
Nuts

Nuts

B
o

lts

B
o

lt
s

Tsuneo Yamaura, Hitachi Software Engineering

How To Design
Practical
Test Cases

Programmers can bu i ld h igh-qual i t y tes ts by
fo l lowing cer ta in bas ic s teps, out l ined here. The
author a l so d i scusses the cost, t ime, and personnel
resources requi red for debugging and tes t ing.

3 0 I E E E S o f t w a r e N o v e m b e r / D e c e m b e r 1 9 9 8 0 7 4 0 - 7 4 5 9 / 9 8 / $ 1 0 . 0 0 © 1 9 9 8

t Hitachi Software, our software has attained such high quality that only

0.02 percent of all bugs in a software program emerge at the user’s site.1

If a typical project—10 engineers working for 12 months to develop

100,000 lines of code—contains 1,000 bugs, at most one will surface at

the user’s site. We do not use sophisticated tools or state-of-the-art methodology—

we simply test programs and fix the bugs detected.

Our secret is that we document all test cases before we start debugging and test-

ing. The written test cases provide significant advantages, and all our quality assur-

ance activities start from this point.

Figure 1 shows the percentage of defects detected at each stage in a 1990 Hitachi

software development project. (More recent data, still being collected, will not show

drastic changes.) Of all the bugs detected since the project’s inception, only 0.02

percent came out at the customer’s site. Such high quality could never have been

attained if we had not employed written test cases.

A

How To

.

Documenting Test Cases

Documented test cases can benefit your devel-

opment process in several key ways:

♦ Designing test cases gives you a chance to an-

alyze the specification from a different angle.

♦ You can repeat the same test cases.

♦ Somebody else can execute the test cases for

you.

♦ You can easily validate the quality of the test

cases.

♦ You can estimate the quality of the target soft-

ware early on.

A new viewpoint
Test cases provide another rendition of the func-

tional specification. Designing the test cases will

give you pause: “Aha, I didn’t consider such and such

conditions. Was that specification really correct?”The

bugs revealed in this way would be harder to detect

and would require enormous time and money to fix

later, such as in the system integration phase.

Roughly speaking, you can catch 10 percent of a sys-

tem’s bugs when you are designing the test cases—

a significant advantage.

Repeating test scenarios
You can easily reiterate the same test cases if

everything is documented. Reusing test cases lets

you reproduce bugs, which helps ensure that de-

tected bugs are fixed properly.

Passing the test along
If you specify the test conditions, input data set,

and expected outcome, you can ask somebody else

to execute the test—which can prove particularly

valuable on a project running late. Adding pro-

grammers to a project that is behind schedule fre-

quently causes more delays because the project en-

gineers must spare precious time to educate the

new personnel. If the test cases are properly docu-

mented, however, the new staff can run the test

cases as written.

Validating test case quality
You must, of course, test the test cases to ensure

that they visit all the features implemented in the

software. Check whether they are well-balanced

among normal, abnormal, and boundary cases, and

evaluate their overall sufficiency. Ad lib or random

testing will never suffice—if you do not document

the test cases clearly, you cannot precisely measure

their quality metrics and success.

Estimating software quality
If the test cases are properly developed, you can

easily estimate the quality of the target software in

the midst of debugging by applying the fish-in-the-

pond analogy: If you detect four bugs after execut-

ing 100 test cases out of 1,000, common sense says

the software will carry about 40 bugs altogether.

State-of-the-art software reliability theory is not that

simple, but this quick and easy estimation gives you

a rough idea of the software’s quality.

Schedule, Cost, and
Personnel

You see how useful it is to document the test

cases. There is no free lunch, however—you must

invest time, money, and personnel to enjoy the ad-

vantages. The question is how much you will need.

Here is a rough idea, with some statistical data.

N o v e m b e r / D e c e m b e r 1 9 9 8 I E E E S o f t w a r e 3 1

0

100

90

80

70

60

50

40

30

20

10

0

P
e

rc
e

n
ta

g
e

Desk

debugging

21.5

Unit

debugging

Combination

debugging

System

test

Quality

probe

”Cramming”

before

inspection

Inspection ”Cramming”

during

inspection

Field

failure

35.1
28.0

6.1
0.7 3.3 0.8

4.5
0.02

56.6

90.7
91.4 91.4

94.7 95.5
99.98 100

Figure 1. Bug detection during the development phases of a 1990 project.

