
Computer Science 1820
Solutions for Recommended Exercises

Section 1.6

2. Let m and n be any two even integers (possibly the same). Then, there exist integers k and l such
that m = 2k and n = 2l. Consequently,

m+n = 2k +2l = 2(k + l), where k + l ∈ Z,

so the sum of m and n is even, as required.

4. Let m be any even integer. Then, there exists an integer k such that m = 2k. Accordingly,

−m = −2k = 2(−k), where − k ∈ Z,

so the negative of m is even, as required.

6. Let m and n be any two odd integers (possibly the same), so that there exist integers k and l such
that m = 2k +1 and n = 2l +1. Then,

mn = (2k +1)(2l +1) = 4kl +2k +2l +1 = 2(2kl + k + l)+1, where 2kl + k + l ∈ Z,

so the product of m and n is odd, as required.

8. First, let n be an integer. To prove the given statement, we use a proof by contradiction: assume that
n is a perfect square and n + 2 is a perfect square. Then, n = k2 and n + 2 = l2 for some integers
k and l; clearly, n + 2 > n ≥ 0. We now let p = |k| and q = |l|, so that n = p2, n + 2 = q2, and
q > p≥ 0. Consequently,

p2 +2 = q2 → 2 = q2− p2 → 2 = (q− p)(q+ p) → (q+ p = 1∨q+ p = 2)→ p = 0

(consider the positive integer factors of 2, then consider that q > p≥ 0). However,

n+2 = p2 +2 = 02 +2 = 2,

which is not a perfect square. This a contradiction, thereby proving the original statement.
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10. In “if-then” form, the given statement is “If x is rational and y is rational, then xy is rational.” To do
a direct proof, we assume that x and y are both rational. Then, there exist integers p, q, m, and n
with q and n being nonzero such that x = p/q and y = m/n. Accordingly,

xy =
(

p
q

)(m
n

)
=

pm
qn

,

where pm and qn are integers and qn is nonzero; by definition, xy is rational, as required.

12. The “if-then” form of the given statement is “If x is a nonzero rational and y is irrational, then xy
is irrational,” where the domain is R. This statement is true. To prove it, we use a proof by
contradiction: assume that x is a nonzero rational and y is irrational and xy is rational. Then,
there exist integers p, q, m, and n with q, n, and p being nonzero such that x = p/q and xy = m/n.
Accordingly, (

p
q

)
y =

(m
n

)
→ y =

(
q
p

)(m
n

)
=

qm
pn

,

where qm and pn are integers and qn is nonzero i.e. y is rational, which is a contradiction, as
required.

14. We use a direct proof: let x be a nonzero rational, so that there exist integers p and q both nonzero
such that x = p/q. Then

1
x

=
1

p/q
=

q
p
,

where q and p are integers and p is nonzero, so 1/x is rational, as required.

16. Let the domain be the integers, and let E(n) be “n is even.” Then, the given statement is

(∀m)(∀n)(E(mn)→ (E(m)∨E(n))).

Using the Contrapositive Law and De Morgan’s Law, it is logically equivalent to

(∀m)(∀n)(¬(E(m)∨E(n))→¬E(mn)) ≡ (∀m)(∀n)((¬E(m)∧¬E(n))→¬E(mn)).

Consider: an integer is either even or odd, so if it is not even, it must be odd. Ergo, the last
statement may be expressed in English as “If m is odd and n is odd, then mn is odd,” which we
proved in Exercise 6! ( ¨̂ )
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30. As shown in Example 13, it suffices to prove that (i)→ (ii), (ii)→ (iii), and (iii)→ (i):

(i) → (ii): “If a is less than b, then the average of a and b is greater than a:”

We use a direct proof: let a be less than b. Then,

a < b → b > a → a+b > a+a → a+b > 2a → a+b
2

> a,

so the average of a and b is greater than a, as required.

(ii) → (iii): “If the average of a and b is greater than a, then the average of a and b is less than b:”

Again, we use a direct proof: let the average of a and b be greater than a. Then,

a+b
2

> a→ a <
a+b

2
→ 2a < a+b→ 2a+b−a < a+b+b−a→ a+b < 2b→ a+b

2
< b,

so the average of a and b is less than b, as required.

