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ABSTRACT 

An extention of the alpha-beta tree priming strategy to game trees with "probability" nodes, whose 
values are defined as the (possibly weighted) average of their successors' values, is developed. These 
'*-minhnax' trees pertain to games involving chance but no concealed infornzation. Based upon our 
search strategy, )re formulate and then analyze several algorithnzs for *-minimax trees. An initial 
left-to-right depth-first algorithm is developed and shown to reduce the conzplexity of an exhaustive 
search strategy by 25-30 percent. An improved algorithnz is then formtdated to 'probe" beneath the 
chance nodes of 'regular" *-nzininzax trees, where players alternate in making moves with chance 
events interspersed. With random ordering of successor nodes, this modified algorithm is shown to 
reduce search by more than 50 percent. With optimal ordering, it is shown to reduce search complexity 
by an order of magnitude. After examining the savings of the first two algorithms on deep(r trees, two 
additional algorithms are presented and analyzed. 

1. Introduction 

Many games involving chance events, such as the roll of dice or the drawing of 
playing cards, can be modeled by introducing 'probability'  nodes into standard 
tn in i tnax  trees. In this paper, we shall use the symbols + and - to denote 
maximizing and minimizing nodes, respectively, and * (pronounced 'star ') to 
denote a probability node. We define the va lue  of a *node as the weighted 
average of the values of its successors, which may occur with differing prob- 
abilities. A sample '*-minimax' tree, as we shall call trees made up of +, - and 
�9 nodes, appears in Fig. 1. Backed-up values for non-terminal nodes are shown in 
parentheses. The value of the *node, whose successors have been assumed to be 
equally likely, has been computed as -~(2-4)= - 1 .  
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Artificial bztelligence 21 (1983) 327-350 
0004-3702/83/$3.00 O 1983, Elsevier Science Publishers B.V. (North-Holland) 



328 B.W. BALLARD 

+ (3) 

FIG. 1. A sample *-minimax tree. 

In this paper we shall develop a search strategy for *-minimax trees, then 
describe and analyze several algorithms based upon it. Our  algorithms reduce 
to the familiar alpha-beta procedure [2] for degenerate *-minimax trees, i.e. 
those with only + and -nodes .  Readers unfamiliar with ordinary minimax trees 
should refer to Section 3 and perhaps consult Nilsson [1] or any of [2-5]. To 
facilitate analysis, we shall assume that all descendents of a *node are equally 
likely. The algorithm we present can be extended, in a direct way, to the more 
general case. 

For the most part, *-minimax trees retain the properties of ordinary minimax 
trees. In particular, they pertain to 2-person, 0-sum, perfect information games. 
By 'perfect information' we mean that neither player conceals information 
about the current state .of the game, or possible future states, that is useful to 
him and that would be useful to the other  player. Many dice games (e.g. craps, 
backgammon, and board games such as monopoly)  satisfy these criteria, as do 
some card games (e.g. casino blackjack). 

Unlike ordinary minimax trees, where +nodes always lead to - n o d e s  and 
vice versa, trees for *-minimax games exhibit many forms. For instance, the top 
portion of a tree for casino blackjack, where the strategy of the dealer ( 'house') 
is predetermined,  thus eliminating branches beneath -nodes ,  is given (in 
simplified form) in Fig. 2. Compare the structure of this tree fragment, with its 
notable absence of alternation between + and -nodes ,  with the backgammon 
tree fragment of Fig. 3. 

+ , y  

,oso + Yi'  
loss - ... win 

FIG. 2. Portion of a casino blackjack tree. 
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FIG. 3. Portion of a backgammon tree. 

2. The *-Minimax Search Problem 

Having defined and given examples of *-minimax trees, we now consider the 
question of searching these trees. At the very least, we want to retain the 
alpha-beta  'cutoff '  power of ordinary minimax trees. However ,  the presence of 
*nodes provides opportunit ies for additional forms of cutoffs. Our  strategy is 
based on the fact that lower and upper bounds on the value of  a *node call be 
derived by exploring one or more of  its children. Our  search algorithm will 
(indirectly) associate such lower and upper  bounds with each *node. Since 
alpha and beta values will have been passed into a *node, we can discontinue 
search below it if the lower *-bound ever exceeds beta, or if the upper  *-bound 
ever becomes less than alpha. In the former  case, the - p l a y e r  will have already 
found a path that holds his opponent  to less than the lower limit of the *node 
value. In the latter case, + will have already found a way to do bet ter  than the 
upper  limit of the *node value. Thus, optimal play by both players will assure that 
the *node in question is never  reached, rendering further exploration beneath  it 
futile. 