.

Assume that an average 12-month project with 10

engineers develops C-based software with 100,000

lines of code. An average project might apportion

12 months among the following phases:

♦ requirement specification: two months

♦ designing: three months

♦ coding: two months

♦ debugging: three months

♦ testing (handled by the quality assurance

team): two months

At Hitachi Software, when the project completes

debugging, the product is sent to the QA depart-

ment where testers spend approximately two

months evaluating whether the software is ship-

pable. Since the testers must be unbiased and un-

derstand the customer’s requirements, they never

reuse the programmers’test suites; they redesign all

the test items from scratch.

The test-case density—“how many test cases

do we need?”—is one of the most critical engi-

neering issues in testing. Too few test cases will

leave easy bugs undetected, and too many will run

short of time.

Our 30-year empirical study based on trial and

error found that the proper test case density con-

verges on the standard of one test case per 10 to 15

3 2 I E E E S o f t w a r e N o v e m b e r / D e c e m b e r 1 9 9 8

Nuts

Nuts

B
o

lts

B
o

lt
s

Zoom

Program checking list

Data

Checking ID

Condition and expected output

Format for control display

Test title

Close

Dictionary

Code

SR

Verb

Transition of command

view port

Display of control port

Standard status

Zoom status

Close status

Dictionary status

Code status

System ID

Control ID

Management ID

PMCard ID

Written by

Certified by

Reviewed by

Display Control View

(Command View Port)

ABCDE/01-00

Command Proc.

Parameter

0040-0199

K. Moriya

N. Sakamoto

A. K. Onama

C
o

m
d

it
io

n

C
E

L
0

0
1

C
E

L
0

0
2

C
E

L
0

0
3

C
E

L
0

0
4

C
E

L
0

0
5

C
E

L
0

0
6

C
E

L
0

0
7

C
E

L
0

0
8

C
E

L
0

0
9

C
E

L
0

0
1

0

C
E

L
0

0
1

1

Test Spec. ID

Date

Checked

Priority

Category

Notes(#)

Hitachi

Software

Working

Number
10810040

Sheet

No.
1 of 99

A

N

A

N

B

N

B

N

B

N

B

N

B

N

B

N

B

N

B

N

B

E

DC

MC

SR status

Display for command view port

Charge of

command view port

Display for command view port

Figure 2. A matrix-based test sheet.

.

LOC. This means that a product with 100,000 LOC

needs approximately 10,000 test cases—1,000 per

programmer. Of 1,000 test cases, approximately 100

will be checked in the code inspection phase, and

all of them will be checked in the machine debug-

ging phase (which means that the first 100 cases for

code inspection overlap with the machine debug-

ging). Based on our study, these figures do not look

unrealistic. An average programmer takes two

weeks to execute 100 test cases in the code inspec-

tion phase (10 cases per day), and two months to

execute 1,000 test cases in the machine debugging

phase (25 cases per day). Ten programmers will take

two weeks to design the test cases (assuming 100

test cases a day per programmer), or 3.8 percent of

the entire project.

Steps for Debugging and
Testing

Systematic testing follows six core procedures:

1. Design a set of test cases.

2. Check the test cases.

3. Do code inspection based on the test cases.

4. Do machine debugging based on the test

cases.

5. Collect quality-related data during debugging.

6. Analyze the data during debugging.

Designing test cases
There is only one rule in designing test cases:

cover all the features, but do not make too many test

cases. We use a matrix-based test sheet to visit all

the necessary functions, and apply equivalent par-

titioning and boundary analysis to eliminate re-

dundant test cases. When needed, we use other test

methods based on a state transition model, deci-

sion table, or dataflow model.

Figure 2 illustrates the matrix-based test sheet

we employ. The first step is to itemize all the condi-

tions, then consider all the possible combinations.

This step will reveal considerable defects, because

designing the test cases in this manner means re-

designing the software based on another method,

namely the decision table.

