
ARTIFICIAL INTELLIGENCE 327

The , -Minimax Search Procedure
for Trees Containing Chance Nodes

B r u c e W. Ba l lard

Depar tme t z t o f C o m p u t e r Science , D u k e Universi ty , D z t r h a m ,

N C 27706, U . S . A .

Recommended by H.H. Nagel

ABSTRACT

An extention of the alpha-beta tree priming strategy to game trees with "probability" nodes, whose
values are defined as the (possibly weighted) average of their successors' values, is developed. These
'*-minhnax' trees pertain to games involving chance but no concealed infornzation. Based upon our
search strategy,)re formulate and then analyze several algorithnzs for *-minimax trees. An initial
left-to-right depth-first algorithm is developed and shown to reduce the conzplexity of an exhaustive
search strategy by 25-30 percent. An improved algorithnz is then formtdated to 'probe" beneath the
chance nodes of 'regular" *-nzininzax trees, where players alternate in making moves with chance
events interspersed. With random ordering of successor nodes, this modified algorithm is shown to
reduce search by more than 50 percent. With optimal ordering, it is shown to reduce search complexity
by an order of magnitude. After examining the savings of the first two algorithms on deep(r trees, two
additional algorithms are presented and analyzed.

1. Introduction

Many games involving chance events, such as the roll of dice or the drawing of
playing cards, can be modeled by introducing 'probability' nodes into standard
tn in i tnax trees. In this paper, we shall use the symbols + and - to denote
maximizing and minimizing nodes, respectively, and * (pronounced 'star ') to
denote a probability node. We define the va lue of a *node as the weighted
average of the values of its successors, which may occur with differing prob-
abilities. A sample '*-minimax' tree, as we shall call trees made up of +, - and
�9 nodes, appears in Fig. 1. Backed-up values for non-terminal nodes are shown in
parentheses. The value of the *node, whose successors have been assumed to be
equally likely, has been computed as -~(2-4)= - 1 .

*This research has been supported in part by AFOSR, Air Force Command, AFOSR 81-0221.

Artificial bztelligence 21 (1983) 327-350
0004-3702/83/$3.00 O 1983, Elsevier Science Publishers B.V. (North-Holland)

328 B.W. BALLARD

+ (3)

FIG. 1. A sample *-minimax tree.

In this paper we shall develop a search strategy for *-minimax trees, then
describe and analyze several algorithms based upon it. Our algorithms reduce
to the familiar alpha-beta procedure [2] for degenerate *-minimax trees, i.e.
those with only + and -nodes . Readers unfamiliar with ordinary minimax trees
should refer to Section 3 and perhaps consult Nilsson [1] or any of [2-5]. To
facilitate analysis, we shall assume that all descendents of a *node are equally
likely. The algorithm we present can be extended, in a direct way, to the more
general case.

For the most part, *-minimax trees retain the properties of ordinary minimax
trees. In particular, they pertain to 2-person, 0-sum, perfect information games.
By 'perfect information' we mean that neither player conceals information
about the current state .of the game, or possible future states, that is useful to
him and that would be useful to the other player. Many dice games (e.g. craps,
backgammon, and board games such as monopoly) satisfy these criteria, as do
some card games (e.g. casino blackjack).

Unlike ordinary minimax trees, where +nodes always lead to - n o d e s and
vice versa, trees for *-minimax games exhibit many forms. For instance, the top
portion of a tree for casino blackjack, where the strategy of the dealer ('house')
is predetermined, thus eliminating branches beneath -nodes , is given (in
simplified form) in Fig. 2. Compare the structure of this tree fragment, with its
notable absence of alternation between + and -nodes , with the backgammon
tree fragment of Fig. 3.

+ , y

,oso + Yi'
loss - ... win

FIG. 2. Portion of a casino blackjack tree.

, - M I N I M A X S E A R C H P R O C E D U R E 329

+ Doublele/ ~.Roll
* in +

FIG. 3. Portion of a backgammon tree.

2. The *-Minimax Search Problem

Having defined and given examples of *-minimax trees, we now consider the
question of searching these trees. At the very least, we want to retain the
alpha-beta 'cutoff ' power of ordinary minimax trees. However , the presence of
*nodes provides opportunit ies for additional forms of cutoffs. Our strategy is
based on the fact that lower and upper bounds on the value of a *node call be
derived by exploring one or more of its children. Our search algorithm will
(indirectly) associate such lower and upper bounds with each *node. Since
alpha and beta values will have been passed into a *node, we can discontinue
search below it if the lower *-bound ever exceeds beta, or if the upper *-bound
ever becomes less than alpha. In the former case, the - p l a y e r will have already
found a path that holds his opponent to less than the lower limit of the *node
value. In the latter case, + will have already found a way to do bet ter than the
upper limit of the *node value. Thus, optimal play by both players will assure that
the *node in question is never reached, rendering further exploration beneath it
futile.

As an example of a possible '*cutoff' , suppose the (leaf) values of a particular
tree are integers between 0 and 10, inclusive, and that a *node with 4 equally
likely successors has had 2 of its successors searched. This situation is shown in
Fig. 4. Knowing the values of these 2 children, we can say that the smallest
value subsequent search can assign to the *node is ~ (5 + 3 + 0 + 0) or 2.
Similarly, the greatest possible value of the *node is 2(5 + 3 + 10+ 10) or 7.
Thus, a cutoff can occur if the alpha value passed to * is /> 7, or if the beta
value is ~<2. We shall formulate a search strategy to take advantage of this form
of potential cutoff. In addition, our strategy will compute new alpha and beta
values for use below *nodes.

5 3 ~ ?.

FIG. 4. Interim bounds on a *node.

330 B.W. BALLARD

3. A Strategy for Searching *-Minimax Trees

Before looking at ways in which *cutoffs can occur, it will be useful to recall
the circumstance in which nodes of an ordinary minimax tree can be pruned,
without loss of accuracy. At each +node, the +player will choose the successor
with the highest value, while at - n o d e s the - p l a y e r will choose, the successor
with the smallest value. Consider Fig. 5. Having determined the value (eitht~r
terminal or backed-up) of tile node below move a as 4, move b is ' refuted ' by
move x, which establishes that the value of move b is no more than 3 (perhaps
less). Move y may be 'cut off' since its value (indicated by '? ') has no bearing
on either the value of the root of the tree or on deciding the best move from
the root. Since the node with ? as value could be the root of a sizable subtree,
the searching of many thousands of nodes may have been eliminated.

