
I asked again, eager to learn and ready
to offer assistance, “How could I share
any of my 15 years of experience with
you, so your organization could learn
from the rest of industry and gain bene-
fit faster than having to invent these
things for yourselves?”

The response was a weak “I don’t
know” and a blank stare.

And so finally I asked, “Are you aware
of the Capability Maturity Model for
Software or other software development
guidelines that might provide some addi-
tional perspectives?”

“Yes,” he said, “but none of that stuff
applies to us; we are very different.”

CMM IN CONTEXT
I was a key author of the CMM, con-

tributing heavily to V1.0 and participating
in all reviews. Since the release of CMM
1.0 in August 1991, I have had to deal with
an amazingly varied set of misconceptions
about the CMM. I am finding that the
CMM is one of the most misunderstood
pieces of technical literature in existence.

The CMM (as well as numerous IEEE
standards and guidelines) attempts to
collect some of the best wisdom in a lim-
ited portion of the software development
industry. However, because of its size and
dense presentation, I find people are hav-
ing a difficult time grasping the CMM.

I agree with many of you that the
CMM reflects the large, aerospace, con-
tract-software development environment
it was originally intended to address. I
agree with many of you that the CMM
touches on only a small part of good
practices for software development
(domain, technical, systems, and “peo-

N
ot too long ago, I was chatting
with a vice president of a
major shrinkwrapped software
vendor. He described a new
concept the firm had invented,

something that was working extremely
well. I think he called it a bug council: 
A regular meeting where requests for
changes and remaining known defects
were reviewed; their impacts discussed;
decisions made on what to add, fix, or
leave; and cross-functional commit-
ments made to take action.

I smiled and asked, “What if I had told
you that we’ve been using the same pro-
cess you just ‘discovered’ for 15 years,
except we call it a configuration control
board. How would you have reacted?”

“Oh,” he said, “I probably would
have just ignored you!”

ple stuff” are not covered). And I agree
with many of you that the language is
intractable (there is English and then
there is “CMM-speak”).

These are some of the challenges I face
as I work with organizations that have
chosen the CMM as one tool to improve
their development processes.

What I have learned is just how easy it
is to perceive all kinds of things about the
CMM that were not intended—just how
easy it was to make a radically different
meaning (interpretation) out of the bare
text offered as intake. I have also learned
just how deeply some of these meanings
touch the emotions of those reading the
CMM—the significance given to the
intake and the meaning was something I
had not imagined when I was writing and

reviewing many of the CMM words that
still exist today.

This leads to a puzzle for me. If the
CMM really was written to reflect 
the large, aerospace, contract-software
development environment, what is my
responsibility as an author for translat-
ing the CMM and making it accessible
to other people? What is my responsibil-
ity when I work with my clients, when I
teach my students, when I talk with the
community at large? What is the respon-
sibility of those who read the CMM who
are not from that original community?
What is the responsibility of the “own-
ers” of the CMM in all this?

I have concluded that the single part
of the puzzle over which I have any con-
trol is how I deal with the CMM. So I
always attempt to understand where the
client (or student) is coming from; the
problem or frame of reference she brings.
I try to demystify the CMM, to bring it
into her world using her vocabulary. I am
told that I am very successful in doing
this, because I demonstrate that the client
(or student) is in charge of what she can
or will understand.

When I work with my clients, we look
for the essence of the CMM, the benefits
it may bring to them. To this end, I often

Essence of
the Capability

Maturity Model
Judy Bamberger, Process Solutions

112 Computer

S
o

ft
w

a
re

R
e

a
li

ti
e

s

The CMM touches on 
only a small part of 
good practices for

software development.

As a student of software development
dynamics, I’m annoyed by the CMM. I
think it profoundly oversimplifies the
software process problem—offering lit-
tle of use to those who already under-
stand software development and dan-
gerous advice to those who don’t. That’s
why I’m fascinated by Judy Bamberger.
Judy is no mere process bureaucrat—she
is a passionate and original thinker. Yet
she applies the CMM. Moreover, she
tames it. She makes it jump through
hoops of fire. She brings to the CMM
wisdom that is nowhere present in its
text, and ignores any of its text that
offers no wisdom. I sense a lot of reality
in her approach and I’d like to under-
stand it better.

—James Bach

.

James Bach
 

James Bach
 

James Bach
Copyright (c) 1997, IEEE Computer Society



June 1997 113

ignore the concept of maturity levels and
ratings, as we often find them more
harmful than useful. What remains are
many bits and pieces of the CMM that
my clients find extremely beneficial, as
they seem to address real problems my
clients are having.

