point s = 1 and Φ(s) has a simple pole at

s = 1.

(v) If N = 1, then the function Φ(s) is invariant under the replacing of s by 1− s, i.e.,

Φ(s) = Φ(1− s).

Proof (i) Suppose that σ = <(s) ≥ 1 + δ > 1. By Deligne’s bound, we know that

|af (n)|, |ag(n)| � nδ/4. So,

∞∑
n=1

∣∣∣∣∣af (n)ag(n)

ns

∣∣∣∣∣ �
∞∑

n=1

nδ/2

nσ

≤
∞∑

n=1

1

n1+δ/2

< +∞.

This completes the proof of (i).

(ii) & (iv) By Lemma 75 and Lemma 76, we have

Φ(s) =

(
2π√
N

)−2s

Γ(s)Γ(s + k − 1)L(f ⊗ g, s)

=

(
2π√
N

)−2s

Γ(s)ζN(2s)(4π)s+k−1

∫∫
S

ysδ(f, g)dxdy

= (4π)k−1

(
N

π

)s

Γ(s)ζN(2s)

∫∫
D0(N)

ysδ(f, g)FN(z, s)dxdy.
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Applying Lemma 77 in the previous integral yields

Φ(s) =
(4π)k−1

2

(
N

π

)s

Γ(s)

∫∫
D0(N)

ysδ(f, g)
∑
d|N

(
µ(d)

d2s
E

(
N

d
z, s

))
dxdy

=
(4π)k−1

2

∫∫
D0(N)

δ(f, g)
∑
d|N

(
µ(d)

ds

(
Ny

dπ

)s

Γ(s)E

(
N

d
z, s

))
dxdy.

Finally we obtain

Φ(s) =
(4π)k−1

2

∫∫
D0(N)

δ(f, g)
∑
d|N

(
µ(d)

ds
ξ

(
N

d
z, s

))
dxdy

=
(4π)k−1

2

∑
d|N

µ(d)

ds

∫∫
D0(N)

(
δ(f, g)

∫ ∞

1

Θ(ω)(ωs−1 + ω−s) dω

)
dxdy

+
(4π)k−1

2s(s− 1)

∑
d|N

µ(d)

ds

∫∫
D0(N)

δ(f, g)dxdy. (10)

Note that the integral in the first summand of the right-hand side of (10) is dominated

by a finite sum of integrals of the form∫∫
D0(N)

yλδ(f, g)

(∫ ∞

1

e−aωωbdω

)
dxdy

for λ ∈ R. These integrals are all convergent, because f and g vanish at all the cusps of

D0(N). Therefore the first summand in (10) is an entire function of s. This proves (ii)

and (iv).

(iii) If we multiply both sides of (10) by s− 1 and then let s → 1+, we get

lim
s→1+

(s− 1)

(
2π√
N

)−2s

Γ(s)Γ(s + k − 1)ζN(2s)L(f × g, s)

=
(4π)k−1

2

∑
d|N

µ(d)

d

∫∫
D0(N)

δ(f, g)dxdy

and therefore

r = Res(L(f × g, s), 1)

=
12(4π)k−1

N(k − 1)!
∏

p|N(1 + 1
p
)

∫∫
D0(N)

δ(f, g)dxdy.
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This completes the proof of part (iii).

(v) Let N = 1. We can simplify (10) to

Φ(s) =
(4π)k−1

2

∫∫
D0(1)

(
δ(f, g)

∫ ∞

1

Θ(ω)(ωs−1 + ω−s)dω

)
dxdy

+
(4π)k−1

2s(s− 1)

∫∫
D0(1)

δ(f, g)dxdy.

At a glance we realize that the right-hand side of this equality is invariant under the

replacing of s with 1− s. Therefore

Φ(s) = Φ(1− s).

In other words, L(f × g, s) satisfies the following functional equation

(2π)−2sΓ(s)Γ(s + k − 1)ζN(2s)L(f × g, s)

= (2π)2s−2Γ(1− s)Γ(k − s)ζN(2− 2s)L(f × g, 1− s).

The proof of the theorem is complete. �

Exercise 79 Without appealing to Deligne’s bound show that L(f × g, s) is absolutely

convergent for <(s) > 1.