The standard method of having a search algorithm recognize opportunit ies
for cutoffs such as these is to associate so-called 'a lpha ' and 'be ta ' values with
each node n of the tree. The alpha value tells how well + can do if node n is
encountered during optimal play by both players. Similarly, the beta value tells
how badly - can make + do, again assuming perfect play reaches node n. If the
value of a node is ever determined to exceed its beta value, or to be less than
its alpha value, this must mean that optimal play will not lead to the node in
question. Therefore , further searching is pointless. In fact, subsequent nodes
can be cut off if a successor value equals the alpha or beta value. In this case,
one of the players will have found another line of play, with at least as good a
value for him, which has already been searched. If a player has two or more
equally good moves, it doesn ' t mat ter which one is made.

Consider now tile partially searched *-minimax tree of Fig. 6, and assume
that leaf values range from - 1 0 to +10, inclusive. The alpha-beta values of 4
and 5 for the *node at depth 2 indicate that if the value of this node is
determined to be ~<4, or >~5, search beneath it can be discontinued. Suppose
now that, as shown, there are 3 successors, the first of which has been searched
and found to have a value of 2. If - 1 0 and +10 are limits on leaf values, then
the value of the *node lies between - ~ (2 - 1 0 - I 0) and ~(2+ 10+ I0), i.e.
between - 6 and 7~. Since - 6 is not greater than 5, nor is 7[less than 4, we must
continue searching children of the *node. However , before so doing, we ask
ourselves, what values of the lower-level node to be searched will entail a cutoff

+

4 ~ , / " / ' x ~ _

FIG. 5. A conventional minimax cutoll.

*-MINIMAX SEARCH PROCEDURE 331

4-

4/_
s / \ . <

-

3 o .

+ <

<4 , 5>

<0 , I 0 >

<0 , 3~,

< - 7 , I0>

FIG. 6. A partially searched *-minimax tree.

at the *node? Denoting this value by V, we want to know V for which

~ (2 + V + 1 0) ~ < 4 , i.e. V<~0
o r

~ (2 + V - 1 0) / > 5 , i.e. V~>23.

These values for V can now be used as a lpha-beta values for the lower-level
node to be searched. Having assumed 10 as an upper bound on game values,
however, we will use 10 rather 23 as the beta value. Thus, as indicated in Fig. 6,
0 and 10 serve as alpha-beta values for the - n o d e at depth 3.

Suppose now that we search the first descendent of this - n o d e at depth 3
and find a value of 3. Since 3 is not less than the 0 alpha value, we continue

searching, and the next node to be searched is the *node at depth 4. However ,
since 3 is less than the current beta value of 10, we pass down 3 as the new beta
value for the *node, while the alpha value of 0 is unchanged.

Having reached the *node at depth 4, we can discontinue searching if its
value is found to be less than or equal to 0, or greater than or equal to 3. In the
latter case, - will have already found a way to hold his opponent to 3, and
surely won' t give + the chance to achieve 3 or bet ter at the *node. In the
former case, a cutoff below the *node will be followed immediately by a cutoff
at the parent - n o d e , which will immediate b' cause a cutoff at its parent *node,
which in turn will entail a cutoff below the top -node . This possibility for two or
more cutoffs to occur without intervening leaf searches is without counterpart in
conventtonal minimax trees.

By reasoning as above, we can determine, after seeing the - 3 successor of
the *node at depth 5, that the *node value lies between - 7] and 5], and that - 7
and 10 should serve as alpha-beta values for the +node to be searched next.

4. An Algorithm .(or Searching *-Minimax Trees

Wc now formalize the reasoning presented above. Let L and U denote lower

332 B.W. BALLARD

and upper bounds on all possible game (leaf) values. Let Vt, V2 VN be the
values of the N successors of a *node, whose ith successor is about to be
searched. After returning from the ith node, a cutoff will occur if

(V~ + . . . + VH)+ V~ + U * (N - i)~<alpha (la)
N

or if

(V , + . - . + Vi-~)+ Vi+ L * (N - i)>~beta (lb)
N

Letting Ai represent the alpha value for the ith successor, we have

A i = N , a l p h a - (V~+ - . - + Vi-~)- U * (N - i) (2a)

where 'alpha' denotes the alpha value of the present *node. Similarly, letting B~
represent the new beta value, we have

B~ = N * b e t a - (V~ + . . . + V~_~)- L * (N - i) (2b)

where 'beta' is the beta of the *node. In the actual implementation, we will
want to assure that all A 's are >~L and all B 's are ~<U. From the equations
above we see that up-to-date A and B values can be computed efficiently if
they are initialized as

Al = N * (a l p h a - U) + U,

Bt = N * (b e t a - L) + L

and updated by

A . + ~ = A . + U - V . ,

B . ~ . t = B. + L - V..

(3a)

(3b)

(4a)

(4b)
Note that, when N = 1, AI and BI take on the alpha-beta values themselves.

From the above formulation we derive the following search procedure for
*nodes:

Star l (board , aTpha, beta)
{
local A, B, i, v, vsum, AX, BX, s[] ;

determine the N successors s l , s2 sN
if (N = = 0)

return(Term(board)) ;
A = N * (a lpha - U) + U;
B = N * (beta - L) + L;
vsum = 0;
for (i= 1; i < = 'N; i + +) {

AX = max(A, L);

*-MINIMAX SEARCH PROCEDURE 333

B X = min(B, U);
v = Eval(s[i] , AX. BX) ;
if (v < = A)

return(a lpha) ;
if (v > = B)

return(beta) ;
vsum = v s u m + v;
A = A + U - v ;
B = B + L - v ;

}
r e tu rn (vsum/N) ;

}

This code makes use of (1) a Term procedure, to evaluate terminal positions;
(2) an Eval procedure which, depending on which player is to move next,
invokes either Max or Min; and (3) a procedure to generate the successors of a
node.

5. A 'Better' Algorithm for 'Regular' *-Minimax Trees

The strategy developed above assumes that each successor of a *node could be
either a - or a +node, independent of its sister nodes. In many *-minimax
games, however, most *nodes fall into one of two classes: those with only
+successors, and those with only -successors . In these games, chance events
are used to determine legal moves (as in backgammon) , or the outcome of a
move (as in blackjack), or both, but not to determine who is to have the next
move. (If chance is used to decide who makes the very first move, this one-time

�9 event is unrelated to search matters.) We shall refer to games such as these as
regular *-minimax games. Trees corresponding to these games alternate be-
tween + and - n o d e s , as do ordinary minimax trees, but with *nodes inter-
spersed. Thus, on a path from the root we encounter node types of *, +, *, - , *, +,
*, - , and so forth.

