
Computer Science 1820
Solutions for Recommended Exercises

Section 3.2

2. (a) If x > 4, then x2 > 16 → x2 ≥ 11 → 11 ≤ x2.

Also, if x > 17, then x2 > 17x → x2 ≥ 17x → 17x ≤ x2.

Seventeen is greater than four, so if x > 17, we have

0 < 17x+11 ≤ 17x+ x2 ≤ x2 + x2 = 2x2 → |17x+11| ≤ 2
∣∣x2∣∣ .

So, we let C = 2 and k = 17. Accordingly, 17x+11 is O
(
x2) .

(b) If x > 32, then x2 > 1024 → x2 ≥ 1000 → 1000 ≤ x2

→ x2 +1000 ≤ x2 + x2 → 0 < x2 +1000 ≤ 2x2 →
∣∣x2 +1000

∣∣≤ 2
∣∣x2∣∣.

So, C = 2 and k = 32 are our “witnesses” to the fact that x2 +1000 is O
(
x2) .

(c) Using the Principle of Mathematical Induction (discussed in this course), we can prove that
n < 2n for all positive integers n. Using calculus, we can prove that x < 2x for all real x. We
can also use calculus to prove that logx (we assume that the base of this logarithm is 2) is an
increasing function, which essentially means that it preserves order. For now, we will assume
that these results are true. Accordingly, for all x ≥ 1,

1 ≤ x < 2x → log1 ≤ logx < log2x → 0 ≤ logx < x

→ 0 ≤ x logx < x2 → |x logx|<
∣∣x2∣∣ → |x logx| ≤ 1

∣∣x2∣∣ .
So, x logx is O

(
x2) , with our witnesses being C = k = 1.
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(d) Assume that x4/2 is O
(
x2). Then, there exist real constants C and k such that for all x > k,∣∣x4/2

∣∣≤C
∣∣x2∣∣ →

∣∣x2∣∣≤ 2C.

Clearly, C must be positive. Now, let x0 be the maximum of k+1 and
√

2C +1. Then, x0 > k,
so by the statement above, ∣∣x2

0
∣∣ ≤ 2C.

On the other hand,

x0 ≥
√

2C +1 ≥ 0 → x2
0 ≥ 2C +1 ≥ 0 → x2

0 > 2C ≥ 0 →
∣∣x2

0
∣∣ > 2C,

which is a contradiction. Thus, x4/2 is not O
(
x2) .

(e) Recall that x < 2x for all real x. Like in (e), we assume that 2x is O
(
x2), so that we can find

real constants C and k such that for all x > k,

|2x| ≤C
∣∣x2∣∣ → 2x ≤Cx2.

Of course, C must be positive. Now, let x0 be the maximum of k + 1 and 27(C + 1). Then,
x0 > k, so by the statement above,

2x0 ≤ Cx2
0.

However, 2x0 =
(

2x0/3
)3

> (x0/3)3 =
x0

27
x2

0 ≥ 27(C +1)
27

x2
0 = (C +1)x2

0 > Cx2
0

i.e. 2x0 > Cx2
0, which is a contradiction. Thus, 2x is not O

(
x2) .

(f) bxc, known as the floor function, returns the largest integer n that is less than or equal to x
i.e. n is the unique integer satisfying

x−1 < n ≤ x → n ≤ x → bxc ≤ x.

dxe, known as the ceiling function, returns the smallest integer n that is greater than or equal
to x i.e. n is the unique integer satisfying

x ≤ n < x+1 → n < x+1 → dxe< x+1.

Then, for all x ≥ 1,

0 ≤ bxc · dxe ≤ x · (x+1) = x2 + x ≤ x2 + x · x = 2x2,

so | bxc · dxe | ≤ 2
∣∣x2∣∣. Ergo, bxc · dxe is O

(
x2) , with witnesses C = 2 and k = 1.
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6. For all x ≥ 1, 0 <
x3 +2x
2x+1

<
x3 +2x

2x
=

x3

2x
+

2x
2x

=
1
2

x2 +1 ≤ 1
2

x2 + x2 < 2x2,

so

∣∣∣∣∣ x3 +2x
2x+1

∣∣∣∣∣≤ 2
∣∣x2∣∣. Choosing C = 2 and k = 1, we obtain the desired result.

8. (a) For all x ≥ 1, 0 < 2x2 + x3 logx < 2x2 + x3(x) ≤ 2x2 · x2 + x4 = 3x4

→
∣∣2x2 + x3 logx

∣∣≤ 3
∣∣x4

∣∣, so n = 4.

(b) For all x ≥ 1, 0 < 3x5 +(logx)4 ≤ 3x5 +(x)4 ≤ 3x5 + x4 · x = 4x5

→
∣∣3x5 +(logx)4

∣∣≤ 4
∣∣x5

∣∣, so n = 5.