As an example of a possible '*cutoff' ,  suppose the (leaf) values of a particular 
tree are integers between 0 and 10, inclusive, and that a *node with 4 equally 
likely successors has had 2 of its successors searched. This situation is shown in 
Fig. 4. Knowing the values of these 2 children, we can say that the smallest 
value subsequent search can assign to the *node is ~ ( 5 + 3 + 0 + 0 )  or 2. 
Similarly, the greatest possible value of the *node is 2(5 + 3 +  10+ 10) or 7. 
Thus, a cutoff can occur if the alpha value passed to * is /> 7, or if the beta  
value is ~<2. We shall formulate  a search strategy to take advantage of this form 
of potential  cutoff. In addition, our strategy will compute  new alpha and beta  
values for use below *nodes. 

5 3 ~ ?. 

FIG. 4. Interim bounds on a *node. 
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3. A Strategy for Searching *-Minimax Trees 

Before looking at ways in which *cutoffs can occur, it will be useful to recall 
the circumstance in which nodes of an ordinary minimax tree can be pruned,  
without loss of accuracy. At each +node,  the +player  will choose the successor 
with the highest value, while at - n o d e s  the - p l a y e r  will choose, the successor 
with the smallest value. Consider Fig. 5. Having determined the value (eitht~r 
terminal or backed-up)  of tile node below move a as 4, move b is ' refuted '  by 
move x, which establishes that the value of move b is no more than 3 (perhaps 
less). Move y may be 'cut off' since its value (indicated by '? ' )  has no bearing 
on either the value of the root of the tree or  on deciding the best move from 
the root.  Since the node with ? as value could be the root of a sizable subtree,  
the searching of many thousands of nodes may have been eliminated. 

The  standard method of having a search algorithm recognize opportunit ies 
for cutoffs such as these is to associate so-called 'a lpha '  and 'be ta '  values with 
each node n of the tree. The alpha value tells how well + can do if node n is 
encountered during optimal play by both players. Similarly, the beta value tells 
how badly - can make + do, again assuming perfect play reaches node n. If the 
value of a node is ever determined to exceed its beta value, or to be less than 
its alpha value, this must mean that optimal play will not lead to the node in 
question. Therefore ,  further searching is pointless. In fact, subsequent nodes 
can be cut off if a successor value equals the alpha or beta  value. In this case, 
one of the players will have found another  line of play, with at least as good a 
value for him, which has already been searched. If a player has two or more  
equally good moves,  it doesn ' t  mat ter  which one is made.  

Consider now tile partially searched *-minimax tree of Fig. 6, and assume 
that leaf values range from - 1 0  to +10, inclusive. The alpha-beta  values of 4 
and 5 for the *node at depth 2 indicate that if the value of this node is 
determined to be ~<4, or >~5, search beneath  it can be discontinued. Suppose 
now that, as shown, there are 3 successors, the first of which has been searched 
and found to have a value of 2. If - 1 0  and +10 are limits on leaf values, then 
the value of the *node lies between - ~ ( 2 - 1 0 - I 0 )  and ~(2+ 10+ I0), i.e. 
between - 6  and 7~. Since - 6  is not greater  than 5, nor is 7[ less than 4, we must 
continue searching children of the *node. However ,  before so doing, we ask 
ourselves, what values of the lower-level node to be searched will entail a cutoff 

+ 

4 ~ , / " /  ' x ~  _ 

FIG. 5. A conventional minimax cutoll. 
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FIG. 6. A partially searched *-minimax tree. 

at the *node? Denoting this value by V, we want to know V for which 

~ ( 2 + V + 1 0 ) ~ < 4 ,  i.e. V<~0 
o r  

~ ( 2 + V - 1 0 ) / > 5 ,  i.e. V~>23. 