For the newly-defined class of regular *-minimax trees, we can devise a
'be t te r ' search procedure, to be called Star2, which is later shown to be greatly
superior to the Star1 procedure it directly extends. The algorithm underlying
Starl was based on a strict depth-first control strategy. Thus, if X and Y are
successors of some *node, we cannot examine children of X, suspend work
with X to begin searching beneath Y, and then later return to additional nodes
beneath ~X. Consider a *node all of whose children are - n o d e s . In this
situation, the left-to-right restriction imposed by a depth-first control strategy
has two drawbacks. First, for a given *node, it forces us to look at all N leaves
beneath all but the last - n o d e searched (unless some leaf takes on the
minimum value over all possible leaves). Second, we assumed that unprocessed
- n o d e s could have the maximum possible game value. Each of these problems
is answered by the modification ~leveloped below.

334 B.W. BALLARD

If a *node being examined is worse than a previously searched *node, a
preliminary 'probing' of just one child of each -node can substantially reduce the
number of nodes explored before a cutoff occurs. If ~,~,'] denotes the value of some
child of the ith -node , and as before Vi denotes the (true) value of the ith -node ,
we will obtain a cutoff below the *node if

(Vj + - . - + V~_~) + V~ + (W~+t + " " + WN) ~< alpha (5)
N

which yields an Ai value of

A~ = alpha * N - (V~ + . . . + V i - l) - (W~,~ + . . . + WN) (6)

which can be efficiently computed by initializing to

A l = a l p h a * N - (W 2 + ' " + WN) (7)

and updating by

A . ~ = A. + t,V.+~- V.. (8)

Since all W's are ~<U, tile values computed for A in (6) are never less than
corresponding values in (2a).

If the *node being searched is not bet ter than all previously searched
alternatives, so that a cutoff will occur, then unless we aye quite unlucky in
selecting the particular children of - n o d e s to explore, these tighter bounds
for A will allow for an earlier cutoff than the formulas given earlier. Since we
cannot speak with confidence about how large the true value of a - n o d e
might be without looking at all its successors, no special use can be made of
the B in (2b) during the preliminary probing stage.

We formalize these ideas in the following procedure. In order to detect
possible cutoffs during the probing phase, and to avoid a subscript range error
the last time through the second loop, the calculations specified by (7) and (8)
have been 'distributed' into disjoint places in the code of the new procedure.
In keeping with the discussion above, this code pertains to a *node followed
by -nodes . A related procedure for *nodes followed by + nodes will also be
needed.

Star2Min(board, alpha, beta)
{
local A, B, i, v, vsum, AX, BX, s [l , w [] ;

determine the N successors s l , s2 sN
if (N = = 0)

return(Term(board));

A = N * (alpha - U);
B = N * (beta ~ L);
BX = min(B, U);

*-MINIMAX SEARCH PROCEDURE 335

for (i= 1; i < =N; i + +) {
A = A + U ;
AX = max(A, L};
w[i] = Probe(s[i], AX, BX);
if (w[i] < = A)

return(alpha);
A = A - w[i];

}
vsum = 0;
for (i= 1; i < =N; i+ +) {

B = B + L ;
A = A + w[i};
AX = max(A, L);
BX = rain(B, U);
v = Min(s[i], AX, BX);
if (v < = A)

return(alpha);
if (v > = B)

return(beta);
vsum = vsum + v;
A = A - v ;
B = B - v ;

}
roturn(vsum/N);

}

Here we have made calls to (1) a standard Min procedure for -nodes , and
(2) a new procedure, Probe(x, y, z), whose job is to return Term(x), if x is a
leaf, otherwise to choose some successor s and x, either at random or by appeal
to a static evaluation function, and return Min(s, y, z). In the event that
preliminary probing fails to obtain a cutoff, the modified algorithm given above
reverts to the original algorithm, albeit with a tighter A bound and therefore
with an equal or bet ter opportunity for an early cutoff (as shown in Section
6.2.1.3). Rather than exhaustively searching - n o d e s one by one, however,
more elaborate behavior is possible (as described in Section 7).

6. Analysis of *-Minimax Algorithms

In analyzing the efficiency of a search procedure for a class of game trees, one
begins by specifying a subclass for study. This involves deciding on (a) the
overall str~tcture of trees; (b) a way of assigning values to leaves; and (c) the
criterion to be measured. We want our analysis of *-minimax search to
resemble that for ordinary alpha-beta wherever possible (e.g. [2-5]). Since
virtually all study of alpha-beta has chosen to count the number of leaves
encountered as the efficiency measure, we will do so as well. Furthermore,
most analyses of ordinary alpha-beta have considered so-called 'complete '
N-ary trees, where all leaves occur at a fixed depth D and all nontcrminal

336 B.W. BALLARD

nodes have exactly N successors. We define the class of *-conlplete N-ary trees
by inserting a *node above each node of a complete N-a ry tree, and giving
these *nodes N - 1 additional successor nodes of the same type. These trees
satisfy the definition of ' regular ' *-minimax trees as given in the previous
section. Corresponding to a complete N-a ry tree of depth D, which has N** D
leaves, is a *-complete N-a ry t ree of depth 2D having N ** 2D leaves. We will
investigate the efficiency of the *-minimax algorithms on *-complete N-a ry
trees of depth 3, since they correspond to minimax trees (of depth 2) allowing
the simplest cutoffs of standard alpha-beta (see Fig. 5). The leftmost part of a
*-complete 2-ply binary tree appears in Fig. 7.

