
SIMULTANEOUS NON-VANISHING OF TWISTS

AMIR AKBARY

Abstract. Let f be a newform of even weight k, level M and character ψ

and let g be a newform of even weight l, level N and character η. We give a
generalization of a theorem of Elliott, regarding the average values of Dirichlet

L-functions, in the context of twisted modular L-functions associated to f and

g. Using this result, we find a lower bound in terms of Q for the number
of primitive Dirichlet characters modulo prime q ≤ Q whose twisted product

L-functions Lf,χ(s0)Lg,χ(s0) are non-vanishing at a fixed point s0 = σ0 + it0
with 1

2
< σ0 ≤ 1.

1. Introduction

Let Lχ(s) =
∑∞
n=1 χ(n)n−s be the Dirichlet L-function associated to a Dirichlet

character χ. In [E], Elliott proved the following.

Theorem Let Q ≥ 2 be a real number, and s0 = σ0 + it0 a complex number in the
half-plane σ0 >

1
2 . Then we have∑
p≤Q

∑
χ6=χ0

|Lχ(s0)|2 =
Q2

2 logQ
ζ(2σ0) +O

(
Q2

(logQ)2

)
as Q→∞. Here the inner sum is taken over all non-principal characters (mod p),
for each prime p, and the outer sum over all prime numbers not exceeding Q.

Our first goal in this paper is to give a generalization of this theorem in the con-
text of twisted modular L-functions. Let Sk(Γ0(M), ψ) be the space of holomorphic
cusp forms of even weight k, level M and character ψ. For f ∈ Sk(Γ0(M), ψ), let

f(z) =
∞∑
n=1

af (n)n
k−1

2 e2πinz

be the Fourier expansion of f at i∞. Let χ be a primitive Dirichlet character mod
q with (q,M) = 1. Then the twisted L-function associated to f and χ is defined
(for Re(s) > 1) by

Lf,χ(s) =
∞∑
n=1

af (n)χ(n)
ns

.

Let
L∞,k(s) = (2π)−sΓ(

k − 1
2

+ s),

and
Λf,χ(s) = (q

√
M)sL∞,k(s)Lf,χ(s).

Then it is known that Λf,χ(s) is entire and if f is a newform (in Atkin-Lehner
sense) it satisfies the functional equation
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(1) Λf,χ(s) = εf,χΛf̄ ,χ̄(1− s)

where f̄ is the conjugate newform in Sk(Γ0(M), ψ̄). Here εf,χ = εfψ(q)χ(M)τ(χ)2
q−1

where |εf | = 1 and τ(χ) is the Gauss sum. Note that |εf,χ| = 1.
We recall that for f ∈ Sk(Γ0(M), ψ) and g ∈ Sl(Γ0(N), η) the Rankin-Selberg

convolution L-function is defined (for Re(s) > 1) by

L(f ⊗ g, s) =
∞∑
n=1

af (n)b̄g(n)
ns

.

The following can be considered as a modular analogue of the above theorem of
Elliott.
Theorem 1.1. Let f ∈ Sk(Γ0(M), ψ) and g ∈ Sl(Γ0(N), η) be newforms. Let
Q ≥ 2 and s0 = σ0 + it0 be a complex number with σ0 >

1
2 . Then we have∑

q≤Q,q prime
(q,MN)=1

?∑
χ(mod q)

Lf,χ(s0)Lg,χ(s0) =
Q2

2 logQ
φ(MN)
MN

L(f ⊗ g, 2σ0)+O
(

Q2

(logQ)2

)
where the inner sum is taken over the primitive characters modulo prime q. The
implied constant depends on f , g and s0. Here, φ is the Euler function.

In proving Theorem 1.1, we first find an asymptotic formula for the values
Lf,χ(s0)Lg,χ(s0) on average when χ varies on the set of primitive characters modulo
fixed positive integer q (see Proposition 2.5). This result generalizes a theorem of
Stefanicki ([S], Theorem 2(a)).