These values for V can now be used as a lpha-beta  values for the lower-level 
node to be searched. Having assumed 10 as an upper  bound on game values, 
however,  we will use 10 rather  23 as the beta  value. Thus, as indicated in Fig. 6, 
0 and 10 serve as alpha-beta values for the - n o d e  at depth 3. 

Suppose now that we search the first descendent of this - n o d e  at depth 3 
and find a value of 3. Since 3 is not less than the 0 alpha value, we continue 

searching,  and the next node to be searched is the *node at depth 4. However ,  
since 3 is less than the current beta value of 10, we pass down 3 as the new beta 
value for the *node, while the alpha value of 0 is unchanged. 

Having reached the *node at depth 4, we can discontinue searching if its 
value is found to be  less than or equal to 0, or greater  than or equal to 3. In the 
latter case, - will have already found a way to hold his opponent  to 3, and 
surely won' t  give + the chance to achieve 3 or  bet ter  at the *node. In the 
former  case, a cutoff below the *node will be followed immediately by a cutoff 
at the parent - n o d e ,  which will immediate  b' cause a cutoff at its parent  *node, 
which in turn will entail a cutoff below the top -node .  This possibility for two or 
more  cutoffs to occur without intervening leaf searches is without counterpart  in 
conventtonal minimax trees. 

By reasoning as above,  we can determine,  after seeing the - 3  successor of 
the *node at depth 5, that the *node value lies between - 7 ]  and 5], and that - 7  
and 10 should serve as alpha-beta values for the +node  to be searched next. 

4. An Algorithm .(or Searching *-Minimax Trees 

Wc now formalize the reasoning presented above.  Let L and U denote lower 
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and upper bounds on all possible game (leaf) values. Let Vt, V2 . . . . .  VN be the 
values of the N successors of a *node, whose ith successor is about to be 
searched. After returning from the ith node, a cutoff will occur if 

(V~ + . . . +  VH)+ V~ + U * ( N -  i)~<alpha ( la)  
N 

or if 

( V , + . - . +  Vi-~)+ Vi+ L * ( N -  i)>~beta ( lb)  
N 

Letting Ai represent the alpha value for the ith successor, we have 

A i =  N , a l p h a -  (V~+ - . - +  Vi-~)- U * ( N -  i) (2a) 

where 'alpha' denotes the alpha value of the present *node. Similarly, letting B~ 
represent the new beta value, we have 

B~ = N * b e t a -  (V~ + . . .  + V~_~)- L * (N - i) (2b) 

where 'beta'  is the beta of the *node. In the actual implementation, we will 
want to assure that all A 's  are >~L and all B 's  are ~<U. From the equations 
above we see that up-to-date A and B values can be computed efficiently if 
they are initialized as 

Al = N * ( a l p h a -  U ) +  U,  

Bt = N * ( b e t a -  L) + L 

and updated by 

A . + ~ = A . + U - V . ,  

B . ~ . t  = B. + L -  V..  

(3a) 

(3b) 

(4a) 

(4b) 
Note that, when N = 1, AI and BI take on the alpha-beta values themselves. 

From the above formulation we derive the following search procedure for 
*nodes: 

Star l (board ,  aTpha, beta) 
{ 
local A, B, i, v, vsum, AX, BX, s[ ] ;  

determine the N successors s l ,  s2 . . . . .  sN 
if (N = = 0) 

return(Term(board)) ;  
A = N * (a lpha - U) + U; 
B = N * (beta - L) + L; 
vsum = 0; 
for ( i=  1; i <  = 'N;  i +  +) { 

AX = max(A, L); 
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B X  = min(B,  U);  
v = Eval(s[i] ,  AX.  BX) ;  
if (v < = A) 

return(a lpha) ;  
if (v > = B) 

return(beta) ;  
vsum = v s u m  + v; 
A = A + U - v ;  
B =  B + L - v ;  

} 
r e tu rn (vsum/N) ;  

} 

This code makes  use of (1) a Term procedure,  to evaluate terminal positions; 
(2) an Eval procedure which, depending on which player is to move next, 
invokes either Max or Min; and (3) a procedure to generate the successors of a 
node. 