From Fig. 7 we can see that no cutoff is possible at the topmost level, since
the root is a *node. (During actual play, the chance event will have occurred by
the t ime we a r e ready to select a move, so only one +successor of the top
*node will be searched anyway.) The left +node however permits a cutoff
below its second successor. By the t ime this *node has been reached, an alpha
value will be available. We will consider this critical portion of the tree, which
is given in Fig. 8.
�9 In an a t tempt to capture the sorts of leaf dependencies that have been

observed in practice, we follow Fuller, Gaschnig and Gillogly [3] by assigning
distinct, uniformly spaced values to the arcs below a node, and defining a leaf
value as the sum of the arc values on the path to it f rom the root. Since we
want our methods to apply to (perhaps differently shaped) trees where leaves
occur at various levels, we cannot use simply the values of 1 through N as arc
labels, as Fuller et al. [3] did. To enable all successors of a node to share the
same a priori probabili ty of being best, we want the arc value from a + or
- n o d e to its 'bes t ' successor to be 0, and the 'average ' arc value out of a *node
to be 0. Therefore , to the arcs of - n o d e s we assign values of 0, 1 N - 1,
and to the arcs of +nodes we assign values of 0, - 1 - (N - 1). Assuming N
is even, we assign to the arcs of *nodes the values of -�89 - 2 , - 1 , 1,
2 ~N.

Readers familiar with studies of the alpha-beta procedure [2-5] will ap-

./+\/i \+ / \
f \

FIG. 7. The leftmost portion of a 2-ply *-complete binary tree.

*-MINIMAX SEARCH PI~.OCEDUi(E 337

4-

/ \ .
/ \

/ \ / - \
FIG. 8. Opportunities for a cutoff in a *-complete 2-ply binary tree.

prcciate the algebraic complexity involved in obtaining precise closed-form
performance figurcs for even shallow trees (e.g. depth 3). Accordingly, the
following analysis, which determines both asymptotic complexity and exact
values for various branching factors, combincs simulation with analytic tech-
niques where appropriate.

6.1. Best-case analysis

We first establish tile best case behavior of the Starl and Star2 procedures on
the class of *-complete trees just defined. We will derive asymptotic values in
closed form, then present exact figures for various branching factors arrived at
by empirical means.

As in ordinary alpha-beta search, the first successor of the +node must be
fully searched, and we will obtain the greatest number of cutoffs if the best
node is searched first. Since this value, which we have arranged to be 0, cannot
he improved upon, it will serve as alpha value for all the remaining *nodes,
which have backed-up values of - 1 , - 2 - (N - 1) and can be searched in
any order without affecting search efficiency. Since the node with - l as value is
almost best, it will take longest to search, while the - (N - 1) node will be
dispensed with most quickly.

We will find the number of leaves searched for the particular *node having
backed-up wdue of w - ~N (a value chosen to simplify the algebra). From this

"result we add up values as w runs from - (~ N - I) to ~ N - 1 to obtain the over-
all search efficiency under the +node in question.

6.1.1. Best-case analysis of the Slat1 procedtlre

To obtain, a cutoff below a *node, wc will need to begin exploring a j th
descendent of it for which

Vn+ V 2 + ' " + Vi+U*(N- j)<~O (9)

where V~ denotes the backed-up value of the ith descendent of the *node and 0
is the active alpha value. The values of the - n o d e s beneath * range from w - N
to w, excluding w - ~N. To guarantee the earliest possible cutoff, we will want
to look first at the nodes with low values. If j > ~N, which we shall see below is

338 B.W. BALLARD

always true, since the smallest j will be about 0.55N, then V~ through Vj will
take on the values w - N through w - (N - j) , excluding w - ~ N . Letting
k = N - j, the number of nodes which need not be searched if a cutoff occurs at
node], we can substitute values for V~ through Vj into the equation above and
then multiply each side by - I to obtain

[k + (k + I) + . - - + NI - ~N + (k - N) * w/> k * U. (i0)

But the summation is easily written in closed form, and U (the maximum leaf
value) is 0 + ~N + (N - 1), or 3N - I. After cancelling the IN terms, we have

~N* N - ~(k * k - k) + (k - N) * w ~> k * (~N - l) (1 l)

which can be written as a quadratic (in k) as

k * k + (3N - 2w - 3) * k - (N * N - 2 N w) <~ 0 (12)

from which
integer not greater than) tile expression

- ~ (3 + 2 w - 3 N + s q r t (1 3 N * N - 2 0 N w - 1 8 N + 4 w * w + 12w +9))

the quadratic formula yields k as the floor of (i.e. the largest

which for large N becomes

~(-3N + 2w + sqrt(13N * N - 2 0 N w + 4 w * w)) .

(13)

(14)

This formula reveals reduction in searching the worst, median, and nearly-best
*nodes of 44.9%, 30.3%, and 0%, respectively, which correspond to w values
of - (~ N - 1), 0 and �89 1, respectively, and associated j values of 0.551N,
0.697N and 1.0N, respectively. To determine the total number of nodes
pruned, we add up the above formula as w runs from - (~ N - 1) to �89 - 1. For
large N, this sum can be found by integration. Once again ignoring lower-order
terms, we obtain an asymptotic fractional savings of 0.279. We can therefore
state the following.

Result I. Tile asymptotic best-case behavior of algorithm Starl on the +node
of a *-complete 2-ply N-ary tree is to examine approximately 0 . 7 2 1 N * . 3 of
the N ** 3 leaves beneath it.

Table 1 gives exact values for the best case performance of the left-to-fight
Starl procedure for various values of N. Note the convergence toward the
region of 72 percent, as predicted by the analysis above.

6.1.2. B e s t - c a s e ana lys i s o f the S tar2 procedure

If the successors of - n o d e s are optimally ordered, so that their first successors

* -MINIMAX S E A R C H P R O C E D U R E

TABLE 1. Best-case leaf exploration of Star1 for various *-complete
2-ply trees

339

N 2 4 6 8 10 20 30 40

N u m b e r 5 40 138 336 670 5560 18990 45320
Percent 62.5 62.5 63.9 65.6 67.0 69.5 70.3 70.8

are minimal, then if a cutoff will occur at all, it will occur during the
preliminary probing phase. This means that only one successor per - n o d e
will need to be looked at by Star2, whereas all N of all but the last - n o d e were
examined by Starl . As revealed above, an average of 72.1 percent of the N
- n o d e s below each of the N *nodes, i.e. 0.721 N * N nodes, will be examined
fo r all but the best *node, whose N * N leaves must all be considered. This
gives us:

Result 2. The asymptotic best-case behavior of algorithm Star2 on the +node
of a *-complete 2-ply N-ary tree is to examine approximately 1 . 7 2 1 N * . 2 of
the N ** 3 leaves beneath it.