Note that all the test cases in Figure 1 have the

corresponding expected outputs, without which

you cannot reveal bugs while designing the test

cases. You also need to indicate if the test case

checks a normal, abnormal, or boundary case; this

is essential to evaluate the quality of the test cases.

And you must specify the testing priority, which

shows the testing order.

In the early 1970s, we employed natural lan-

guage to describe the stepwise conditioning of the

test cases. For example:

♦ When the person in the form is 65 years or older:
♦ When the person’s annual income is $10,000 or

less:
♦ When the person lives in area A-1: … (the nest-

ing of the conditions goes deeper)

Since this approach frequently caused us to over-

look various combinations of the conditions (or

holes in the test items), we migrated to matrix-based

test design in the mid-1970s.

Equivalent partitioning,2 a well-known testing

technique, uses a single value to represent the same

domain. Suppose, for example, an admission fee

varies by age, such that there is no fee for age 6 or

under, a $5 fee for 12 years old or younger, $8 for 18

years or under, and $10 for 19 and above. The test

cases you pick up from each domain can be “age 2”

for the domain of 0 ≤ age ≤ 6, “age 10” for 6 < age ≤
12, “age 14” for 12 < age ≤ 18, and “age 43” for 18 <

age. Picking up “age 43” and “age 50” is redundant

unless each represents a different domain in terms

of the white-box testing.

Boundary analysis2 is another well-known test-

ing technique whose core idea is that bugs tend to

exist on the borders of domains. Thus, in the ad-

mission fee example above, you need to test the

ages of –1, 0, 6, 7, 12, 13, 18, and 19.

We extracted the following test case design cri-

teria (or lessons) based on our empirical study.

♦ As I mentioned earlier, our optimized, prag-

matic density of the test cases is one per 10 to 15

LOC. A language processor generally needs more

test cases (approximately one test case per eight to

12 LOC) than a batch program, and an online pro-

gram requires more (one per five to 10 LOC) than a

language processor.

♦ From the viewpoint of white-box testing, the

number of IF statements serves as a better index

than the LOC because it relates directly to the num-

ber of executable paths in the program. The most

error-prone structure in software is a loop. For white-

box testing, you should test the iteration of 0, 1, 2,

average number, max – 1, max, and max + 1.

♦ The basic and normal cases must constitute

less than 60 percent of the test case set, with the

boundary and limitation cases at least 10 percent,

the error cases 15 percent, and the environmental

test cases (whether the program runs on different

N o v e m b e r / D e c e m b e r 1 9 9 8 I E E E S o f t w a r e 3 3

Nuts

Nuts

B
o

lts

B
o

lt
s

.

operating systems, and performance requirements)

15 percent.

♦ As a finishing touch, we run a 48-hour contin-

uous-operation test. All you have to provide is a test

suite that unlimitedly reiterates the same basic func-

tions. This test reveals many bugs related to a mem-

ory leakage, deadlock, and connection time-out.

Several tips can help you design successful and

effective test cases:

♦ Do not design too many test cases, in par-

ticular for syntax testing. If you consider the error

combinations of half a dozen parameters, you will

easily end up with thousands of test cases, which

may take several months to execute. The reality

is, somebody—most likely you—must run the

test. Design it so it can be completed within the

planned period.

♦ Refer to previous projects that developed sim-

ilar software. If they have test suites, by all means

get them—you may not be able to reuse them, but

they will give you insight.

♦ Indicate which test cases you will execute in

the code inspection phase, and which in machine

checking. It is advisable to use approximately 10 per-

cent of test cases for code inspection; this can help

you start tracing the software’s main streets.

♦ A software engineer tends to make too many

test cases for the features that he or she understands

well and too few for unfamiliar functions. Compare

the number of test cases with the LOC or number of

IFs to reveal such an anomaly.

Checking test case quality
Test cases, of course, must be tested. When your

test case design is complete, evaluate its properness

and correctness based on

♦ whether the test cases cover all features;

♦ the balance between normal, abnormal,

boundary, and environment test cases;

♦ the balance between code inspection (for

checking hard-to-provide conditions and for en-

abling the detection of bugs that can be easily and

effectively fixed) and machine execution (which eats

up testing time);

♦ the balance between black-box and white-box

testing; and

♦ the balance between functional tests and per-

formance tests.