(c) For all x ≥ 1, 0 <
x4 + x2 +1

x3 +1
≤ x4 + x2 · x2 +1 · x4

x3 +1
=

3x4

x3 +1
<

3x4

x3 = 3x

→
∣∣∣∣x4 + x2 +1

x3 +1

∣∣∣∣≤ 3|x|, so n = 1.

(d) For all x≥ 1, 0 <
x3 +5logx

x4 +1
<

x3 +5(x)
x4 +1

<
x3 +5x

x4 =
x3

x4 +
5x
x4 =

1
x

+
5
x3 ≤ 1+5 = 6

→
∣∣∣∣x3 +5logx

x4 +1

∣∣∣∣≤ 6|1|, so n = 0.

10. x ≥ 1 → 0 < 1 ≤ x → 0 < 1 · x3 ≤ x · x3 → 0 < x3 ≤ x4,

so for all x > 1,
∣∣x3∣∣≤ 1

∣∣x4∣∣. Thus, x3 is O
(
x4) with witnesses C = k = 1.

Now assume that x4 is O
(
x3), so that we can find real constants C and k such that for all x > k,∣∣x4∣∣≤C

∣∣x3∣∣ → |x| ≤C.

Picking any x that is larger than both k and C yields a contradiction, so x4 is not O
(
x3).
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12. For all x ≥ 1, 0 ≤ logx < x → 0 ≤ x · logx ≤ x · x → 0 ≤ x logx < x2 → |x logx| ≤ 1
∣∣x2∣∣

so x logx is O
(
x2) with witnesses C = k = 1.

Now assume that x2 is O(x logx), so that we can find real constants C and k such that for all x > k,∣∣x2∣∣≤C|x logx| → |x| ≤C| logx|.

Again, C must be positive. Next, let x0 be the maximum of k +1 and 24C. Then, x0 > k, so by our
assumption,

|x0| ≤C|logx0| .

However, |x0| =
∣∣∣2logx0

∣∣∣ =
∣∣∣2(logx0)/2

∣∣∣2

>

∣∣∣∣ logx0

2

∣∣∣∣2

=
|logx0|

4
|logx0| >

∣∣log24C
∣∣

4
|logx0| =

|4C|
4

|logx0| = C|logx0|

i.e. |x0|> C |logx0|, which is a contradiction. Therefore, x2 is not O(x logx).

14. (a) Assume that x3 is O
(
x2), so that we can find real constants C and k such that for all x > k,

∣∣x3∣∣≤
C

∣∣x2∣∣ → |x| ≤C. Choosing any x that is greater than both k and C produces a contradiction,
so the answer is no.

(b) For all real x,
∣∣x3∣∣≤ 1

∣∣x3∣∣, so the answer is yes.

(c) For all real x, x3 ≤ x2 + x3, and for all nonnegative x,
∣∣x3∣∣ ≤ ∣∣x2 + x3∣∣ = 1

∣∣x2 + x3∣∣, so the
answer is yes.

(d) For all x ≥ 1, 0 < x3 ≤ x4 ≤ x2 + x4 →
∣∣x3∣∣≤ 1

∣∣x2 + x4∣∣, so the answer is yes.

(e) |3x| =
∣∣∣2log3

∣∣∣x
=

∣∣∣2x log3
∣∣∣ =

∣∣∣2(x log3)/3
∣∣∣3

>

∣∣∣∣x log3
3

∣∣∣∣3

=
(

log3
3

)3 ∣∣x3∣∣
→

∣∣x3∣∣≤ (
3

log3

)3

|3x|, so the answer is yes.

(f) For all real x,

∣∣∣∣∣ x3

2

∣∣∣∣∣≤ 1
2

∣∣x3∣∣, so the answer is yes.
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20. (a) We use Theorems 2 and 3:
(
n3 +n2 logn

)
(logn+1)+(17logn+19)

(
n3 +2

)
= O

((
n3 +n2 logn

)
(logn)+(17logn+19)

(
n3 +2

))
= O

((
n3 +n2 logn

)
(logn)+(17logn)

(
n3 +2

))
= O

((
n3 +n2 logn

)
(logn)+(17logn)

(
n3))

= O
(
n2(n+ logn)(logn)+(17logn)

(
n3)) = O

(
n2(n)(logn)+(17logn)

(
n3))

= O
(
n3 logn+17n3 logn

)
= O

(
n3 logn

)
.

(b)
(
2n +n2)(

n3 +3n) = O
(
(2n)

(
n3 +3n)) = O((2n)(3n)) = O((2 ·3)n) = O(6n) .

(c) (nn +n2n +5n)(n!+5n) = O((nn +n2n +5n)(n!)) = O((nn)(n!)) = O(n! nn) .

24. (a) We first show that 3x+7 is O(x): for all x ≥ 7,

0 < 3x+7 ≤ 3x+ x = 4x → |3x+7| ≤ 4|x|,

so our witnesses are C = 4 and k = 7.

Next, we show that 3x+7 is Ω(x): for all x ≥ 1,

3x+7 > 3x > 0 → |3x+7| ≥ 3|x|,

so our witnesses are C = 3 and k = 1.