This result is encouraging because, like the O (N * * 2) best case alpha-beta
result for depth 3 trees [2], it shows that a wise algorithm can hope to reduce
search complexity by a fac tor of N. For the most part, we achieved this
reduction without significantly increasing the conceptual complexity of the
algorithm, its overhead, or the additional space needed (which will in fact be
only N * D cells for an N-ary tree of depth D). Table 2 gives exact values for
the best case performance of the Star2 procedure for various values of N.

6.2. Average-case analysis

Since average-case analysis is more difficult than best-case analysis, we decided
to investigate the expected-case performance of the Starl and Star2 procedures
mainly by empirical means. To do this, we coded the algorithms in the 'C'
language to be run on our PDP-11/70 system. Since the foregoing algebraic
best-case analysis ignores lower-order terms, and thus cannot yield reliable

TABLE 2. Best-case leaf exploration of Star2 for various *-complete
2-ply trees

N 2 4 6 8 10 20 30 40

N u m b e r 5 25 58 105 166 677 1532 2732
Percent 62.5 39.1 26.9 20.5 16.6 8.5 5.7 4.3

340 B.W. BALLARD

values for small values of N, we preceded our average-case experimentation by
running each algorithm on an optimally ordered tree. The results of this exact
analysis were given in Tables 1 and 2. Finally, after competing our empirical
study, we undertook a simplified algebraic analysis of average-case Starl
performance, which led to an iterative formula which will be presented after
describing the results of the empirical study.

6.2.1. Empirical average-case study

USing the UNIX pseudo-random number generator, we generated and
gathered statistics on 1000 *-complete trees for each of several branching
factors. In generating the successors of a node, all N! permutations of suc-
cessor arcs were assumed to be equally likely. We did this because (a) it is
simple to implement; (b) it corresponds to completely 'uniformed' static
evaluation capabilities, thus giving a conservative picture of what to expect in
practice; and (c) it has been adopted by previous researchers, thus enabling a
comparison of *-minimax trees against ordinary minimax trees. In our im-
plementation, the leftmost . node is searched exhaustively, since as we have
observed no cutoff can occur beneath it. In the event that preliminary probing
failed to result in a cutoff, the N leaves seen were counted twice if subsequent
search required a full search of the - n o d e above them. Thus, the results
obtained represent a conservative estimate of average case analysis, which is
itself a conservative estimate of how well one can expect to do in practice.

6.2.1.1. Average-case analysis of tile Star1 procedure
Table 3 presents the average-case results for the initial left-to-right Starl
procedure. It can be seen that the average case savings appears to be about 21
percent, roughly 3 times the best-case savings of 28 percent.

6.2.1.2. Average-case analysis of the Star2 procedure
We have seen that with optimal ordering, the search complexity of Star2 on
regular *-complete trees can be reduced from O(N ** 3) to O(N ** 2). This may
lead us to expect a significant improvement in its average-case behavior as well.
Table 4 summarizes the results of Star2 performance.

In addition to simply counting leaf explorations, we decided to gather
information on how many *node cutoffs were made during the preliminary
probing phases. An interesting result was that roughly half the *nodes for

TABLE 3. Average-case leaf exploration of Starl for various *-complete
2-ply trees

N 2 4 6 8 10 20 30 40

Number 7.1 53.9 178 418 810 6389 21382 50425
Percent 88.8 84.1 82.5. 81.6 81.1 79.9 79.2 78.8

,I,-MINIMAX SEARCIt PROCEDURE

TABLE 4. Average-case leaf exploration of Star2 for various *-
complete 2-ply trees

341

N 4 6 8 10 20 30 40

Cutoffs
Probing 1.3 2.0 2.8 3.5 8.1 12.6 17.4
Regular 0.7 1.5 2.5 3.5 8.4 13.4 18.3

Leaves seen
Number 48 139 293 531 3341 10109 22390
Percent 75.4 64.5 57.3 53.1 41.8 37.4 35.0

which a cutoff occurred were c u t off during the probing phase. Also, we see
that for a branching factor greater than about 20, Star2 looks at fewer than half
the leaves explored by Starl .

6.2.1.3. Discttssion of average-case Star2 restdts
In the *-complete trees we have been considering, where each non-terminal
node has N successors, there will be N! ways of ordering the ares below each
node. In both the Star1 and Star2 procedures, searching is left-to-right on the *
nodes below the root. In this case, each *node better than all its predecessors
must be frilly searched. If each of the N! permutations is equally likely, the
expected number of such fully-searched *nodes is the 'harmonic' function,
given by

H (N) = l + l / 2 + . . . + l / N .

This formula is easily verified by induction: given H (N - I) , adding an Nth
node worse than all the others will have no ettect of the searching of the
previous N - 1 nodes, while the new node will be fully searched only if it is
placed first in the permutation, which happens one time in N. Thus, the
number of leaf nodes searched beneath best-so-far *nodes is N * N * H(N). If
in Table 4 we subtract from N the average number of cutotts that occurred, we
observe perfect agreement with H(N) (within the 0.1 tolerance due to round-
ing). For instance, with N = 40, we see that an average of 4.3 *nodes were
found superior to previously searched *nodes. This accounts for 4.3 * 4 0 . 4 0 or
6880, of t l~ leaves that were explored. The remaining 35.7 *nodes can be seen
to have had an average of (22390 - 6880)/35.7 or 434, of the 1600 leaves beneath
them examined. The reader will recall that not all the additional savings of
Star2 is made possible by preliminary cutoffs, but also by the lower values
assigned for the A's. For instance, the 18.3 *nodes which led to a 'regular'
cntoff did so after searching fewer than (22390-6880)/18.3 or 848 leaves. This
figure represents about 70 percent of the average number of (50425- 6880)/35.7
or 122(I leaves examined by Starl for the corresponding *nodes.

342 13.W. BALLARD

6.2.2. Algebraic average-case analysis of Starl

We have observed that the expected number of fully-searched *nodes is given
by the harmonic function H (N) , so that the number of leaves searched beneath
them is

A (N) = N * N * H (N)

We will now determine B(N) , the number of leaves searched beneath the
remaining *nodes, which we add to A (N) to find C(N) , the total average
number of leaves searched in an N-a ry *-complete 2-ply tree.