Next we will study the Euler product of the Rankin-Selberg convolution of two modular

L-functions. Let f(z) =
∑∞

n=1 âf (n)e2πinz be a cusp form for Γ0(N), and let Lf (s) =∑∞
n=1 af (n)n−s be its associated L-function. We know that Lf (s) has an Euler product

if and only if f(z) is an eigenform. The next proposition will establish the Euler product

of the modified Rankin-Selberg convolution of the modular L-functions associated to two

eigenforms f and g. To derive the desired Euler product we need the following lemma.

Lemma 80 Let f and g be two normalized eigenforms in Γ0(N), and let

Lf (s) =
∏
p|N

(
1− af (p)p−s

)−1
∏
p-N

(
1− εpp

−s
)−1 (

1− ε̄pp
−s
)−1

and

Lg(s) =
∏
p|N

(
1− ag(p)p−s

)−1
∏
p-N

(
1− δpp

−s
)−1 (

1− δ̄pp
−s
)−1

49



be their associated L-functions, where εp + ε̄p = af (p), δp + δ̄p = ag(p) and |εp| = |δp| = 1.

Then, for <(s) > 1 and p - N , we have the following identity

(1− p−2s)−1

∞∑
k=0

af (p
k)ag(p

k)

pks

=
(
1− εpδpp

−s
)−1 (

1− εpδ̄pp
−s
)−1 (

1− ε̄pδpp
−s
)−1 (

1− ε̄pδ̄pp
−s
)−1

.

Proof Let p - N . We recall that the coefficients af (n) and ag(n) satisfy the following:

af (p
k) = af (p)af (p

k−1)− af (p
k−2),

ag(p
k) = ag(p)ag(p

k−1)− ag(p
k−2).

Applying the above identities repeatedly yields

af (p
k)ag(p

k)− af (p)af (p
k−1)ag(p)ag(p

k−1) +
(
af (p)2 + ag(p)2 − 2

)
af (p

k−2)ag(p
k−2)

−af (p)af (p
k−3)ag(p)ag(p

k−3) + af (p
k−4)ag(p

k−4) = 0. (11)

Also by using the above relations between the coefficients af (p), ag(p) and the complex

units εp, δp, we have(
1− εpδpp

−s
) (

1− εpδ̄pp
−s
) (

1− ε̄pδpp
−s
) (

1− ε̄pδ̄pp
−s
)

= 1− af (p)ag(p)p−s +
(
af (p)2 + ag(p)2 − 2

)
p−2s − af (p)ag(p)p−3s + p−4s. (12)

Putting together (11) and (12), and following a tedious calculation, we arrive at

(
1− εpδpp

−s
) (

1− εpδ̄pp
−s
) (

1− ε̄pδpp
−s
) (

1− ε̄pδ̄pp
−s
) ∞∑

k=0

af (p
k)ag(p

k)

pks

= 1− 1

p2s
,

which is equivalent to the statement of the lemma.

This completes the proof. �
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Proposition 81 The modified Rankin-Selberg convolution of the modular L-functions as-

sociated to two normalized eigenforms f and g has the following Euler product

L(f ⊗ g, s) =
∏
p|N

(
1− af (p)ag(p)p−s

)−1

×
∏
p-N

(
1− εpδpp

−s
)−1 (

1− εpδ̄pp
−s
)−1 (

1− ε̄pδpp
−s
)−1 (

1− ε̄pδ̄pp
−s
)−1

.

Proof First of all we recall that the coefficients of eigenforms are multiplicative and

real. So we have

L(f ⊗ g, s) = ζN(2s)
∏

all primes

(
∞∑

k=0

af (p
k)ag(p

k)

pks

)
.

For p | N , since af (p
k) = af (p)k and ag(p

k) = ag(p)k, we have

∞∑
k=0

af (p
k)ag(p

k)

pks
=

∞∑
k=0

af (p)kag(p)k

pks

=
(
1− af (p)ag(p)p−s

)−1
.

Using this and applying the previous lemma, we attain the result. �
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Lecture 4

Applications

In the previous lecture we proved that the Rankin-Selberg convolution of two modular

L-functions exists. In this final lecture, we employ this fact together with the general

theorems of Lecture 2 to deduce some results regarding the distribution and the size of

Fourier coefficients of modular forms.