Theorem 1.1 has an interesting application in the problem of non-vanishing of
twisted L-functions inside the critical strip. In Proposition 3.1, by employing the
large sieve inequality for characters, we establish an upper bound for the mean
square of the values |Lf,χ(s0)Lg,χ(s0)|. Together, Theorem 1.1 and Proposition 3.1
imply the following.
Theorem 1.2. Let f ∈ Sk(Γ0(M), ψ) and g ∈ Sl(Γ0(N), η) be newforms. Let
s0 = σ0 + it0 be a fixed point in the strip 1

2 < σ0 ≤ 1. Then we have

#{χ| conductor(χ) a prime ≤ Q and Lf,χ(s0)Lg,χ(s0) 6= 0} � Q2

(logQ)4

as Q→∞. The implied constant depends on f , g and s0.
This theorem should be compared to some non-vanishing results in the theory of

automorphic forms. To explain the connection, let F be a number field, S be a finite
set of places of F , and π be a unitary cuspidal automorphic representation of GL(n)
over F . Let s0 = σ0 + it0 be a fixed point in the complex plane. Then Rohrlich [R]
proved that for n = 1 and 2 there are infinitely many primitive ray class characters
χ of F such that χ is unramified at the places in S and L(π⊗χ, s0) 6= 0. For n ≥ 3,
Barthel and Ramakrishnan [BR] proved that the same result remains true as long
as π is tempered (i.e. satisfies the Ramanujan conjecture) and σ0 > 1 − 2

n+1 (see
also [LRS] for a related result). For automorphic representations of GL(4) over Q
(the case that is related to this paper) the result of Barthel and Ramakrishnan
states that for σ0 >

3
5 there are infinitely many primitive Dirichlet characters that

L(π ⊗ χ, s0) 6= 0. Note that our non-vanishing result (Theorem 1.2) surpasses the
bound 3

5 . This is due to the fact that we are dealing with the product of two
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twisted GL(2) L-functions (Lf,χ(s)Lg,χ(s)) and thus the Gauss sums associated to
the functional equations of these two L-functions cancel each other (see Lemma
2.2). Therefore the contributions from the sums corresponding to 1− s0 in Lemma
2.2 can be dealt with in ways similar to the sums corresponding to s0. This enables
us to prove a non-vanishing result in the half plane σ0 >

1
2 . In fact a similar result

should be true on the line σ0 = 1
2 , however establishing such a result needs a more

elaborate treatment of the error terms in Proposition 2.5.

In the next two sections we prove the above theorems.

2. Theorem 1.1

Let k ≥ l and s0 = σ0 + it0. We set

Pχ(s0) = Lf,χ(s0)Lg,χ(s0).

We first derive an asymptotic formula for
∑
χ

Pχ(s0) as χ varies over the primitive

characters mod q. Here we do not assume that q is a prime. Let

Zs0(x) =
1

2πi

∫
(1)

L∞,k(s+ s0)L∞,l(s+ s̄0)x−s
ds

s
.

Writing the integral representations of the Γ functions in the expression for Zs0(x)
and interchanging the order of integration we arrive at

Zs0(x) = (2π)−2σ0

∫ ∞
0

t
k−1

2 +s0−1
1 e−t1

(∫ ∞
4π2x
t1

t
l−1
2 +s̄0−1

2 e−t2dt2

)
dt1.

Note that this representation for Zs0(x) shows that |Zs0(x)| ≤ Zσ0(x), moreover
by integration by parts we can find an expression for Zs0(x) in terms of K-Bessel
functions. Applying the standard bounds for K-Bessel functions yields

(2) |Zs0(x)| �
{

1 x ≤ 1
x
k
4 + l

4 +σ0− 5
4 e−4π

√
x x > 1

(see [A], Lemmas 6.2 and 6.3 for details).
We next represent Pχ(s0) as a sum of two rapidly convergent series.

Lemma 2.1. Let f ∈ Sk(Γ0(M), ψ) and g ∈ Sl(Γ0(N), η) be new forms. Suppose
that χ is a primitive Dirichlet character modulo q with (q,MN) = 1. Then

L∞,k(s0)L∞,l(s̄0)Pχ(s0) = Sf,g(s0) + εf,χεḡ,χ̄(q2
√
MN)1−2σ0

(
N

M

)it0
Ŝf,g(1− s0)

where

Sf,g(s0) =
∑
m,n≥1

af (m)āg(n)
(mn)σ0

( n
m

)it0
Zs0(

mn

q2
√
MN

)χ(m)χ̄(n),

and

Ŝf,g(1− s0) =
∑
m,n≥1

āf (m)ag(n)
(mn)1−σ0

(m
n

)it0
Z1−s0(

mn

q2
√
MN

)χ̄(m)χ(n).
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Proof. We have

Sf,g(s0) =
1

2πi

∫
(1)

L∞,k(s+ s0)Lf,χ(s+ s0)L∞,l(s+ s̄0)Lḡ,χ̄(s+ s̄0)(q2
√
MN)

s ds

s
.