Each of the N - H (N) *nodes not bet ter than all preceding *nodes will be
rejected when its value is determined to be less than the value of the best
�9 node seen so far. Recall that in the *-complete trees we are considering,
�9 nodes have backed-up values of 0, - 1 , - (N - 1). Suppose a given *node
has a value of I1, and m is the value of the best *node seen so far, where i1 < iii.
In addition to the *node of value ii1, any of the *nodes with a value less than ii1
(but not equal to n) can precede the n-valued node. The number of ways this
can occur is given by

N - M - 2
" " M - 2) , (s § 1)!, (N - s - 2)! (15) D (M) = ~, s

s=0

where M = Iml. A cutoff will occur below this n-valued *node when we have
searched a j th successor for which

V , + . . . + Vi_,+ ~ + U * (N - j) < m (16)
N

But the values of the - n o d e s below the n-valued *node are n - IN, n - 1,
n + 1 i1 + �89 with an average value of i1. For large N, j becomes large as
well, and the expected value of the relative difference between (Vl + - - - + V/)
and jn approaches 0.

Although the average expected value of a function is not in general the same
as the expected value of the average of the function, in the present nearly-
linear situation, it gives a good approximation. Thus, using the ' in ' value
derived above as an approximation, we obtain

in + (3N - 1) * (N - j) ~ m N (17)

whose high-order terms give

2in + 3N * N - 3jN <~ 2raN (18)

which reduces to give a value for j, which we denote by J (m, n), of

J (m , n) = 3N - 2hi �9 N (19)
3N - 2n "

*-MINIMAX SEARCH PROCEDURE

T^nLE 5. Algebraic average-case analysis of Starl compared with empiri-
cal findings

343

N 4 6 8 l0 20 30 40

Algebraic 57 188 438 846 6557 21805 51174
Empirical 54 178 418 810 6389 21382 50425
Percent difference 5.6 5.3 4.6 4.3 2.6 1.9 1.5

This means that the average number of nodes searched beneath *nodes that
are not better than all preceding *nodes is

N - I n - I

~_, ~ D (, n) * J (- m , - n) * N
B(N) = "=' ,~-o (20)

N!

By supplying the expressions for tile D and Y functions, simplifying, and
adding A(N) , we find the total number of leaves searched to be

C(N) = N * N * H (N) +
N - m - 2

N*~'~N-' .-1~,~ "3-N--2-nn * 3 N - 2m N-,,,-2~ (su_t + I) �9 l-I t.
n = l m=O s=O l - lx=N_s_l X t=N-rn- l -s

(20

Table 5 gives leaf exploration figures for specific values of N, and compares the
experimentally derived results against them.

Since simplifications were made in deriving B(N), asymptotic agreement is
not guaranteed. However, it can be seen that the agreement is reasonably good
(less than 2 percent deviation) for larger values of N.

6.3. Summary of results for two-ply trees

We summarize the preceding results in Fig. 9.

6.4. Empirical analysis for deeper trees
!

Having observed an appreciable savings for trees of depth 3, we decided to
investigate the performance of the *-minimax algorithms on deeper trees. Since
even levels of our trees are associated with chance events rather than player
moves, 3-ply and 4-ply trees have depths of 5 and 7, respectively, while the
leaves of trees of depth 4 and 6 forrespond to positions where chance events
have occurred but not yet been responded to. The empirical analysis performed
is analogous to that described above. Results are given in Table 6. Readers can

344 B.W. BALLARD

LEAVES SEARCHED * * 3

3 ~ Z Z Z . @ a

Star2

BRANCHING FACTOR

FiG. 9. A graphical summary of best-case and average-case results for various *-minimax al-
gorithms.

determine the approximate number of leaves explored by multiplying the
percentages given by B**D, where B represents branching factor and D
represents depth. For instance, the best-case leaf exploration of Star2 for 3-ply
(depth 5) trees of branching factor 10 is about 0.11.(10. .5) or about 11000.

7. Additional Modifications

When a cutoff has not occurred below a given *node during the preliminary
probing phase, Star2 performs an exhaustive search of -nodes. Instead of
doing this, we might consider just one additional child of each -node below the

~*node in question. If a cutoff has still not occurred, a third of each -node
would be considered, and so forth, until either a cutoff occurs or an exhaustive
search is completed. We refer to this modified form of Star2 as the 'cyclic
Star2.5' procedure.

In practice, to avoid the unpleasant time and space overhead involved in
doing the breadth-first, traversai required by the cyclic Star2.5 algorithm, we
might resort to exhaustive searching of the remaining children of each -node
after having considered a predetermined number of its children. We refer to

*-MINIMAX S E A R C H P R O C E D U R E 345

TABLE 6. Empirical analysis of leaf exploration (in
percent) for *-complete trees of varying depth and
branching factor

Star l Star2

Branching
factor Depth Best Average Best Average

4 3 62 84 45 87

4 4 58 81 38 75

4 5 55 77 38 64
4 6 56 77 32 40

4 7 54 - - 28 - -

6 3 64 82 30 71

6 4 56 77 24 61
6 5 56 74 21 38

6 6 55 73 17 25
6 7 53 - - 11

10 3 67 81 18 57

10 4 55 73 14 46
10 5 58 73 I1 22

10 6 54 - - 8 12

I0 7 56 - - 4 - -

20 3 7(1 80 9 44

20 4 55 70 7 32

20 5 60 - - 5 12
20 6 55 - - 3 - -

Starl

t

Star~

Star2.5
(cyclic)

Star2.5
(seq)

l 2 3 4 5 6 7 8 11 12 13 14 15 16

l 5 6 7 2 8 9 10 3 11 12 13 4 14 15 16

] 5 9 lO 2 6 II 12 3 7 13 14 4 8 15 16

1 2 g I0 3 4 II 12 5 6 13 14 7 8 15 16

FIG. 10. Order of leaf explorat ion for various *-minimax algorithms. The Star2.5 procedures are

given with a probing factor of 2.

346 B.W. BALLARD

this va lue as the ' p r o b i n g fac tor ' . Wi th a p rob i ng fac tor of 1, cyclic Star2 .5 .
r educes to Star2. W i t h a p rob ing fac tor of 0 it r educes to S t a r l .