5. A 'Better' Algorithm for 'Regular' *-Minimax Trees 

The strategy developed above assumes that each successor of a *node could be 
either a - or a +node,  independent  of its sister nodes. In many *-minimax 
games,  however,  most *nodes fall into one of two classes: those with only 
+successors, and those with only -successors .  In these games, chance events 
are used to determine legal moves (as in backgammon) ,  or the outcome of a 
move  (as in blackjack), or both, but not to determine who is to have the next 
move.  (If chance is used to decide who makes  the very first move, this one-time 

�9 event is unrelated to search matters.)  We shall refer to games such as these as 
regular *-minimax games. Trees corresponding to these games alternate be- 
tween + and - n o d e s ,  as do ordinary minimax trees, but with *nodes inter- 
spersed. Thus, on a path from the root we encounter  node types of *, +, *, - ,  *, +, 
*, - ,  and so forth. 

For the newly-defined class of regular *-minimax trees, we can devise a 
'be t te r '  search procedure,  to be called Star2, which is later shown to be greatly 
superior to the Star1 procedure it directly extends. The  algorithm underlying 
Starl  was based on a strict depth-first control strategy. Thus, if X and Y are 
successors of some *node, we cannot examine children of X, suspend work 
with X to begin searching beneath Y, and then later return to additional nodes 
beneath ~X. Consider a *node all of whose children are - n o d e s .  In this 
situation, the left-to-right restriction imposed by a depth-first control strategy 
has two drawbacks. First, for a given *node,  it forces us to look at all N leaves 
beneath all but the last - n o d e  searched (unless some leaf takes on the 
minimum value over  all possible leaves). Second, we assumed that unprocessed 
- n o d e s  could have the maximum possible game value. Each of these problems 
is answered by the modification ~leveloped below. 
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If a *node being examined is worse than a previously searched *node, a 
preliminary 'probing' of just one child of each -node  can substantially reduce the 
number of nodes explored before a cutoff occurs. If ~,~,'] denotes the value of some 
child of the ith -node ,  and as before Vi denotes the (true) value of the ith -node ,  
we will obtain a cutoff below the *node if 

(Vj + - . -  + V~_~) + V~ + (W~+t + " "  + WN) ~< alpha (5) 
N 

which yields an Ai value of 

A~ = alpha * N - (V~ + . . .  + V i - l ) -  (W~,~ + . . .  + WN) (6) 

which can be efficiently computed by initializing to 

A l =  a l p h a * N -  ( W 2 + ' " +  WN) (7) 

and updating by 

A . ~  = A.  + t,V.+~- V..  (8) 

Since all W's are ~<U, tile values computed for A in (6) are never less than 
corresponding values in (2a). 

If the *node being searched is not bet ter  than all previously searched 
alternatives, so that a cutoff will occur, then unless we aye quite unlucky in 
selecting the particular children of - n o d e s  to explore, these tighter bounds 
for A will allow for an earlier cutoff than the formulas given earlier. Since we 
cannot speak with confidence about how large the true value of a - n o d e  
might be without looking at all its successors, no special use can be made of 
the B in (2b) during the preliminary probing stage. 

We formalize these ideas in the following procedure.  In order  to detect 
possible cutoffs during the probing phase, and to avoid a subscript range error  
the last time through the second loop, the calculations specified by (7) and (8) 
have been 'distributed' into disjoint places in the code of the new procedure.  
In keeping with the discussion above, this code pertains to a *node followed 
by -nodes .  A related procedure for *nodes followed by + nodes will also be 
needed. 

Star2Min(board, alpha, beta) 
{ 
local A, B, i, v, vsum, AX, BX, s [ l ,  w [ ] ;  

determine the N successors s l ,  s2 . . . . .  sN 
if (N = = 0) 

return(Term(board)); 

A = N * (alpha - U); 
B = N * (beta ~ L); 
BX = min(B, U); 
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for ( i=  1; i <  =N; i +  +) { 
A = A + U ;  
AX = max(A, L}; 
w[i] = Probe(s[i], AX, BX); 
if (w[i] < = A)  

return(alpha); 
A = A - w[i]; 

} 
vsum = 0; 
for ( i= 1; i <  =N; i+  +) { 

B =  B + L ;  
A = A + w[i}; 
AX = max(A, L); 
BX = rain(B, U); 
v = Min(s[i], AX, BX); 
if (v < = A)  

return(alpha); 
if (v > = B) 

return(beta); 
vsum = vsum + v; 
A = A - v ;  
B =  B - v ;  