Moving the line of integration to the left of zero and calculating the residue at
s = 0, and an application of (1) result in

Sf,g(s0) = L∞,k(s0)L∞,l(s̄0)Pχ(s0) + εf,χεḡ,χ̄(q2
√
MN)1−2σ0

(
N

M

)it0
× 1

2πi

∫
(−1)

L∞,k(1−s−s0)Lf̄ ,χ̄(1−s−s0)L∞,l(1−s−s̄0)Lg,χ(1−s−s̄0)(q2
√
MN)

−s ds

s
.

Now changing s to −s yields the result. �

From now on for simplicity we let L∞(s0) = L∞,k(s0)L∞,l(s̄0). Next we average
Pχ(s0) over all primitive Dirichlet characters modulo q. We have
Lemma 2.2. Let q 6≡ 2 (mod 4 ) and (q,MN) = 1. Then

L∞(s0)
?∑

χ(mod q)

Pχ(s0) =
∑
d|q

µ(
q

d
)φ(d)

(
Sdf,g(s0) + εf εḡψη̄(q)(q2

√
MN)

1−2σ0

(
N

M

)it0
Ŝdf,g(1− s0)

)
where µ is the Möbius function, φ is the Euler function,

Sdf,g(s0) =
∑

m,n, (mn,q)=1
m≡n(mod d)

af (m)āg(n)
(mn)σ0

( n
m

)it0
Zs0(

mn

q2
√
MN

),

and

Ŝdf,g(1− s0) =
∑

m,n, (mn,q)=1
Nm≡Mn(mod d)

āf (m)ag(n)
(mn)1−σ0

(m
n

)it0
Z1−s0(

mn

q2
√
MN

).

Proof. From Lemma 2.1 we have

L∞(s0)
?∑

χ(mod q)

Pχ(s0) =
?∑

χ(mod q)

(
Sf,g(s0) + εf εḡψη̄(q)χ(M)χ̄(N)(q2

√
MN)1−2σ0

(
N

M

)it0
Ŝf,g(1− s0)

)
.

Note that εf,χεḡ,χ̄ = εf εḡψη̄(q)χ(M)χ̄(N). To simplify the above expression, we

need to evaluate
?∑

χ(mod q)

χ(m)χ̄(n) and
?∑

χ(mod q)

χ(Mn)χ̄(Nm). Let

hm,n(q) =
?∑

χ(mod q)

χ(m)χ̄(n).

We have ∑
d|q

hm,n(d) =
∑

χ(mod q)

χ(m)χ̄(n) =
{
φ(q) if m ≡ n (mod q)

0 otherwise.

Now applying the Möbius inversion formula ([M], Section 1.1) on the above identity
yields

?∑
χ(mod q)

χ(m)χ̄(n) = hm,n(q) =
∑

d|(q,m−n)

µ(
q

d
)φ(d).
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Applying this and a similar identity for
?∑

χ(mod q)

χ(Mn)χ̄(Nm) in the expression for

L∞(s0)
?∑

χ(mod q)

Pχ(s0) at the beginning of the proof imply the result. �

Next we find an asymptotic for the terms in Sdf,g(s0) corresponding to m = n. To
explain our result we need to introduce a notation. We know that for any prime p,
af (p) = αf,1(p)+αf,2(p) and ag(p) = αg,1(p)+αg,2(p), where αf,1(p)αf,2(p) = ψ(p)
and αg,1(p)αg,2(p) = η(p). Let

Rq(s) =
∏
p|q

(
1− ψη̄(p)

p2s

)−1 2∏
i=1

2∏
j=1

(
1− αf,i(p)ᾱg,j(p)

ps

)
.

Lemma 2.3. Let f , g and s0 be as Theorem 1.1. Then∑
n,(n,q)=1

af (n)āg(n)
n2σ0

Zs0(
n2

q2
√
MN

) ∼ L∞(s0)L(f ⊗ g, 2σ0)Rq(2σ0)

as q →∞.

Proof. From the definition of Zs0(x), we have∑
n,(n,q)=1

af (n)āg(n)
n2σ0

Zs0(
n2

q2
√
MN

)

=
1

2πi

∫
(1)

L∞,k(s+ s0)L∞,l(s+ s̄0)L(f ⊗ g, 2s+ 2σ0)Rq(2s+ 2σ0)(q2
√
MN)

s ds

s
.

Moving the line of integration to the left of zero implies the result. �

The next lemma gives an estimation for the off-diagonal terms in Sdf,g(s0).
Lemma 2.4. Let ε > 0 be arbitrary, then∑

d|q

µ(
q

d
)φ(d)

∑
m,n, (mn,q)=1

m≡n(mod d),m 6=n

af (m)āg(n)
(mn)σ0

( n
m

)it0
Zs0(

mn

q2
√
MN

) = O(q2−2σ0+ε).