A dif ferent way to mod i fy S ta r2 wou ld be to have jus t o n e p r o b i n g phase p e r
- n o d e bu t to cons ide r severa l of its ch i ld ren dur ing it. A l t h o u g h this s t ra tegy is
p r o b a b l y infer ior , in t e rms of e x p e c t e d n u m b e r of leaves to be e x a m i n e d , to the
cycl ing desc r ibed above , it r equ i r e s c o n s i d e r a b l y less o v e r h e a d . W e call this the

I

' s equen t i a l Star2 .5 ' p rocedu re . A s b e f o r e we use the t e rm ' p r o b i n g fac tor ' to
d e n o t e the n u m b e r of ch i ldren of each - n o d e to be e x a m i n e d b e f o r e we resor t
to an exhaus t ive search . Wi th a p r o b i n g fac tor of 1, sequen t i a l Star2.5 r educes
to Star2. Wi th a p rob ing fac tor of 0 or N it r educes to S t a r l .

T o clar ify the exact b e h a v i o r of the a lgo r i thms p r e s e n t e d thus far, an
e x a m p l e is given in Fig. 10 of the o r d e r of leaf e xp lo r a t i ons b e n e a t h a *node
for a t ree with a b ranch ing fac tor of 4.

7.1. E m p i r i c a l average-case s tudy of the S ta r2 .5 a lgo r i thms

T o eva lua t e the Star2.5 p r o c e d u r e s , we g e n e r a t e d 100 t rees of d e p t h 3 and

TABLE 7. Empi r i ca l ave rage -case s tudy of the
Star2.5 a lgor i thms on a t ree of d e p t h 3 and
b r anch ing fac tor 20

Star2.5 (cyclic) Star 2.5 (seq.)

Probing Prelim Percent Prelim Percent
factor cutoffs leaves cutoffs leaves

1 8.0 40.7 8.0 40.7
2 11.3 34.4 11.1 36.8
3 12.7 31.7 13.0 34.7
4 13.7 30.2 14.2 34.7
5 14.4 29.3 14.8 36.6
6 14.8 28.7 14.9 39.8
7 15.2 28.4 15.4 41.6
8 15.5 28.1 16.5 45.2
9 15.7 28.0 15.9 46.7

i 0 16.0 27.9 16.0 50.4
11 16.2 27.9 16.4 52.4
12 16.3 27.9 16.2 56.3
13 16.3 27.9 i 6.5 58.7
14 16.3 27.9 16.4 61.8
15 16.3 27.9 16.2 65.6
16 16.3 27.9 16.3 68.0
17 16.3 27.9 16.3 71.1
18 16.3 27.9 16.5 73.7
19 16.3 27.9 16.4 76.7
20 16.3 27".9 16.5 79.6

*-MINIMAX SEARCII PROCEDUI~,E 347

branching factor 20, then ran each of the Star2.5 algorithms for probing factors
ranging from 1 to 20. Since all cutoffs that will occur in the best-case situations
for Star2 occur during the initial probing phase, only average-case analysis is
worth considering. The results appear in Table 7.

As indicated in Table 7, tile number of probing cutoffs for cyclic Star2.5
increases with probing factor, but the rate of increase falls off quickly. In fact,
virtually no additional cutoffs were observed after a probing factor of ~N was
reached, since all possible cutoffs had occurred beneath the N - H (N) *nodes
better than all preceding *nodes.

The sequential vcrsion of Star2.5 shows improvement as the probing factor
increases from 1 to 3, then levels off and quickly begins to degrade, ultimately
reaching tile figure for Starl . This is bccause as the probing factor increases, we
are able to obtain cutoffs beneath more *nodes, but at the expense of doing
more work for those *nodes that would have been cutoff with a smaller probing
factor.

7.2. A final modification

We have sccn that cutoffs can occur only beneath *nodes which are worse than
some previously searched *node. For this reason, it is useful to find the bcst
*node, or at least a good one, before carrying out exhaustive or nearly
exhaustive search beneath inferior *nodes. Experimentation with the existing
algorithms indicates that if the best *node is seen first, then for leaf depen-
dencies of the sort defined in Section 6, and for a branching factor of 40, the
averagc-casc scarch complexity of Star2 is reduced from 35 percent to 30
percent. Similarly, the average-case performance of Star2.5 with 2-node cycling
is reduced to 26.3 percent. We have formulated and begun to experiment with
an algorithm called Star3 which incorporates probing beneath *nodes. Since
additional overhead is needed for the initial probing, and sincc one cannot
realistically expect to find the best *node each time, the actual behavior of
Star3 will not be as good as these benchmark figures.

8. Remaining Consideralions

We complete our presentation and analysis of tile *-minimax search problem,
and our solution to it, by devoting brief attention to some remaining topics.

8.1. The efficacy of search

In developing and examining algorithms for *-minimax trees, we have assumed
that search proceeds until either a leaf is encountered or an allowable form of
cutoff occurs. In this case, tile move selected is guaranteed to be optimal, i.e. to
have an expected value at least as good as the alternatives. As we shall observe
in Section 8.4, however, it is seldom possible to carry out a complete search,

3 4 8 B.W. BAI.LAI~.D

and so in practice the values of many non-terminal nodes must be determined
by static evaluation.

When complete search is not possible, both intuition and empirical obser-
va t ion suggest that deeper search will result in better play. However, recent
results by Nau [6] show that for ordinary minimax trees, deeper search can in
some situations result in making worse moves. Despite the existence of such
'pathological' trees (tile tcrminology of [6]), it is probably advantageous for most
games of interest, including the *-minimax games we have been considered, to
search as deeply as possible (at least as deeply as current technology permits).

Although play is likely to be bet ter with deeper search, no general statement
can be made as to how much bet ter it can be expected to be. For many games
of chance, strategy appears to be much more important than search, and in fact
the currently top-ranked backgammon program (BKG) does not carry out a
tree search. Although its author indicates that he selected backgammon for
study because he "wanted was a domain where it is possible t o . . . make a
j u d g m e n t . . , without having to worry a b o u t . . , exhaustive analysis" (Berliner
[7]), he states elsewhere that " the deeper one Could look, the better [a]
program would play" [8].

Perhaps one reason search has received so little attention for games such as
backgammon is that the O (N * * (2 D - 1)) complexity of the 'obvious' search
strategy appears infeasible. For example, Berliner [9] observes that

" the throw of a pair of dice can produce 21 different results, and each such throw
can be played about 20 different ways in the average position. Thus a look-ahead
would have to acquiesce to a branching factor of about 400 for each ply of
look-ahead; an exponential growth rate than could not be tolerated for very long."