REPEATABLE LEVEL: 
STABILIZING THE PROJECT

I hear from many teams, projects, and
organizations who believe their software
development is “out of control.” These
are the issues my clients say cause them
the most grief:

• not knowing which version of each
file is “official”;

• one person’s fixes wiping out another’s;
• features in one version not being

retained in a later version;
• a difference in the marketing group’s

view of the features to be delivered
and the development group’s view
(often with no real understanding of
the end user’s needs);

• features that change until the last
moment and are requested in a
seemingly ad hoc manner;

• not being able to meet development
commitments and not being able to
“push back” when developers
believe the required commitments
cannot be met;

• lack of insight as to how much more
work there is to complete in order
to meet the commitments;

• significant difference among the
work products created by each
developer, resulting in much confu-
sion during integration and rework;

• an increasing amount of time spent
in rework versus new development.

And there are the emotional results: frus-
tration, demotivation, ambivalence,
burnout, and fear (of being honest; of
delivering late).

I start by trying to understand the
issues that the people are facing. I listen;
I observe; I reflect back; I get confirma-
tion. I hear their issues—the facts and the
emotions. And this set of concerns is
what I hear and see in many places in the
software industry.

This is what the CMM addresses in
the Repeatable Level: getting some basics

under control so that developers can do
what they were hired to do—develop
software. This is the essence of the CMM
at the Repeatable Level:

• Get control of the product being
released, and get control of the
product pieces under development
(the CMM’s Software Configura-
tion Management key process area).

• Define the feature set, ensure that
what users want is what marketing
and development think they want,
and control the feature set so that the
impact of changes made are more
fully understood (the Requirements
Management key process area).

• Use the feature set for estimating
the work (to ensure that all
promised features will be pro-
vided), and use the estimates for
creating the schedule and other
plans, leveraging as much past
experience and knowledge as pos-
sible (the Software Project Planning
key process area).

• Make the schedules and plans visible,
so everyone knows their targets and
what will happen if they cannot meet
them; track progress, to celebrate suc-
cess and to understand better the
impacts of schedule slips or feature
changes; keep managers informed of
status, risks, and problems, so they
can help; modify schedules and plans
when the basic assumptions change
(the Software Project Tracking and

Oversight key process area).
• Help the development team state

clearly what it plans to do and the
standards and conventions it wants
to adopt and follow; ensure the
team follows its plans, standards,
and conventions; and identify and
correct discrepancies where they
occur (the Software Quality As-
surance key process area).

All these things taken together help
establish some basic stability and visibil-
ity—for the developers, for the managers,
for the testers, for the marketing group,
for everybody. By making these things vis-
ible, everyone involved, directly or indi-
rectly, has a much better chance of suc-
ceeding, having fun, and spending more
time doing value-enhancing activities.

And what is really valuable to me is
that these concepts apply to me, an indi-
vidual, as well, whether I am writing
code or developing training or creating
a proposal or doing most any other con-
sulting activity.

COMMON FEATURES: 
NOTHING IS MAGIC 

I have never seen the essence of the
Repeatable Level appear magically, even
when a team, project, or organization
recognizes it can gain substantial bene-
fit from doing Repeatable Level activi-
ties. Here again, I ask questions and
listen, observe, reflect, and confirm. I ask
questions like:

What the CMM Is and What It Isn’t
As an author of the CMM, I believe that it was not designed nor intended to be

used in a way that says you must achieve level x by year y or that you have to “be”
a certain level before people will do business with you. Nor do I believe that there
is only one way and that is the CMM, nor any of the other slogans and requirements
that seem to be increasingly prevalent.

The CMM wasn’t intended to be all things to all people or cover all possible
aspects of software and system development. The view that guided me during my
many years’ work as a CMM author, contributor, and reviewer was that the CMM
was intended to provide one set of guidelines for managing software development
projects and making improvements over time. This set of guidelines was based on
best practices, software engineering discipline, real-world experience, and extrap-
olation from other industries. And, most importantly, this set of guidelines was just
that—guidelines—not requirements or a checklist of “must do” items; the guide-
lines were intended to be interpreted, tailored, and applied within the culture and
context of each unique organization.

For more information about the CMM, see http://www.sei.cmu.edu/products/.

.