Code inspection
Our empirical study indicates that 21.5 percent

of all bugs are detected in this phase. Of this num-

ber, I roughly estimate that code inspection reveals

half, and test case designing reveals the rest. I rec-

ommend assigning 25 to 33 percent of the debug-

ging time to check 10 percent of the test cases as

code inspection.

Record the defects detected during this phase.

This will tell you what bugs are left unfixed, where

and of what type the bugs will tend to be, what

module carries more defects, and so on. When you

execute a test case successfully, put the completed

date on the test case sheet.

3 4 I E E E S o f t w a r e N o v e m b e r / D e c e m b e r 1 9 9 8

12/30

230

210

194

Number of

untested PCLs

(actual)

Number of untested PCLs (target)

Cumulative

faults expected

Time

Cumulative

faults found

Backlog of faults

Added PCLs

170

160

140

116

90

16

25

40

25
14

26

40

34

2 6 13

20

30

24

60

42
45

50

200

N
u

m
b

e
r

o
f

P
C

L
s
 (

p
e

rc
e

n
t)

N
u

m
b

e
r

o
f

fa
u

lt
s100

1/5 11 15 21

60

50

40

30

20

10

25 31 2/4 10 14 20 26

Figure 3. An example of test execution and bug detection.

.

Machine debugging
This step is simple—just run a test case on the

actual machine (or simulator) and keep a record of

the result: passed or failed. When a test case reveals

a defect, fill out a bug report to record information

such as who revealed what, when, the symptom of

the bug, and the test case ID. Without such infor-

mation, you may end up thinking you have already

fixed the bug—until it resurfaces.

Before starting machine debugging, implement

the test cases as a test suite if possible. A test suite is

a program that automatically runs test cases and

compares the actual outputs with the expected

ones to determine “pass”or “fail.”This provides many

advantages. Although the test suite implementa-

tion takes time (the test suite engine is small—more

than 95 percent of the work goes to providing exe-

cution commands and defining the expected re-

sults), you save enormous time once it is built by let-

ting your computer debug the programs while you

are away. Stupid but costly typing errors can be com-

pletely eliminated, and you can use the test suite as

a functional degradation checker in the final stage

of software development when you have to make

the scheduled shipment date but the program still

needs modification and bug fixing.

You must remember one important thing when

implementing the test suite: make sure it reinitializes

all data when it goes on to the next test case. If a test

case cannot be executed because a bug in the previ-

ous case terminates the test suite, the early bug may

overshadow the consequent bugs, and these will not

be revealed unless the early bug is completely fixed.

Collect data for quality analysis
To maximize the usefulness of the documented

test cases, keep a record of all defects detected: their

symptoms, seriousness, who caught them and

when, the ID of the test case that caught them, the

modules where they reside, and when they are fixed.

Also, project managers should collect the daily

record of the number of test cases successfully exe-

cuted and the number of bugs detected and fixed.

They can plot this daily information and draw up a

target plan to run further test cases, as illustrated in

Figure 3.

Analyze the data
A diagram like that in Figure 3 offers useful in-

formation for controlling software quality and the

expected shipment date. How should you interpret

this data?

First, analyze the differences between the target

number and the actual number of successfully exe-

cuted test cases, and the target and actual number

of detected bugs. This will help you pinpoint the

problem in the early stage of debugging. Figure 4 il-

lustrates four such diagrams. Figure 4a shows a tar-

get of control. Figure 4b shows that many bugs have

been caught even though few test cases have been

executed. This likely results from previous processes,

such as module designing, not being properly com-

N o v e m b e r / D e c e m b e r 1 9 9 8 I E E E S o f t w a r e 3 5

Target of control

Faults found

Remaining PCLs

(actual)

Faults

expected

Remaining PCLs

(target)

Faults

found

Remaining PCLs (actual)

Faults

expected

Remaining PCLs

(target)

(a) Low quality of previous process(b)

Low debuggability

Faults found

Remaining PCLs (actual)
Faults

expected

Remaining PCLs

(target)

Faults

 expected

Remaining PCLs

(actual)

Faults found

Remaining PCLs

(target)

(c) Low PCL quality(d)

Figure 4. Diagnostics of test progress.