} 
roturn(vsum/N); 

} 

Here  we have made calls to (1) a standard Min procedure for -nodes ,  and 
(2) a new procedure,  Probe(x, y, z), whose job is to return Term(x),  if x is a 
leaf, otherwise to choose some successor s and x, either at random or by appeal 
to a static evaluation function, and return Min(s, y, z). In the event that 
preliminary probing fails to obtain a cutoff, the modified algorithm given above 
reverts to the original algorithm, albeit with a tighter A bound and therefore 
with an equal or bet ter  opportunity for an early cutoff (as shown in Section 
6.2.1.3). Rather  than exhaustively searching - n o d e s  one by one, however, 
more elaborate behavior is possible (as described in Section 7). 

6. Analysis of *-Minimax Algorithms 

In analyzing the efficiency of a search procedure for a class of game trees, one 
begins by specifying a subclass for study. This involves deciding on (a) the 
overall str~tcture of trees; (b) a way of assigning values to leaves; and (c) the 
criterion to be measured. We want our analysis of *-minimax search to 
resemble that for ordinary alpha-beta wherever  possible (e.g. [2-5]). Since 
virtually all study of alpha-beta has chosen to count the number of leaves 
encountered as the efficiency measure, we will do so as well. Furthermore,  
most analyses of ordinary alpha-beta have considered so-called 'complete '  
N-ary  trees, where all leaves occur at a fixed depth D and all nontcrminal 
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nodes have exactly N successors. We define the class of *-conlplete N-ary trees 
by inserting a *node above each node of a complete  N-a ry  tree,  and giving 
these *nodes N -  1 additional successor nodes of the same type. These  trees 
satisfy the definition of ' regular '  *-minimax trees as given in the previous 
section. Corresponding to a complete  N-a ry  tree of depth D, which has N**  D 
leaves, is a *-complete N-a ry  t ree of depth 2D having N ** 2D leaves. We  will 
investigate the efficiency of the *-minimax algorithms on *-complete  N-a ry  
trees of depth 3, since they correspond to minimax trees (of depth 2) allowing 
the simplest cutoffs of standard alpha-beta  (see Fig. 5). The  leftmost part  of a 
*-complete 2-ply binary tree appears  in Fig. 7. 

From Fig. 7 we can see that no cutoff is possible at the topmost  level, since 
the root is a *node. (During actual play, the chance event will have occurred by 
the t ime we a r e  ready to select a move,  so only one +successor of the top 
*node will be  searched anyway.) The  left +node  however  permits a cutoff 
below its second successor. By the t ime this *node has been reached, an alpha 
value will be available. We will consider this critical portion of the tree, which 
is given in Fig. 8. 
�9 In an a t tempt  to capture the sorts of leaf dependencies that have been 

observed in practice, we follow Fuller, Gaschnig and Gillogly [3] by assigning 
distinct, uniformly spaced values to the arcs below a node, and defining a leaf 
value as the sum of the arc values on the path to it f rom the root.  Since we 
want our  methods to apply to (perhaps differently shaped) trees where leaves 
occur at various levels, we cannot use simply the values of 1 through N as arc 
labels, as Fuller et al. [3] did. To  enable all successors of a node to share the 
same a priori probabili ty of being best, we want the arc value from a + or 
- n o d e  to its 'bes t '  successor to be  0, and the 'average '  arc value out of a *node 
to be  0. Therefore ,  to the arcs of - n o d e s  we assign values of 0, 1 . . . . .  N - 1, 
and to the arcs of +nodes  we assign values of 0, - 1 . . . . .  - ( N  - 1). Assuming N 
is even, we assign to the arcs of *nodes the values of -�89 . . . .  - 2 ,  - 1 ,  1, 
2 . . . . .  ~N. 

Readers  familiar with studies of the alpha-beta  procedure  [2-5] will ap- 

./+\/i \+ / \  
f \  

FIG. 7. The leftmost portion of a 2-ply *-complete binary tree. 
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FIG. 8. Opportunities for a cutoff in a *-complete 2-ply binary tree. 

prcciate the algebraic complexity involved in obtaining precise closed-form 
performance figurcs for even shallow trees (e.g. depth 3). Accordingly, the 
following analysis, which determines both asymptotic complexity and exact 
values for various branching factors, combincs simulation with analytic tech- 
niques where appropriate. 

