Computer Science 1820

Solutions for Recommended Exercises Section 3.6

20. We first express the exponent as the sum of powers of 2:

$$644 = 512 + 132 = 512 + 128 + 4.$$

Then, we compute 11 to the power of each power of 2 up to and including 512, reducing each result n modulo 645 by subtracting $\lfloor n/645 \rfloor \cdot 645$ from it:

$$11^2 \equiv 121 \pmod{645}$$
.

$$11^4 \equiv (11^2)^2 \equiv (121)^2 \equiv 14641 \equiv 14641 - 22 \cdot 645 \equiv 451 \pmod{645}.$$

$$11^8 \equiv (11^4)^2 \equiv (451)^2 \equiv 203401 \equiv 203401 - 315 \cdot 645 \equiv 226 \pmod{645}.$$

$$11^{16} \equiv (11^8)^2 \equiv (226)^2 \equiv 51076 \equiv 51076 - 79.645 \equiv 121 \pmod{645}.$$

$$11^{32} \equiv (11^{16})^2 \equiv (121)^2 \equiv 451 \pmod{645}$$
 (from above).

$$11^{64} \equiv (11^{32})^2 \equiv (451)^2 \equiv 226 \pmod{645}.$$

$$11^{128} \equiv (11^{64})^2 \equiv (226)^2 \equiv 121 \pmod{645}.$$

$$11^{256} \equiv (11^{128})^2 \equiv (121)^2 \equiv 451 \pmod{645}.$$

$$11^{512} \equiv \left(11^{256}\right)^2 \equiv (451)^2 \equiv 226 \pmod{645}.$$

Then,
$$11^{644} \equiv 11^{512+128+4} \equiv 11^{512} \cdot 11^{128} \cdot 11^4 \equiv 226 \cdot 121 \cdot 451 \pmod{645}$$

$$\equiv 12333046 \equiv 12333046 - 19121 \cdot 645 \equiv \boxed{1 \pmod{645}}.$$

Note that Fermat's Little Theorem would have predicted this result *if* 645 was prime. As a result, we call 645 a *Fermat Pseudoprime*.

22. As before, we expand the exponent: 1001 = 512 + 489 = 512 + 256 + 233

$$= 512 + 256 + 128 + 105 = 512 + 256 + 128 + 64 + 41 = 512 + 256 + 128 + 64 + 32 + 9$$
$$= 512 + 256 + 128 + 64 + 32 + 8 + 1.$$

Like before, we square, reduce modulo 101, and repeat, starting with 123:

$$123^2 \equiv (123 - 101)^2 \equiv 22^2 \equiv 484 \equiv 484 - 4 \cdot 101 \equiv 80 \pmod{101}$$
.

$$123^4 \equiv (123^2)^2 \equiv 80^2 \equiv 6400 \equiv 6400 - 63 \cdot 101 \equiv 37 \pmod{101}.$$

$$123^8 \equiv (123^4)^2 \equiv 37^2 \equiv 1369 \equiv 1369 - 13 \cdot 101 \equiv 56 \pmod{101}$$
.

$$123^{16} \equiv (123^8)^2 \equiv 56^2 \equiv 3136 \equiv 3136 - 31 \cdot 101 \equiv 5 \pmod{101}.$$

$$123^{32} \equiv \left(123^{16}\right)^2 \equiv 5^2 \equiv 25 \pmod{101}.$$

$$123^{64} \equiv (123^{32})^2 \equiv 25^2 \equiv 625 \equiv 625 - 6 \cdot 101 \equiv 19 \pmod{101}.$$

$$123^{128} \equiv (123^{64})^2 \equiv 19^2 \equiv 361 \equiv 361 - 3 \cdot 101 \equiv 58 \pmod{101}.$$

$$123^{256} \equiv (123^{128})^2 \equiv 58^2 \equiv 3364 \equiv 3364 - 33 \cdot 101 \equiv 31 \pmod{101}$$
.

$$123^{512} \equiv \left(123^{256}\right)^2 \equiv 31^2 \equiv 961 \equiv 961 - 9 \cdot 101 \equiv 52 \pmod{101}.$$