14. The Prime Number Theorem

Theorem 82 (Wiener-Ikehara Tauberian Theorem) Let f(s) =
∑∞

n=1 an/n
s, with

an ≥ 0, and g(s) =
∑∞

n=1 bn/n
s be two Dirichlet series with |bn| ≤ an for all n. Assume

that f(s) and g(s) extend analytically to <(s) ≥ 1 except possibly at s = 1 where they

have simple poles with residues R and r (which may be zero) respectively. Then∑
n≤x

bn ∼ rx,

as x →∞.

In this lecture f(z) =
∑∞

n=1 λ̂f (n)e2πinz is a normalized eigenform of weight k and level

N and λf (n) = λ̂f (n)/n
k−1
2 is the n-th coefficient of f , unless otherwise stated.

Proposition 83 Let f be a normalized eigenform of weight k and level N . Then∑
n≤x

|λf (n)|2 ∼ rx,

where

r =
12(4π)k−1

N(k − 1)!
∏

p|N(1 + 1
p
)
〈f, f〉,

52



and
∞∑

n=1

bf (n) ∼ π2

6

∏
p|N

(1− 1

p2
)rx,

where

bf (n) =
∑

n=d2m
(d,N)=1

|λf (m)|2.

Proof This is a direct corollary of the Tauberian Theorem and calculation of the

residues of L(f × f, s) and L(f ⊗ f, s) at s = 1. �

Proposition 84 Let f be a normalized eigenform of level N and weight k. Then∑
p≤x

λf (p) log p = o(x).

Proof With notation of Lecture 2, we have

−L′

L
(f, s) =

∞∑
n=1

Λf (n)

ns
,

where Λf (n) = (α1(p)k + α2(p)k) log p if n = pk, and Λf (n) = 0 otherwise. Since

Ramanujan-Petersson conjecture is true in this case (Theorem 71), we have

|Λf (n)| ≤ 2 log n.

By non-vanishing result of Lecture 2, −L′

L
(f, s) is analytic at s = 1. Also − ζ′

ζ
(s) =∑∞

n=1
log n

n
has an analytic continuation to the whole complex plane with an exception of

a simple pole at s = 1. So by the Tauberian Theorem∑
n≤x

Λf (n) =
∑
p≤x

λf (p) log p +
∑
pα≤x
α≥2

Λf (p
α) = o(x). (13)

Now let

θ(x) =
∑
p≤x

log p.

(This should not be confused with the theta function.) Then we have

|
∑
pα≤x
α≥2

Λf (p
α)| ≤ 2

∑
pα≤x
α≥2

log p = θ(x1/2) + · · ·+ θ(x1/r),

where r is as large as log x. Since θ(x) ≤ x log x, we conclude that

|
∑
pα≤x
α≥2

Λf (p
α)| �

√
x log2 x.

Now applying this bound in (13) implies the result. �
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15. The Prime Number Theorem With the Remainder

Complex Analysis 85 ( Perron’s formula ) Let x > 0, a > 0, T > 0. Let f(s) =∑∞
n=1

an

ns be a Dirichlet series absolutely convergent in <(s) > a − ε. Then if x is a

non-integer ∑
n<x

an =
1

2πi

∫ a+iT

a−iT

f(s)
xs

s
ds + O

(
xa

T

∞∑
n=1

|an|
na| log x

n
|

)
.

Exercise 86 Show that

∞∑
n=1

log n

na| log x
n
|

= O

(
1

(a− 1)2
+ x1−a log2 x

)
,

where 1 < a ≤ 2 and x is a half-integer (i.e. x = 2k+1
2

for an integer k ). The implied

constant is absolute.

Exercise 87 For t > 1 and 1− c

log (Nk(|t|+ 3))
≤ σ ≤ 1 +

c

log (Nk(|t|+ 3))
, we have

L′

L
(f, σ + it) � log (Nk(|t|+ 3)).

Here c is the constant coming from the almost zero-free region.

