Computer Science 1820 Solutions for Recommended Exercises Section 4.1

- 4. (a) P(1) is $1^3 = (1(1+1)/2)^2$.
 - (b) The right-hand side of the equation in P(1) is

$$(1(1+1)/2)^2 = (1(2)/2)^2 = (2/2)^2 = (1)^2 = 1 = 1^3,$$

which is the left-hand side of the equation in P(1); ergo, P(1) is true.

(c) The inductive hypothesis is that for some integer $k \ge 1$, P(k) is true

i.e.
$$1^3 + 2^3 + 3^3 + \dots + k^3 = (k(k+1)/2)^2$$
.

(d) In the inductive step, we need to prove P(k+1), or

$$1^{3} + 2^{3} + 3^{3} + \dots + k^{3} + (k+1)^{3} = ((k+1)((k+1)+1)/2)^{2}.$$

(e) By our inductive hypothesis, the left-hand side of the equation in P(k+1) may be rewritten as

$$1^{3} + 2^{3} + 3^{3} + \dots + k^{3} + (k+1)^{3} = (1^{3} + 2^{3} + 3^{3} + \dots + k^{3}) + (k+1)^{3}$$

$$= (k(k+1)/2)^{2} + (k+1)^{3} = \left(\frac{k(k+1)}{2}\right)^{2} + (k+1)^{3} = \frac{k^{2}(k+1)^{2}}{4} + \frac{4(k+1)^{3}}{4}$$

$$= \frac{k^{2}(k+1)^{2} + 4(k+1)^{3}}{4} = \frac{(k+1)^{2} \left[k^{2} + 4(k+1)\right]}{4} = \frac{(k+1)^{2} \left[k^{2} + 4k + 4\right]}{4}$$

$$= \frac{(k+1)^{2} \left[(k+2)(k+2)\right]}{4} = \frac{(k+1)^{2}(k+2)^{2}}{4} = \left(\frac{(k+1)(k+2)}{2}\right)^{2}$$

$$= ((k+1)((k+1)+1)/2)^{2},$$

which is the right-hand side of the equation in P(k+1), making that statement true. By the Principle of Mathematical Induction, P(n) is true for every positive integer *n*.

- (f) We proved that if P(k) is true for any positive integer k, then P(k+1) is also true. We also proved that P(1) is true; since 1 is a positive integer, k could have been 1, which means that we proved that P(2) is also true. 2 is also a positive integer, so k could have been 2, which means that P(3) is also true. k could have been 3, which means that P(4) is also true. k could have been 5, so P(6) is true, ad infinitum.
- 6. **Base Case:** $1 \cdot 1! = 1 \cdot 1 = 1 = 2 1 = 2! 1 = (1+1)! 1$, so P(1) is true.

Inductive Step: Assume that for some integer $k \ge 1$, P(k) is true

i.e.
$$1 \cdot 1! + 2 \cdot 2! + 3 \cdot 3! + \dots k \cdot k! = (k+1)! - 1.$$

Then, $1 \cdot 1! + 2 \cdot 2! + 3 \cdot 3! + \dots + k \cdot k! + (k+1) \cdot (k+1)!$

$$= (1 \cdot 1! + 2 \cdot 2! + 3 \cdot 3! + \dots + k \cdot k!) + (k+1) \cdot (k+1)! = (k+1)! - 1 + (k+1) \cdot (k+1)!$$

$$= (k+1)! + (k+1) \cdot (k+1)! - 1 = [1 + (k+1)] \cdot (k+1)! - 1$$

$$= [k+2] \cdot (k+1)! - 1 = [k+2]! - 1 = [(k+1)+1]! - 1, \text{ so } P(k+1) \text{ is true.}$$

By the Principle of Mathematical Induction, P(n) is true for all positive integers n.

8. <u>Base Case</u>: $2(-7)^0 = 2(1) = 2 = 8/4 = (1 - (-7))/4 = (1 - (-7)^{0+1})/4$, so P(0) is true.

Inductive Step: Assume that for some integer $k \ge 0$, P(k) is true

i.e.
$$2 - 2 \cdot 7 + 2 \cdot 7^2 - \dots + 2(-7)^k = (1 - (-7)^{k+1})/4.$$

Then, $2 - 2 \cdot 7 + 2 \cdot 7^2 - \dots + 2(-7)^k + 2(-7)^{k+1}$
 $= (2 - 2 \cdot 7 + 2 \cdot 7^2 - \dots + 2(-7)^k) + 2(-7)^{k+1} = (1 - (-7)^{k+1})/4 + 2(-7)^{k+1}$
 $= \frac{1 - (-7)^{k+1}}{4} + \frac{8(-7)^{k+1}}{4} = \frac{1 - (-7)^{k+1} + 8(-7)^{k+1}}{4} = \frac{1 + 7(-7)^{k+1}}{4} = \frac{1 - (-7)(-7)^{k+1}}{4}$
 $= (1 - (-7)^{(k+1)+1})/4$, so $P(k+1)$ is true.

By the Principle of Mathematical Induction, P(n) is true for all nonnegative integers n.

10. (a)
$$\underline{n=1}$$
: $\frac{1}{1\cdot 2} = \frac{1}{2} = \frac{1}{1+1}$.
 $\underline{n=2}$: $\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} = \frac{1}{2} + \frac{1}{6} = \frac{3}{6} + \frac{1}{6} = \frac{4}{6} = \frac{2}{3} = \frac{2}{2+1}$.
 $\underline{n=3}$: $\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \frac{1}{3\cdot 4} = \frac{1}{2} + \frac{1}{6} + \frac{1}{12} = \frac{6}{12} + \frac{2}{12} + \frac{1}{12} = \frac{9}{12} = \frac{3}{4} = \frac{3}{3+1}$.
We guess that for all positive integers n , $\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \dots + \frac{1}{n(n+1)} = \frac{n}{n+1}$.