6.1. Best-case analysis 

We first establish tile best case behavior of the Starl and Star2 procedures on 
the class of *-complete trees just defined. We will derive asymptotic values in 
closed form, then present exact figures for various branching factors arrived at 
by empirical means. 

As in ordinary alpha-beta search, the first successor of the +node must be 
fully searched, and we will obtain the greatest number of cutoffs if the best 
node is searched first. Since this value, which we have arranged to be 0, cannot 
he improved upon, it will serve as alpha value for all the remaining *nodes, 
which have backed-up values of - 1 ,  - 2  . . . . .  - ( N -  1) and can be searched in 
any order without affecting search efficiency. Since the node with - l as value is 
almost best, it will take longest to search, while the - ( N -  1) node will be 
dispensed with most quickly. 

We will find the number of leaves searched for the particular *node having 
backed-up wdue of w -  ~N (a value chosen to simplify the algebra). From this 

"result we add up values as w runs from - ( ~ N -  I) to ~ N -  1 to obtain the over- 
all search efficiency under the +node in question. 

6.1.1. Best-case analysis of the Slat1 procedtlre 

To obtain, a cutoff below a *node, wc will need to begin exploring a j th 
descendent of it for which 

Vn+ V 2 + ' " +  Vi+U*(N- j )<~O (9) 

where V~ denotes the backed-up value of the ith descendent of the *node and 0 
is the active alpha value. The values of the - n o d e s  beneath * range from w -  N 
to w, excluding w -  ~N. To  guarantee the earliest possible cutoff, we will want 
to look first at the nodes with low values. If j > ~N, which we shall see below is 
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always true, since the smallest j will be about 0.55N, then V~ through Vj will 
take on the values w - N  through w - ( N - j ) ,  excluding w - ~ N .  Letting 
k = N - j, the number of nodes which need not be searched if a cutoff occurs at 
node ], we can substitute values for V~ through Vj into the equation above and 
then multiply each side by - I  to obtain 

[k + (k + I) + . - -  + NI - ~N + (k - N ) *  w/> k * U.  (i0) 

But the summation is easily written in closed form, and U (the maximum leaf 
value) is 0 + ~N + (N - 1), or 3N - I. After cancelling the IN terms, we have 

~N* N - ~(k * k - k) + (k - N)  * w ~> k * (~N - l) (1 l) 

which can be written as a quadratic (in k) as 

k * k + (3N - 2w - 3) * k - ( N  * N - 2 N w )  <~ 0 (12) 

from which 
integer not greater than) tile expression 

- ~ ( 3 + 2 w - 3 N +  s q r t ( 1 3 N * N - 2 0 N w -  1 8 N + 4 w *  w +  12w +9))  

the quadratic formula yields k as the floor of (i.e. the largest 

which for large N becomes 

~(-3N + 2w + sqrt(13N * N - 2 0 N w  + 4 w  * w) )  . 

(13) 

(14) 

This formula reveals reduction in searching the worst, median, and nearly-best 
*nodes of 44.9%, 30.3%, and 0%, respectively, which correspond to w values 
of - ( ~ N -  1), 0 and �89  1, respectively, and associated j values of 0.551N, 
0.697N and 1.0N, respectively. To determine the total number of nodes 
pruned, we add up the above formula as w runs from - ( ~ N -  1) to �89 - 1. For 
large N, this sum can be found by integration. Once again ignoring lower-order 
terms, we obtain an asymptotic fractional savings of 0.279. We can therefore 
state the following. 

Result I. Tile asymptotic best-case behavior of algorithm Starl  on the +node 
of a *-complete 2-ply N-ary  tree is to examine approximately 0 . 7 2 1 N * . 3  of 
the N ** 3 leaves beneath it. 

Table 1 gives exact values for the best case performance of the left-to-fight 
Starl procedure for various values of N. Note the convergence toward the 
region of 72 percent, as predicted by the analysis above. 