The implied constant depends on f , g, s0 and ε.

Proof. We closely follow Section 3.2 of [S]. First of all we recall Rankin-Shiu’s
estimate for the sum of Fourier coefficients of modular forms. Let d 6= 1 and
(n, d) = 1, then for a newform g we have∑

n≤x
n≡m(mod d)

|ag(n)| � x

φ(d)
(log x)−ε1

as x → ∞, where x > dα for 1 < α < 2. Here, 0 < ε1 ≤ δ ' 0.06... is arbitrary
and the bound is uniform in m, d and α (see [S], page 5 for details). We use this
together with Rankin’s estimate [RA1]∑

m≤x

|af (m)| � x(log x)−δ

to bound the inner sum in the statement of the lemma. Let 1 < α < 10
9 be a fixed

number. We only need to find estimates for the following ranges of m and n.
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(i) n > dα.
(ii) d

4
5α ≤ n < m ≤ dα.

(iii) n < d
4
5α and d ≤ m ≤ dα.

Now we estimate the inner sum in the statement of the lemma in each case.
(i) We assume n > dα. By employing Rankin-Shiu’s and Rankin’s estimates,

bounds for Zσ0(x) and partial summation we have∑
m≥ q

2√MN
dα

(m,q)=1

|af (m)|
mσ0

∑
n>dα,(n,q)=1
n≡m(mod d)

|ag(n)|
nσ0

Zσ0(
mn

q2
√
MN

)� 1
φ(d)

(q2
√
MN)1−σ0 ,

and∑
m<

q2
√
MN
dα

(m,q)=1

|af (m)|
mσ0

∑
n>dα,(n,q)=1
n≡m(mod d)

|ag(n)|
nσ0

Zσ0(
mn

q2
√
MN

)� 1
φ(d)

(q2
√
MN)1−σ0(log(d−αq2

√
MN))1−δ.

(ii) Next we consider the range d
4
5α ≤ n < m ≤ dα. We recall from the Ranking-

Selberg theory [RA2] the asymptotic formula∑
n≤x

|ag(n)|2 = cgx+O(x
3
5 )

where cg is a constant depending only on g. By employing Cauchy-Schwarz in-
equality and above asymptotic we have∑

n≤x

|af (n+ dt)ag(n)| � x

uniformly for x � (dt)
3
5 . Now by writing m = n + dt for 1 ≤ t ≤ dα−1, and

applying partial summation, we get the following estimation of the inner sum.∑
1≤t≤dα−1

∑
d

4
5α<n≤ q2

√
MN
dt

|af (n+ dt)ag(n)|
(n+ dt)σ0nσ0

Zσ0(
(n+ dt)n
q2
√
MN

)

�
∑

1≤t≤dα−1

(q2
√
MN)1−σ0

dt
� 1

d
(q2
√
MN)1−σ0 log d.

A similar estimation is true for the range q2√MN
dt < n ≤ dα.

(iii) Finally we consider m and n’s in the range n < d
4
5α and d ≤ m ≤ dα. Note

that since 1 < α < 10
9 and σ0 >

1
2 , we have 1

2 −
9
10α(1 − σ0) > 0. We choose an ε

such that 0 < ε < 1
2 −

9
10α(1− σ0). By Deligne’s bound for the Fourier coefficients

of newforms we have
|af (m)ag(n)| �ε d

ε.

By applying this bound we have∑
n<d

4
5α,d≤m≤dα

m≡n (mod d)

|af (m)ag(n)|
(mn)σ0

Zσ0(
mn

q2
√
MN

)� d
9
5α(1−σ0)−1+ε � d−ε.

Applying estimates of (i), (ii) and (iii) to the inner sum in the statement of the
lemma implies the result. �

Combining the results of Lemma 2.2, Lemma 2.3 and Lemma 2.4 we have the
following.
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Proposition 2.5. Let f , g and s0 be as Theorem 1.1 and let ε > 0 be arbitrary.
Let q 6≡ 2 (mod 4) and (q,MN) = 1. We have

?∑
χ(mod q)

Pχ(s0) = L(f ⊗ g, 2σ0)Rq(2σ0)
∑
d|q

µ(
q

d
)φ(d) +O(q2−2σ0+ε).

The implied constant depends on f , g, s0 and ε.