Then,
$$123^{1001} \equiv 123^{512+256+128+64+32+8+1} \pmod{101}$$

$$\equiv 123^{512} \cdot 123^{256} \cdot 123^{128} \cdot 123^{64} \cdot 123^{32} \cdot 123^8 \cdot 123^1 \pmod{101}$$

$$\equiv \left(123^{512} \cdot 123^{256}\right) \cdot \left(123^{128} \cdot 123^{64}\right) \cdot \left(123^{32} \cdot 123^{8}\right) \cdot \left(123^{1}\right) \pmod{101}$$

$$\equiv \ (52 \cdot 31) \cdot (58 \cdot 19) \cdot (25 \cdot 56) \cdot (123) \ \equiv \ (1612) \cdot (1102) \cdot (1400) \cdot (123) \ (\text{mod } 101)$$

$$\equiv (1612 - 15 \cdot 101) \cdot (1102 - 10 \cdot 101) \cdot (1400 - 13 \cdot 101) \cdot (123 - 101) \pmod{101}$$

(continued)

(continued)
$$\equiv (97) \cdot (92) \cdot (87) \cdot (22) \equiv (97 \cdot 92) \cdot (87 \cdot 22) \pmod{101}$$

 $\equiv (8924) \cdot (1914) \equiv (8924 - 88 \cdot 101) \cdot (1914 - 18 \cdot 101) \equiv (36) \cdot (96) \pmod{101}$
 $\equiv 3456 \equiv 3456 - 34 \cdot 101 \equiv \boxed{22 \equiv 123 \pmod{101}}$

24. Assume that $|a| \le |b|$. To find gcd(a, b), we let $r_0 = b$ and $r_1 = a$ and construct a sequence of integers $(r_i$'s) using the division algorithm; specifically, for integers $i \ge 1$, we let

$$r_{i-1} = q_i \cdot r_i + r_{i+1}$$

where $q_i = \lfloor r_{i-1}/r_i \rfloor$ and $r_{i+1} = r_{i-1} - q_i \cdot r_i$.

Then, if $r_{k+1} = 0$ but $r_k \neq 0$ for some nonnegative integer k, then $gcd(a, b) = r_k$.

(a) $\lfloor 5/1 \rfloor = \lfloor 5 \rfloor = 5$, and $5 - 5 \cdot 1 = 0$, so we write $5 = 5 \cdot 1 + 0$.

Then, $r_2 = 0$. Since $r_1 = 1 \neq 0$, we have $gcd(1, 5) = \boxed{1}$.

(b) To begin, $101 = 1 \cdot 100 + 1$.

Next,
$$100 = 100 \cdot 1 + 0$$
.

Since the remainder in this integer division is zero, the remainder in the previous integer division is the greatest common divisor of the given pair of integers i.e. $gcd(100, 101) = \boxed{1}$.

(c) $277 = 2 \cdot 123 + 31$.

$$123 = 3 \cdot 31 + 30.$$

$$31 = 1 \cdot 30 + 1$$
.

$$30 = 30 \cdot 1 + 0.$$

So,
$$gcd(123, 277) = \boxed{1}$$
.

(d)
$$14039 = 9 \cdot 1529 + 278$$
.

$$1529 = 5 \cdot 278 + 139.$$

$$278 = 2 \cdot 139 + 0.$$

Therefore, $gcd(1529, 14039) = \boxed{139}$.

(e)
$$14038 = 9 \cdot 1529 + 277$$
.

$$1529 = 5 \cdot 277 + 144.$$

$$277 = 1 \cdot 144 + 133.$$

$$144 = 1 \cdot 133 + 11.$$

$$133 = 12 \cdot 11 + 1.$$

$$11 = 11 \cdot 1 + 0.$$

Accordingly, $gcd(1529, 14038) = \boxed{1}$.

(f)
$$1111111 = 10 \cdot 111111 + 1$$
.

$$111111 = 111111 \cdot 1 + 0.$$

Consequently, $gcd(1529, 14038) = \boxed{1}$.

26. Let us perform the Euclidean algorithm and count the number of divisions that we did:

$$55 = 1 \cdot 34 + 21.$$

$$34 = 1 \cdot 21 + 13.$$

$$21 = 1 \cdot 13 + 8.$$

$$13 = 1 \cdot 8 + 5.$$

$$8 = 1 \cdot 5 + 3.$$

$$5 = 1 \cdot 3 + 2$$
.

$$3 = 1 \cdot 2 + 1$$
.

$$2 = 2 \cdot 1 + 0.$$

The number of divisions that the algorithm required was 8.

The reason that it took so many was that 34 and 55 are consecutive Fibonacci numbers.