6.1.2. B e s t - c a s e  ana lys i s  o f  the S tar2  procedure  

If the successors of - n o d e s  are optimally ordered,  so that their first successors 
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TABLE 1. Best-case leaf exploration of Star1 for various *-complete 
2-ply trees 
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N 2 4 6 8 10 20 30 40 

N u m b e r  5 40 138 336 670 5560 18990 45320 
Percent 62.5 62.5 63.9 65.6 67.0 69.5 70.3 70.8 

are minimal, then if a cutoff will occur at all, it will occur during the 
preliminary probing phase. This means that only one successor per - n o d e  
will need to be looked at by Star2, whereas all N of all but the last - n o d e  were 
examined by Starl .  As revealed above, an average of 72.1 percent of the N 
- n o d e s  below each of the N *nodes, i.e. 0.721 N * N nodes, will be examined 
fo r  all but the best *node, whose N *  N leaves must all be considered. This 
gives us: 

Result  2. The asymptotic best-case behavior of algorithm Star2 on the +node  
of a *-complete 2-ply N-ary  tree is to examine approximately 1 . 7 2 1 N * . 2  of 
the N ** 3 leaves beneath it. 

This result is encouraging because, like the O ( N * *  2) best case alpha-beta 
result for depth 3 trees [2], it shows that a wise algorithm can hope to reduce 
search complexity by a fac tor  of N. For  the most part, we achieved this 
reduction without significantly increasing the conceptual complexity of the 
algorithm, its overhead, or the additional space needed (which will in fact be 
only N * D cells for an N-ary  tree of depth D).  Table 2 gives exact values for 
the best case performance of the Star2 procedure for various values of N. 

6.2. Average-case analysis 

Since average-case analysis is more difficult than best-case analysis, we decided 
to investigate the expected-case performance of the Starl  and Star2 procedures 
mainly by empirical means. To  do this, we coded the algorithms in the 'C' 
language to be run on our  PDP-11/70 system. Since the foregoing algebraic 
best-case analysis ignores lower-order terms, and thus cannot yield reliable 

TABLE 2. Best-case leaf exploration of Star2 for various *-complete 
2-ply trees 

N 2 4 6 8 10 20 30 40 

N u m b e r  5 25 58 105 166 677 1532 2732 
Percent  62.5 39.1 26.9 20.5 16.6 8.5 5.7 4.3 
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values for small values of N, we preceded our  average-case experimentation by 
running each algorithm on an optimally ordered tree. The  results of this exact 
analysis were given in Tables 1 and 2. Finally, after competing our empirical 
study, we undertook a simplified algebraic analysis of average-case Starl  
performance,  which led to an iterative formula which will be presented after 
describing the results of the empirical study. 

6.2.1. Empirical average-case study 

USing the UNIX pseudo-random number  generator,  we generated and 
gathered statistics on 1000 *-complete trees for each of several branching 
factors. In generating the successors of a node, all N!  permutations of suc- 
cessor arcs were assumed to be equally likely. We did this because (a) it is 
simple to implement; (b) it corresponds to completely 'uniformed'  static 
evaluation capabilities, thus giving a conservative picture of what to expect in 
practice; and (c) it has been adopted by previous researchers, thus enabling a 
comparison of *-minimax trees against ordinary minimax trees. In our im- 
plementation, the leftmost . node  is searched exhaustively, since as we have 
observed no cutoff can occur beneath it. In the event that preliminary probing 
failed to result in a cutoff, the N leaves seen were counted twice if subsequent 
search required a full search of the - n o d e  above them. Thus, the results 
obtained represent a conservative estimate of average case analysis, which is 
itself a conservative estimate of how well one can expect to do in practice. 

6.2.1.1. Average-case analysis of tile Star1 procedure 
Table 3 presents the average-case results for the initial left-to-right Starl  
procedure.  It can be seen that the average case savings appears to be about 21 
percent, roughly 3 times the best-case savings of 28 percent. 

6.2.1.2. Average-case analysis of the Star2 procedure 
We have seen that with optimal ordering, the search complexity of Star2 on 
regular *-complete trees can be reduced from O(N ** 3) to O(N ** 2). This may 
lead us to expect a significant improvement  in its average-case behavior as well. 
Table 4 summarizes the results of Star2 performance.  