In this paper, however, we have presented an algorithm which reduces this
branching factor of 400 to 677/20 or about 34. Since we have assumed equally
likely chance outcomes (however, see Section 8.3) and made other pedagogical
assumptions, this should be treated as only an approximate figure for a
particular game such as backgammon.

8.2. An unusual form of cutoff

Knuth and Moore [2] have shown that whereas the alpha-beta algorithm for
minimax trees is more powerful than the more obvious branch-and-bound
strategy, t he re is no uniformly stronger method. This assumes, however, that
we must detertnine the precise value of tile root, not just tile best move. Thus, if
the root node of a minimax tree has N successors, and the first N - 1 of them
have been searched and all found to have the lowest possible game value (e.g.
'forced loss'), alpha-beta will still search the remaining node, even though this
node is known to be at least as good as any of the alternatives! In the
degenerate case, this 'would mcan searching a tree with only one branch
(denoting a 'forced' move) from the root. Needless to say, existing game-
playing programs typically respond without search in these situations.

.-MINIMAX SEARCH PROCEDURE 349

When searching the last successor of the root of a *-minimax tree, a stronger
form of cutoff can be made. In particular, we can discontinue search, knowing
that the rightmost node is strictly better than the alternatives, even though we
may not know its exact value. This is because the value of a *node is partially
determined by the value of each of its successors, while a - n o d e is ful ly
determined by one of its successors. We implement this form of cutoff by
discontinuing search beneath the righonost *node when its lower *-value
exceeds the alpha value (rather than beta) passed into it. Being able to cut off
below the node corresponding to the best move, without knowing its exact
value, can be important in reducing search time for *-minimax trees, especially
with a narrow branching factor below + and - n o d e s (e.g. in casino blackjack,
with a branching factor of 2 beneath +nodes).

8.3. Differing probabilities below a *node

Neither algorithm presented above considers the situation where not all
outcomes of the chance event are equally likely. If Pi denotes the probability
with which tile ith successor of a node occurs, then the left side of (la) is
replaced by

(1,, v , + . . . + P,_, v~_,) + P,v, + u �9 (1 - P, p,) (22)

and (2a), (3a) and (4a) are modified accordingly.
In searching ordinary minimax trees, the static evaluation function, or a

similar 'plausible move generator ' , is often used to determine the order in
which to consider successors of a node. When the probabilities of outcomes
differ in *-minimax trees, a potentially useful strategy is to examine more likely
successors first, since their values will more strongly influence the *node value.
However, one must weigh against this the likelihood of a useful (i.e. extreme)
value, and also the probable number of nodes to be pruned (i.e. below sister
nodes) if a cutoff does occur. In *-minimax trees, where cutoffs are harder to
come by, the typical tradeoff between the likelihood and benefit of a cutoff is
compounded in the case of differing probabilities. Decisions as to which
combination of strategies to adopt are probably best made by considering the
idiosyncrasies of the particular game under consideration.

As described in [10], we have recently shown that advantages can be obtained
over minimax by treating the - n o d e s of ordinary minimax trees as though they
were *nodes with weights determined by an estimate of the 'fallibility' of the
opponent .

8.4. Incorporating *-minimax search into a complete game program

In programming actual minimax games, adjustments are often made to a pure
alpha-beta search because of the overwhelming size of most search trees. In
particular, a static evaluation function is generally used to rank successor nodes
in what appears (before searching) to be best-to-worst order, hoping to assure

350 B.W. BALLARD

ea r ly cu tof f s ; a depth bound is o f t e n m a i n t a i n e d in s o m e f o r m to p r e c l u d e

s e a r c h i n g p r o h i b i t i v e l y d e e p n o d e s ; forward pruning is p e r f o r m e d , m e a n i n g

tha t s o m e n o d e s w h i c h l o o k u n p r o m i s i n g a r e n o t s e a r c h e d at al l , a transposition
table is m a i n t a i n e d to a v o i d s e a r c h i n g t h e s a m e p o s i t i o n m o r e t h a n o n c e if it

a p p e a r s in s e v e r a l p l a c e s (' t r a n s p o s i t i o n s ') in t h e s e a r c h t r e e ; a n d so fo r th . In

p r a c t i c e , w e w o u l d e x p e c t such m o d i f i c a t i o n s to b e m a d e to t h e * - m i n i m a x

p r o c e d u r e s as wel l , a l t h o u g h t h e u n d e r l y i n g a l g o r i t h m s n e e d n o t b e c h a n g e d .

ACKNOWLEDGMENT

The experimental results given in Table 6 and the plots given in Fig. 9, were produced by Andrew
Reibman, a graduate student in our department. The author wishes to thank Dr. Donald Loveland,
Dave Mutchler and Andrew Reibman for valuable discussions during the course of our research. We
are also grateful to Tom Truscott and an anonymous reviewer for comments on the form and content of
the manuscript. Computer time for the empirical studies reported herein was provided for by a grant
from the Air Force Office of Scientific Research.

REFERENCES

1. Nilsson, N.J., Principles of Artificial Intelligence (Tioga Publishing Company, Palo Alto, CA,
1980).

2. Knuth, D.E. and Moore, R.W., An analysis of alpha-beta pruning, Artificial Intelligence 6 (1975)
293-326.

3. Fuller, S.H., Gashnig, J.G. and Gillogly, J.J., An analysis of the alpha-beta pruning algorithm,
Dept. of Computer Science Rept., Carnegie-Mellon University, Pittsburgh, PA, 1973.

4. Newborn, M.M., The efficiency of the alpha-beta search on trees with branch-dependent
terminal node scores, Artificial Intelligence 8 (1977) 137-153.

5. Baudet, G.M., On the branching factor of the alpha-beta pruning algorithm, Artificial In-
telligence 10 (1978) 173-199.

6. Nau, D.S. Pathology on game trees: a summary of results, Proc. First National Conf.
Artificial Intelligence (1980) 102-104.

7. Berliner, H.J., Computer backgammon, Scientific American 242 (1980) 64-72.
8. Berliner, H.J., An examination of brute force intelligence, in: International Joint Conference on

Artificial Intelligence (IJCAI, Cambridge, MA, 1981).
9. Berliner, H.J., Backgammon computer program beats world champion, Artificial Intelligence 14

(1980) 205-220.
10. Reibman, A.L. and Ballard B.W., Non-minimax search strategies for use against fallible

opponents, Proc. Third National Conf. Artificial b,telligence (1983) to appear.

Received Apri l 1982; revised version received Noventber 1982