.

pleted or tested. In a very serious case, you should

suspend debugging to revisit the previous process.

Figure 4c indicates that the programmers cannot run

the test cases as planned, hence very few bugs have

been caught. This occurs when programmers are not

able to debug a program. In such a case, ask an ex-

pert to oversee the programmers until they become

familiar with debugging. Figure 4d indicates two pos-

sibilities: the test cases do not adequately reveal

bugs, or the software does not carry many bugs. The

former, of course, is much more likely than the latter,

and the remedy is to create more effective test cases.

Second, if you catch 10 bugs for 10 days in a row,

it is unlikely that today’s are the last 10 you’ll see.

Bug occurrence never stops suddenly but dimin-

ishes gradually. From the bug accumulative curve,

you can estimate when the curve goes flat, or the

date you should attain the quality goal. We use the

Gompertz Curve or the Logistic Curve for more ac-

curate estimation, but intuitive observation alone

can be a powerful tool.

Third, statistical data from bug reports can show

you, for example, what the most common errors are,

or what modules are error-prone. This kind of soft-

ware metric “during the fact”works as a quality con-

trol parameter.

Finally, you can analyze what kind of defects your

programmers tend to make—bug characteristics

such as memory leakage, keeping a file unclosed,

and so forth—and seek out errors that follow that

pattern. This may be a project manager’s task, but

it also may reveal the presence of more complicated

organizational and cultural issues.3,4

What might happen if a project does not em-

ploy the documented test cases or the QA

approach based on the written test cases? Of 1,000

bugs, suppose only five percent of the bugs revealed

during code inspection (215 bugs based upon the

bug distribution in Figure 1) and machine debug-

ging (631 bugs) are left undetected (43 bugs), and

emerge at the end of the development life cycle,

or—even worse—at the customer’s site. Our data

indicates that detecting and fixing each such defect

requires two to three days. This means you will need

an additional 86 to 130 days to raise the product

quality to the desired level for shipment. We spend

two weeks documenting the test cases and another

two weeks executing the (written) test cases in the

debugging phase—four weeks that may save four

to six months. This alone justifies the usefulness of

test case documentation. ❖

REFERENCES
1. A. Onoma and T. Yamaura, “Practical Steps Toward Quality

Development,” IEEE Software, Sept. 1995, pp. 68-77.

2. G.J. Myers, The Art of Software Testing, John Wiley & Sons, New

York, 1979.

3. T. Yamaura, “Standing Naked in the Snow,” American
Programmer, Vol. 5, No. 1, 1992, pp. 2-9.

4. T. Yamaura, “Why Johnny Can’t Test,” IEEE Software, Mar./Apr.

1998, pp. 113-115.

3 6 I E E E S o f t w a r e N o v e m b e r / D e c e m b e r 1 9 9 8

Nuts

Nuts

B
o

lts

B
o

lt
s

Tsuneo Yamaura is a senior engineer at
Hitachi Software Engineering. His
research interests include testing
methodologies, software metrics, devel-
opment paradigms, software modeling,
and CASE.

Yamaura received a BS in electrical en-
gineering from Himeji Institute of

Technology and was a visiting scholar at the University of
California, Berkeley. He is a member of the IEEE Computer
Society and ACM.

About the Author

Address questions about this article to Yamaura at Hitachi
Software Engineering, 6-81 Onoe-cho, Naka-ku, Yokohama,
244 Japan; e-mail yamaur_t@soft.hitachi.co.jp.

CALL FOR ARTICLES
AND REVIEWERS

Life in an Internet World:Life in an Internet World:
Software SecuritySoftware Security

Major sectors of the global economy like energy,

transportation, and telecommunications are depending

more and more on the Internet. This interconnectedness

increases some security risks and creates a few new ones.

We are looking for articles that address the following

issues:

♦ How secure is online personal information?

♦ How vulnerable are major elements of our infrastruc-

ture (power, telephone, banking, etc.) to electronic

attack?

♦ What is the tradeoff between easy access and

security? What is technically feasible?

♦ How do we recover from short-term security breaches?

To submit an article or to become a reviewer, contact

Angie Su at asu@computer.org. Articles must not exceed

5,400 words including tables and figures, which count for

200 words each.

.