Proof. First of all note that a result similar to Lemma 2.4 is also true for the off-
diagonal terms in Ŝdf,g(1−s0), and in this case the corresponding sum is bounded by
q2σ0+ε. For the diagonal terms in Ŝdf,g(1− s0) (ones corresponding to Nm = Mn),
by applying Deligne’s bound for Fourier coefficients of new forms we have∑
m,n,(mn,q)=1
Nm=Mn

|af (m)ag(n)|
(mn)1−σ0

Z1−σ0(
mn

q2
√
MN

)�M,N

∑
n,(n,q)=1

nε

n2(1−σ0)
Z1−σ0(

Mn2

q2N
√
MN

)

� q2σ0−1+ε.

Applying these estimates together with Lemmas 2.3 and 2.4 in Lemma 2.2 will
imply the desired result. �

Proof of Theorem 1.1. We sum the asymptotic formula given in Lemma 2.5 over
primes q ≤ Q where (q,MN) = 1. Note that for q prime, Rq(2σ0) = 1 +O(q−2σ0)
and

∑
d|q

µ(
q

d
)φ(d) = q − 2. Now the result follows from the prime number theorem.

�

3. Theorem 1.2

First of all in Lemma 2.1 let

bu =
∑
u=mn

af (m)āg(n)χ(m)χ̄(n)
( n
m

)it0
.

Note that by Deligne’s bound for Fourier coefficients of newforms we have

|bu| �ε u
ε.

So by Lemma 2.1 for given X we have

L∞(s0)Pχ(s0) =
∑
u≤X

bu
uσ0

Zs0(
u

q2
√
MN

) +
∑
u≥X

bu
uσ0

Zs0(
u

q2
√
MN

)

+ εf,χεḡ,χ̄(q2
√
MN)1−2σ0

(
N

M

)it0 ∑
u≤X

b̄u
u1−σ0

Z1−s0(
u

q2
√
MN

)

+ εf,χεḡ,χ̄(q2
√
MN)1−2σ0

(
N

M

)it0 ∑
u≥X

b̄u
u1−σ0

Z1−s0(
u

q2
√
MN

)

= L1(s0) + L2(s0) + L3(s0) + L4(s0).

From here we have
(3)

|L∞(s0)|2
∑
q≤Q

(q,MN)=1

q

φ(q)

?∑
χ(mod q)

|Pχ(s0)|2 � |L∞(s0)|2
4∑
i=1

∑
q≤Q

q

φ(q)

?∑
χ(mod q)

|Li(s0)|2.
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Now let X =
√
MNQ2(logQ)2. Then by employing bound (2) for Zs0(x), we have

(4)
∑
q≤Q

q

φ(q)

?∑
χ(mod q)

|Li(s0)|2 � Q−19

for i = 2, 4. We know that by the large sieve inequality for characters we have

∑
q≤Q

q

φ(q)

?∑
χ(mod q)

∣∣∣∣∣
X∑
u=1

auχ(u)

∣∣∣∣∣
2

≤ (X + 3Q2)
X∑
u=1

|au|2

(see [D], page 160, Theorem 4). Let

au = u−σ0Zs0(
u

q2
√
MN

)
∑
u=mn

(n,q)=1

af (m)āg(n)χ̄(n2)
( n
m

)it0
.

By Deligne’s bound and (2) we have

|au| �ε u
−σ0+ε.

This bound together with the large sieve inequality imply that for i = 1

(5)
∑
q≤Q

q

φ(q)

?∑
χ(mod q)

|Li(s0)|2 =
∑
q≤Q

q

φ(q)

?∑
χ(mod q)

∣∣∣∣∣
X∑
u=1

auχ(u)

∣∣∣∣∣
2

� Q2(logQ)2.

The same bound is valid for i = 3. Now applying (4) and (5) in (3) implies the
following.

Proposition 3.1. Let f , g and s0 be as Theorem 1.1. We have

∑
q≤Q

(q,MN)=1

q

φ(q)

?∑
χ(mod q)

|Pχ(s0)|2 � Q2(logQ)2.

The implied constant depends on f , g and s0.

Proof of Theorem 1.2. By Cauchy-Schwarz inequality we have

#{χ| conductor(χ) a prime ≤ Q and Pχ(s0) 6= 0} ≥

∣∣∣∣∣∣∣
∑

q≤Q,q prime
(q,MN)=1

?∑
χ(mod q)

Pχ(s0)

∣∣∣∣∣∣∣
2

∑
q≤Q

(q,MN)=1

q

φ(q)

?∑
χ(mod q)

|Pχ(s0)|2
.

The result follows from this inequality, Theorem 1.1 and Proposition 3.1. �
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