(b) **<u>Base Case</u>**: We proved above that P(1) is true.

Inductive Step: Assume that for some integer $k \ge 1$, P(k) is true

i.e.
$$\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \dots + \frac{1}{k(k+1)} = \frac{k}{k+1}$$
.
Then, $\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \dots + \frac{1}{k(k+1)} + \frac{1}{(k+1)((k+1)+1)}$
 $= \left(\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \dots + \frac{1}{k(k+1)}\right) + \frac{1}{(k+1)((k+1)+1)} = \frac{k}{k+1} + \frac{1}{(k+1)(k+2)}$
 $= \frac{k(k+2)}{(k+1)(k+2)} + \frac{1}{(k+1)(k+2)} = \frac{k(k+2)+1}{(k+1)(k+2)} = \frac{k^2+2k+1}{(k+1)(k+2)}$
 $= \frac{(k+1)(k+1)}{(k+1)(k+2)} = \frac{k+1}{k+2} = \frac{k+1}{(k+1)+1}$, so $P(k+1)$ is true.

By the Principle of Mathematical Induction,

$$\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \dots + \frac{1}{n(n+1)} = \frac{n}{n+1}$$

for all positive integers *n*.

20. **Base Case:** $3^7 = 2187 < 5040 = 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 = 7!$, so P(7) is true.

Inductive Step: Assume that for some integer k > 6, P(k) is true i.e. $3^k < k!$.

Then, $3^{k+1} = 3 \cdot 3^k < 3 \cdot k! < (k+1) \cdot k! = (k+1)!$, so P(k+1) is true.

By the Principle of Mathematical Induction, $3^n < n!$ for all integers n > 6.

22. We do a small table of values:

n	n^2	<i>n</i> !
0	$0^2 = 0$	0! = 0
1	$1^2 = 1$	1
2	$2^2 = 4$	$1 \cdot 2 = 2$
3	$3^2 = 9$	$1 \cdot 2 \cdot 3 = 6$
4	$4^2 = 16$	$1 \cdot 2 \cdot 3 \cdot 4 = 24$
5	$5^2 = 25$	$1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 = 120$

We guess than if *n* is a nonnegative integer and $n^2 \le n!$, then n = 0, n = 1, or $n \ge 4$.

We proved P(0) and P(1) above, so we need to prove that P(n) is true for all integers $n \ge 4$: **Base Case:** We proved above that P(4) is true.

Inductive Step: Assume that for some integer $k \ge 4$, P(k) is true i.e. $k^2 \le k!$.

Then, $(k+1)^2 = (k+1)(k+1) = k^2 + 2k + 1 < k^2 + k^2 + k^2$ = $3 \cdot k^2 \le 3 \cdot k! < (k+1) \cdot k! = (k+1)!$, so P(k+1) is true.

By the Principle of Mathematical Induction, $n^2 \le n!$ for all integers $n \ge 4$.

32. **Base Case:** $(1)^3 + 2(1) = 1 + 2 = 3$, and 3 divides 3, so P(1) is true.

Inductive Step: Assume that for some integer $k \ge 1$, P(k) is true i.e. 3 divides $k^3 + 2k$, which means that we can find an integer *m* such that $k^3 + 2k = 3m$.

Then,
$$(k+1)^3 + 2(k+1) = (k+1)[(k+1)^2 + 2] = (k+1)[(k+1)(k+1) + 2]$$

 $= (k+1)[k^2 + 2k + 1 + 2] = (k+1)[k^2 + 2k + 3] = k[k^2 + 2k + 3] + [k^2 + 2k + 3]$
 $= k^3 + 2k^2 + 3k + k^2 + 2k + 3 = k^3 + 2k + 3k^2 + 3k + 3 = (k^3 + 2k) + 3k^2 + 3k + 3$
 $= 3m + 3k^2 + 3k + 3 = 3(m + k^2 + k + 3)$, where $m + k^2 + k + 3$ is an integer.

Consequently, 3 divides $(k+1)^3 + 2(k+1)$, so P(k+1) is true. By the Principle of Mathematical Induction, 3 divides $n^3 + 2n$ for all positive integers *n*.

34. **<u>Base Case</u>**: $(0)^3 - (0) = 0$, and 6 divides 0, so P(0) is true.

Inductive Step: Assume that for some integer $k \ge 0$, P(k) is true i.e. 6 divides $k^3 - k$, which means that we can find an integer *m* such that $k^3 - k = 6m$.

Then,
$$(k+1)^3 - (k+1) = (k+1)[(k+1)^2 - 1] = (k+1)[(k+1)(k+1) - 1]$$

= $(k+1)[k^2 + 2k + 1 - 1] = (k+1)[k^2 + 2k] = k[k^2 + 2k] + [k^2 + 2k] = k^3 + 2k^2 + k^2 + 2k$
= $k^3 + 3k^2 + 2k = (k^3 - k) + 3k^2 + 3k = 6m + 3(k^2 + k) = 6m + 3 \cdot k(k+1).$

Consider: if k is even, then k(k+1) is even, but if k is odd, then k+1 is even, so k(k+1) is even; either way, we can find an integer ℓ such that $k(k+1) = 2\ell$. Then, the expression above becomes

$$(k^3 - k) + 3 \cdot k(k+1) = 6m + 3 \cdot 2\ell = 6m + 6\ell = 6(m+\ell)$$
, where $m + \ell$ is an integer.

Accordingly, 6 divides $(k+1)^3 - (k+1)$, so P(k+1) is true. By the Principle of Mathematical Induction, 6 divides $n^3 - n$ for all nonnegative integers n.