Since 3x+7 is both O(x) and Ω(x), it is Θ(x), as required.

(b)
∣∣2x2 + x−7

∣∣ =
∣∣(2x2)+(x−7)

∣∣ ≤
∣∣2x2∣∣ + |x−7| (Triangle Inequality)

=
∣∣2x2∣∣ + |(x)+(−7)| ≤

∣∣2x2∣∣ + |x| + |−7| (Triangle Inequality again)

=
∣∣2x2∣∣ + |x| + 7 = 2x2 + x + 7 (provided that x is nonnegative)

(continued)
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(continued) ≤ 2x2 + x2 + 7 (provided that x ≥ 1)

≤ 2x2 + x2 + x2 (provided that x ≥ 3)

= 4x2 = 4
∣∣x2∣∣. Accordingly, 2x2 + x−7 is O

(
x2) with witnesses C = 4 and k = 3.

Next, 2x2 + x−7 = 2x2 +(x−7) ≥ 2x2 (provided that x ≥ 7)

≥ 0 →
∣∣2x2 + x−7

∣∣ ≥ 2
∣∣x2∣∣, so 2x2 + x−7 is Ω

(
x2) with witnesses C = 2 and k = 7.

Consequently, 2x2 + x−7 is Θ
(
x2), as required.

(c)
⌊

x+
1
2

⌋
is the unique integer n satisfying

(
x+

1
2

)
−1 < n ≤ x+

1
2

→ x− 1
2

<

⌊
x+

1
2

⌋
≤ x+

1
2
.

Then, for all x ≥ 1, 0 <
1
2

x <
1
2

x+
1
2

(x−1) = x− 1
2

<

⌊
x+

1
2

⌋

→
∣∣∣∣ ⌊x+

1
2

⌋ ∣∣∣∣≥ 1
2
|x|, so

⌊
x+

1
2

⌋
is Ω(x) with witnesses C = 1/2 and k = 1.

Also, for all x ≥ 1, 0 <

⌊
x+

1
2

⌋
≤ x+

1
2

< x+ x = 2x

→
∣∣∣∣ ⌊x+

1
2

⌋ ∣∣∣∣≤ 2|x|, so
⌊

x+
1
2

⌋
is O(x) with witnesses C = 2 and k = 1.

Ergo,
⌊

x+
1
2

⌋
is Θ(x), as required.

(d) For all x ≥ 2, x =
√

x2 <
√

x2 +1 <
√

x2 + x2 =
√

2x2 =
(√

2
)

x < (x)x = x2.

In other words, for all x ≥ 2, 1 < x <
(
x2 +1

)1/2
< x2

→ log1 < logx < log
(
x2 +1

)1/2
< logx2

→ 0 < logx <
1
2

log
(
x2 +1

)
< 2logx (continued)
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(continued) → 0 < 2logx < log
(
x2 +1

)
< 4logx

→ 2| logx| ≤
∣∣ log

(
x2 +1

) ∣∣ ≤ 4| logx|.

To show that log
(
x2 +1

)
is O(logx), we choose C = 4 and k = 2, and to show that it is Ω(logx),

we make C = 2 and k = 2; both of these show that it is Θ(logx), as required.

(e) For all positive x, x = 2log2 x → log10 x = log10 2log2 x → log10 x = (log2 x) log10 2

→ log10 x = (log10 2) log2 x → |log10 x|= (log10 2) |log2 x|.

Note that if a = b, then a≤ b and a≥ b are both true! Thus, log10 x is Θ(log2 x) with witnesses
C = log10 2 and k = 1.

26. To prove this biconditional statement, we must prove each implication. First, assume that f (x) is
O(g(x)). Then, there exist real constants C and k such that for all x > k, | f (x)| ≤C|g(x)|. Clearly,
C must be posi. . .waitaminute! It could be zero! Precisely, C must be nonnegative.

Say that C = 0. Then, for all real x, f (x) = 0, so

|g(x)| ≥ 0 → |g(x)| ≥ | f (x)| → |g(x)| ≥ 1| f (x)|.

Hence, g(x) is Ω( f (x)) with witnesses C′ = k′ = 1.

Now say that C > 0. Then, for all x > k,

| f (x)| ≤ C|g(x)| → C|g(x)| ≥ | f (x)| → |g(x)| ≥ 1
C
| f (x)|.

Thus, g(x) is Ω( f (x)) with witnesses C′ =
1
C

and k′ = |k|+1 (this ensures that k′ > 0 and k′ > k).

Either way, g(x) is Ω( f (x)).

Next, assume that g(x) is Ω( f (x)). Then, there are positive numbers C and k such that for all x > k,

|g(x)| ≥ C| f (x)| → C| f (x)| ≤ |g(x)| → | f (x)| ≤ 1
C
|g(x)|.

Ergo, f (x) is O( f (x)) with witnesses C′ =
1
C

and k′ = k.
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