Theorem 88 (Moreno) Let f be a normalized eigenform of level N and weight k. Then

there exists an absolute constant c > 0 such that L(f, s) has no zero in the region

σ ≥ 1− c

log (Nk(|t|+ 3))

except possibly one simple real zero β < 1. Moreover,

∑
p≤x

λf (p) log p = −xβ

β
+ O(

√
Nk x exp(−c1

√
log x))

for x ≥ 2, where c1 > 0 and the implied constant is absolute.

Proof Since f is a normalized newform, L(f, s) is self-dual. So the first part of the

theorem is a simple corollary of almost zero-free region theorem in Lecture 2 (Theorem

49).
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For the proof of the asymptotic formula (upper bound), let x be a half-integer, T ≥ 3,

and a = 1 +
c

log (NkT )
. So by Perron’s formula, the bound |Λf (n)| ≤ 2 log n (see Lecture

2) and Exercise 86, we have∑
n≤x

Λf (n) =
1

2πi

∫ a+iT

a−iT

−L′

L
(f, s)

xs

s
ds + O

(
xa

T

(
1

(a− 1)2
+ x1−a log2 x

))
.

Next let b = 1− c

log (NkT )
, where c is the constant coming from the first part of theorem.

We consider a rectangle RT = R1 ∪ (−R2) ∪ (−R3) ∪R4, where

R1 : s = a + it, − T ≤ t ≤ T,

R2 : s = σ + iT, b ≤ σ ≤ a,

R3 : s = b + it, − T ≤ t ≤ T,

R4 : s = σ + iT, b ≤ σ ≤ a.

Since L′

L
(f, s) has a simple pole of residue 1 at s = β (in case the exceptional zero exists),

we have∑
n≤x

Λf (n) = −xβ

β
− 1

2πi
(

∫
−R2

+

∫
−R3

+

∫
R4

) + O

(
xa

T
(

1

(a− 1)2
+ x1−a log2 x)

)
. (14)

Now by employing Exercise 87 we have

1

2πi

∫
−R2

−L′

L
(f, s)

xs

s
ds � xa

T
.

A similar bound holds for 1
2πi

∫
R4

. Also

1

2πi

∫
−R3

−L′

L
(f, s)

xs

s
ds � xb log (NkT ) log T .

Applying these bounds in (14) yields∑
n≤x

Λf (n) = −xβ

β
+ O(xb log (NkT ) log T +

xa

T
+

xa

T (a− 1)2
+

x log2 x

T
).

Now let T = xa−b = x
2c

log (NkT ) . We have∑
n≤x

Λf (n) = −xβ

β
+ O(xb log (NkT ) log T + xb log2 (NkT ) + x1−axb log2 x)

= −xβ

β
+ O(xb log2 (NkT ) log2 T )

= −xβ

β
+ O(

√
Nk x exp (−c1

√
log x)),
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for some c1 > 0. This implies that∑
p≤x

λf (p) log p = −xβ

β
+ O(

√
Nkx exp(−c1

√
log x)).

�

Note The asymptotic formula in the previous theorem in fact is an upper bound. Alter-

nately we can write the formula as∑
p≤x

λf (p) log p = O(
√

Nkx exp(−c1

√
x)),

where the implied constant depends on β. Since the position of the exceptional zero is

not clear, the implied constant is not effectively computable.

Note It is proved by Hoffstein and Ramakrishnan that there is no exceptional zero for

normalized newforms. So we can drop the term −xβ

β
in Moreno’s theorem.

16. An Effective Lower Bound

Exercise 89 Show that

1

2πi

∫
(2)

xs

s(s + 1) · · · (s + r)
ds =

{
1
r!
(1− 1

x
)r, x > 1;

0, 0 < x ≤ 1.

Note that

∫
(2)

is an abbreviation of

∫ 2+i∞

2−i∞
.

Proposition 90 (Hoffstein and Lockhart) Let L(f, s) ∈ IK be an L-function with

positive coefficients and a single simple pole at s = 1 of residue r. Suppose that L(f, s)

satisfies a growth condition on the line <(s) = 1/2 of the form

|L(f,
1

2
+ it)| ≤ M(|t|+ 3)B

for some constant B. If L(f, s) has no real zeros in the range

1− 1

log M
< σ < 1,

then there exists an effective constant c = c(B) > 0 such that

1

r
≤ c log M.
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Proof Let 1
2

< β < 1 and let r be a fixed integer greater than B. (We should not

confuse β with the exceptional zero.) Using Exercise 89 and the absolute convergence of

L(f, s + β) in the range of integration, we get

1

2πi

∫
(2)

L(f, s + β)xs

s(s + 1) · · · (s + r)
ds =

1

r!