(iii) → (i): “If the average of a and b is less than b, then a is less than b:”

Let the average of a and b be less than b. Then,

a+b
2

< b → a+b < 2b → a+b−b < 2b−b → a < b,

as required.

Therefore, (i), (ii), and (iii) are equivalent.
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32. As in Exercise 30, we prove three implications:

(i) → (ii): “If x is rational, then x/2 is rational:”

We use a direct proof: let x be rational. Then, there exists an integer p and a nonzero integer q such
that x = p/q. Consequently,

x
2

=
p/q
2/1

=
p
q
· 1

2
=

p
2q

,

where p is an integer and 2q is a nonzero integer i.e. x/2 is rational, as required.

(ii) → (iii): “If x/2 is rational, then 3x−1 is rational:”

Again, we use a direct proof: let x/2 be rational. Then, there exists an integer p and a nonzero
integer q such that x/2 = p/q; we rewrite this as x = 2p/q. Accordingly,

3x−1 = 3
(

2p
q

)
−1 =

6p
q
− q

q
=

6p−q
q

,

where 6p−q is an integer and q is a nonzero integer i.e. 3x−1 is rational, as required.

(ii) → (iii): “If 3x−1 is rational, then x is rational:”

Let 3x−1 be rational, so that there exists an integer p and a nonzero integer q such that 3x−1 = p/q.
Then,

3x−1 =
p
q
→ 3x =

p
q

+1 → 3x =
p
q

+
q
q
→ 3x =

p+q
q

→ x =
p+q
3q

,

where p+q is an integer and 3q is a nonzero integer, so x is rational, as required.

Thus, (i), (ii), and (iii) are equivalent.
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42. This time, we need to prove at least four implications. To avoid a difficult subproof, let us prove
five: (i)→ (ii), (ii)→ (iv), (iv)→ (i), (ii)→ (iii), and (iii)→ (ii):

(i) → (ii): “If n2 is odd, then 1−n is even:”

This time, we use a contrapositive proof: let 1−n be odd, so that 1−n = 2k +1 for some integer k.
Then, n =−2k, and

n2 = (−2k)2 = 4k2 = 2
(
2k2) ,

where 2k2 is an integer, so n2 is even, as required.

(ii) → (iv): “If 1−n is even, then n2 +1 is even:”

We use a direct proof: let 1− n be even, so that 1− n = 2k for some integer k. Then, n = 1− 2k,
and

n2 +1 = (1−2k)2 = (1−2k)(1−2k)+1 = 1−4k +4k2 +1 = 2−4k +4k2 = 2
(
1−2k +2k2) ,

where 1−2k +2k2 is an integer, so n2 +1 is even, as required.

(iv) → (i): “If n2 +1 is even, then n2 is odd:”

Let us use a contrapositive proof: let n2 be even, so that n2 = 2k for some integer k. Then,
n2 +1 = 2k +1, where k is an integer, so n2 +1 is odd, as required.

(continued)
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(continued) So far, we’ve proved that (i), (ii), and (iv) are equivalent. We will now prove that (iii)
is equivalent to them by proving that it is equivalent to (ii):

(ii) → (iii): “If 1−n is even, then n3 is odd:”

We use a direct proof: let 1− n be even, so that 1− n = 2k for some integer k. Then, n = 1− 2k,
and

n3 = (1−2k)3 = (1−2k)(1−2k)(1−2k) = 1−6k +12k2−8k3 = 2
(
−3k +6k2−4k3)+1,

where −3k +6k2−4k3 is an integer, so n3 is odd, as required.

(iii) → (ii): “If n3 is odd, then 1−n is even:”

We use a contrapositive proof: let 1− n be odd, so that 1− n = 2k + 1 for some integer k. Then,
n =−2k, and

n3 = (−2k)3 = −8k3 = 2
(
−4k3) ,

where −4k3 is an integer, so n3 is even, as required.

Ergo, all four statements are equivalent.
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