• How do you enable good practices
to happen? and

• How do you evaluate that you are
doing those practices?

And this is the essence of the common
features of the CMM—those enablers
and evaluators that help ensure that what
people want to do is, in fact, being done
and is being done right the first time and
every time. A good set of enabling and
evaluating practices helps developers
know they are doing things correctly and
well and that the resulting products are
achieving full value from them.

Enablers
To my questions about enablers (How

do you capture and share good practices?
How do new people come up to speed
with them?), I often get answers like: We
assign someone responsibility. We get
training and tools. We make a checklist
or create a template.

Enablers also include policies and pro-
cedures. Now, sometimes when I talk
about policies and procedures, people’s
eyes glaze over, as they think about five-
inch binders (invariably covered by five
inches of dust!). But what I mean by poli-
cies and procedures is whatever makes
sense, given the size, experience, and sta-
bility of the organization.

I often tell the true story of the “yel-
low-stickie configuration management
policy and procedure.” Several years ago,
when there were only 8-bit PCs, when
there was no such thing as Windows, and
when there were no configuration man-
agement tools for the PC environment,
three very bright people were developing
(quite rapidly) a large software product
on four different systems.

Because they were very bright, they
realized just how easily they could oblit-
erate each other’s work. So they defined
and followed this protocol: “If you want
to change a file that has been baselined,
you must go to the machine maintaining

114 Computer

the baseline. If you do not see a yellow
stickie with the name of that file on it,
you may check it out, but only after you
post a yellow stickie with the name of
that file on it. After you return the file,
remove the yellow stickie. No file may be
returned until it has been tested in your
environment. No interfaces or common
files may change without prior coordi-
nation among all of us.”

In the CMM, enablers include things
like checklists, templates, training, tools,
funding, policies, procedures—all those
items that provide people with the
knowledge, skills, and tools to do the job
right the first time and every time. In 
the terms of the CMM, these are the
Commitment to Perform and the Ability
to Perform common features.

Evaluators
To my questions about evaluators

(How do you know where you are? How
do you know that your practices are
working well for you? How do you know
that people have enough information to
make the decisions they need to make?),
I often get answers like: We check off a
milestone. We hold a review. We provide
a status report or other information to the
project manager. We post progress or
quality metrics so all can see.

When I talk about metrics, people
sometimes become fearful, because they
fear the measures are going to be used
against them. So I work with them to
define metrics that make sense, and that
help them know if they are achieving what
they want. Three questions I use to help
elicit metrics relevant to my client are:

• Where are we now?
• Where do we want to be?
• How will we know when we get

there?

My clients and I brainstorm about
metrics to answer these questions. Then
we negotiate a set of items the client
wants to measure to help determine how
well they are getting what they want.

In the CMM, evaluators include things
like knowing whether or not something
has been done, its status, its quality, its
effectiveness; and use of that information
by those who need to know it, such as

developers, project managers, and senior
managers, so they can take action in a
timely and effective manner. In the terms
of the CMM, these are the Measurement
and Analysis and Verifying Implemen-
tation common features.

All these things, taken together, help
build a culture and a memory of “how
we do things here.” They establish a basis
for learning, for taking action in a timely
and well-informed way, and for improve-
ment over time.

And what is really valuable to me is
that these concepts apply to me, an indi-
vidual, as well, and to any activity that I
am trying to make an effective part of the
way I do business.

This is my view of the essence of the
CMM, or at least a part of it. Now
it’s your turn. Try this:

1. Think of part of your software devel-
opment process that is in some pain
or ready for a tune-up.

2. Think of several options to address
those parts. 

3. Look for a key process area in the
CMM that sounds close to some of
those options.

4. Read the goals of the key process
area and ask, “What do I get by hav-
ing this goal?”

5. If there is a relationship between the
goals and what you identified as
options, explore deeper into the com-
mon features and the key practices.

6. Keep an open mind; see what you can
learn; find the essence behind the
CMM words, capture it in your frame
of reference, and use it mindfully to
help you address the issues you face.

7. And let me know what you find as
your essence of the CMM. ❖

Judy Bamberger has 20 years’ experience
developing software, leading teams,
doing process improvement, and teach-
ing. An independent consultant, she also
teaches an award-winning class that dis-
tills many quality tools to their essence
and has the students apply them in the
contexts of a real team, project, and
organization. Contact her at bamberg@
eaglet.rain.com.

What is really valuable
about the CMM is that 

its concepts apply to me
and my business.

.