∑
n<x

λf (n)

nβ
(1− n

x
)r.

Since λf (n) are non-negative, and λf (1) = 1, we have for all x ≥ 2,

1 � 1

2πi

∫
(2)

L(f, s + β)xs

s(s + 1) · · · (s + r)
ds. (15)

From the growth condition on the line <(s) = 1
2

and the Phragmen-Lindelöf principle, we

have

L(f, σ + it) = O(|t|B)

for all 1
2
≤ σ ≤ 3 and t ≥ 1. Thus we can shift the line of integration to <(s) = 1

2
−β < 0,

picking up residues at s = 0, 1− β. Using the bound on the line <(s) = 1
2
, the right-hand

side of (15) becomes

rx1−β

(1− β)(2− β) · · · (r + 1− β)
+

L(f, β)

r!
+ O(Mx

1
2
−β).

Taking x = MC , for C a sufficiently large constant, we get

1 � rMC(1−β)

1− β
+ L(f, β). (16)

Now we choose

β = 1− 1

log M
.

Since L(f, s) has a simple pole at s = 1, and is positive for σ > 1, we must have

L(f, β) ≤ 0. Then (16) yields
1

r
� log M

as desired. �

Note If L(f, s) ∈ IK the growth condition on the line <(s) = 1
2

will be satisfied if we

choose M as a suitable power of the conductor of L(f, s) and the product of its local

factor at ∞.
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Definition 91 The symmetric square L-function associated to a normalized eigenform f

of weight k and level N is defined as

L(sym2 f, s) =
L(f ⊗ f, s)

ζN(s)
.

From Rankin-Selberg theory it is clear that L(sym2 f, s) has a meromorphic continuation

to C. In 1975 Shimura proved that the symmetric square L-function in fact has an analytic

continuation to the whole complex plane.

For square-free N and newform f , the symmetric square L-function associated to f sat-

isfies a functional equation. Let

L∞(sym2, s) = π−3s/2Γ

(
s + 1

2

)
Γ

(
s + k − 1

2

)
Γ

(
s + k

2

)
,

and let

Λ(sym2 f, s) = N sL∞(sym2, s)L(sym2, s).

Then the symmetric square L-function satisfies

Λ(sym2 f, s) = Λ(sym2 f, 1− s).

Exercise 92 Show that L(sym2 f, s) has an Euler product on <(s) > 1.

Theorem 93 (Goldfeld, Hoffstein and Lieman) Let f be a normalized newform of

square-free level N and weight k. Then there exists an absolute constant c > 0 such that

L(sym2f, s) has no zero in the region

σ ≥ 1− c

log (kN)
.

Proof Consider the L-function

L(g, s) = ζ(s)L(sym2 f, s)2L(sym2 f⊗sym2 f, s) = ζ(s)L(sym2 f, s)3L(sym2 f ⊗ sym2 f, s)

L(sym2 f, s)
.

The last L-function is a special case of the symmetric square of a cusp form on GL(3) and

has been shown by Bump and Ginzburg to have a simple pole at s = 1. Hence L(g, s)

has a pole of order 2 at s = 1, whereas any real zero of L(sym2 f, s) is a zero of L(g, s) of

order ≥ 3. By local computations one checks that Λg(n) ≥ 0 for (n, q(g)) = 1, hence the

result follows from Goldfeld, Hoffstein and Lieman’s Lemma in Lecture 2. �
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Exercise 94 For <(s) > 0 define

f(s) =
∞∑

n=1

(−1)n−1

ns
.

(i) Show that f(s) = (1− 1
2s−1 )ζ(s) for <(s) > 1.

(ii) From part (i) deduce a meromorphic continuation of ζ(s) into the half-plane <(s) > 0.

(iii) Show that ζ(σ) < 0 for 0 < σ < 1.

(iv) From here conclude that L(f ⊗ f, σ) 6= 0, in the region given in the previous theorem.

Corollary 95 (Hoffstein and Lockhart) Let f be a normalized newform of square-free

level N and weight k. Then there exists an effective constant c (depends only on k) such

that

〈f, f〉 = ‖f‖2 ≥ c
N

log N
.

Proof This is immediate from the previous exercise and Hoffstein and Lockhart’s propo-

sition. Note that the residue of L(f ⊗ f, s) at s = 1 is

φ(N)π(4π)k

2N2(k − 1)!
〈f, f〉.

�

Exercise 96 Let f be a newform of square-free level N and weight k with Petersson norm

‖f‖ = 1. Let ρ(1) be the first Fourier coefficient of f . Then prove that there exists an

effective constant c (depends only on k) such that

|ρ(1)|2 ≤ c
log N

N
.

17. Bounds for the Fourier Coefficients of Cusp forms

Theorem 97 ( Landau [also Chandrasekharan and Narasimhan] ) Let L(f, s) =∑∞
n=1

λf (n)

ns be a Dirichlet series with non-negative coefficients λf (n) and converging for

<(s) sufficiently large. Assume that L(f, s) has a meromorphic continuation to C with at

most poles of finite order at s = 0, 1; assume also that L(f, s) is of finite order in the half

plane <(s) ≥ −1, and it satisfies a functional equation of the form

q(f)sγ(f, s)L(f, s) = ε(f)q(f)1−sγ(f, 1− s)L(f, 1− s)
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for some constants ε(f), and q(f) > 0, where

γ(f, s) =
d∏

i=1

Γ(αis + βi),

for some d ≥ 1 and αi ≥ 0, βi ∈ C for 1 ≤ i ≤ d. Setting η =
∑d

i=1 αi, one has∑
n≤x

λf (n) = Pr−1(log x)x + O(x
2η−1
2η+1 logr−1 n),

where r is the order of pole of L(f, s) at s = 1 and Pr−1 is a polynomial of degree r − 1

that depends only on L(f, s). The implied constant also depends only on L(f, s).

Theorem 98 (Rankin) Let f be a normalized eigenform of weight k and level 1. Then∑
n≤x

|λf (n)|2 = cfx + O(x
3
5 ),

where

cf =
12(4π)k−1

(k − 1)!
〈f, f〉.

Proof Let bf (n) denote the coefficients of L(f ⊗ f, s). Since

L(f × f, s) =
1

ζ(2s)
L(f ⊗ f, s),

we have

|λf (n)|2 =
∑

n=d2m

µ(d)bf (m), (17)

where µ(d) denotes the Möbius function. Now one can check that L(f ⊗ f, s) satisfies the

conditions of Landau’s Theorem (Theorem 97) and so∑
n≤x

bf (n) =
π2

6
cfx + O(x

3
5 ).

Now from Proposition 83, we have

cf =
12(4π)k−1

(k − 1)!
〈f, f〉.
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Next from (17) and the above asymptotic formula we have∑
n≤x

|λf (n)|2 =
∑
n≤x

∑
n=d2m

µ(d)bf (m)

=
∑

d2m≤x

µ(d)bf (m)

=
∑

m≤ x
d2

bf (m)
∑

d≤
√

x

µ(d)

=
∑

d≤
√

x

µ(d)

(
π2

6
cf

x

d2
+ O

(
(
x

d2
)

3
5

))

= cfx
π2

6

∑
d≤
√

x

µ(d)

d2
+ O(x

3
5

∑
d≤
√

x

1

d
6
5

)

= cfx + O(x
3
5 ).

�

The following is a direct corollary of the previous theorem. Note that f(z) =
∑∞

n=1 τ(n)e2πinz

is a normalized eigenform of weight 12 and level 1.

Corollary 99 (Rankin ) λf (n) = Of (n
3
10 ) and τ(n) = O(n

29
5 ).

Exercise 100 Let L(f, s) ∈ IK be an L-function of degree d. Also assume that L(f⊗f, s)

exists and λf⊗f (n) ≥ 0 for (n, q(f)) 6= 1. Then show that for the local parameters αi(p)

for unramified prime p we have

|αi(p)| ≤ p
1
2
− 1

d2+1 .
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