In addition to simply counting leaf explorations, we decided to gather 
information on how many *node cutoffs were made during the preliminary 
probing phases. An interesting result was that roughly half the *nodes for 

TABLE 3. Average-case leaf exploration of Starl  for various *-complete 
2-ply trees 

N 2 4 6 8 10 20 30 40 

Number 7.1 53.9 178 418 810 6389 21382 50425 
Percent 88.8 84.1 82.5. 81.6 81.1 79.9 79.2 78.8 
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TABLE 4. Average-case leaf exploration of Star2 for various *- 
complete 2-ply trees 
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N 4 6 8 10 20 30 40 

Cutoffs 
Probing 1.3 2.0 2.8 3.5 8.1 12.6 17.4 
Regular 0.7 1.5 2.5 3.5 8.4 13.4 18.3 

Leaves seen 
Number 48 139 293 531 3341 10109 22390 
Percent 75.4 64.5 57.3 53.1 41.8 37.4 35.0 

which a cutoff occurred were c u t  off during the probing phase. Also, we see 
that for a branching factor greater than about 20, Star2 looks at fewer than half 
the leaves explored by Starl .  

6.2.1.3. Discttssion of average-case Star2 restdts 
In the *-complete trees we have been considering, where each non-terminal 
node has N successors, there will be N!  ways of ordering the ares below each 
node. In both the Star1 and Star2 procedures, searching is left-to-right on the * 
nodes below the root. In this case, each *node better than all its predecessors 
must be frilly searched. If each of the N! permutations is equally likely, the 
expected number of such fully-searched *nodes is the 'harmonic'  function, 
given by 

H ( N ) =  l + l / 2 + . . . + l / N .  

This formula is easily verified by induction: given H ( N - I ) ,  adding an Nth  
node worse than all the others will have no ettect of the searching of the 
previous N -  1 nodes, while the new node will be fully searched only if it is 
placed first in the permutation,  which happens one time in N. Thus, the 
number  of leaf nodes searched beneath best-so-far *nodes is N * N * H(N).  If 
in Table 4 we subtract from N the average number of cutotts that occurred, we 
observe perfect agreement with H(N)  (within the 0.1 tolerance due to round- 
ing). For instance, with N = 40, we see that an average of 4.3 *nodes were 
found superior to previously searched *nodes. This accounts for 4.3 * 4 0 . 4 0  or 
6880, of t l~  leaves that were explored. The remaining 35.7 *nodes can be seen 
to have had an average of (22390 - 6880)/35.7 or 434, of the 1600 leaves beneath 
them examined. The reader will recall that not all the additional savings of 
Star2 is made possible by preliminary cutoffs, but also by the lower values 
assigned for the A's. For instance, the 18.3 *nodes which led to a 'regular'  
cntoff did so after searching fewer than (22390-6880)/18.3 or 848 leaves. This 
figure represents about 70 percent of the average number of (50425- 6880)/35.7 
or 122(I leaves examined by Starl for the corresponding *nodes. 
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6.2.2. Algebraic average-case analysis of Starl 

We have observed that the expected number  of fully-searched *nodes is given 
by the harmonic function H ( N ) ,  so that the number  of leaves searched beneath  
them is 

A ( N )  = N * N * H ( N )  

We will now determine B(N) ,  the number  of leaves searched beneath  the 
remaining *nodes, which we add to A ( N )  to find C(N) ,  the total average 
number  of leaves searched in an N-a ry  *-complete 2-ply tree. 

Each of the N -  H ( N )  *nodes not bet ter  than all preceding *nodes will be 
rejected when its value is determined to be less than the value of the best 
�9 node seen so far. Recall that in the *-complete trees we are considering, 
�9 nodes have backed-up values of 0, - 1  . . . .  , - ( N -  1). Suppose a given *node 
has a value of I1, and m is the value of the best *node seen so far, where i1 < iii. 
In addition to the *node of value ii1, any of the *nodes with a value less than ii1 
(but not equal to n) can precede the n-valued node. The  number  of ways this 
can occur is given by 

N - M - 2  
" " M - 2 ) , ( s  § 1)!, ( N -  s -  2)! (15) D ( M ) =  ~,  s 

s=0 

where M = Iml. A cutoff will occur below this n-valued *node when we have 
searched a j th successor for which 

V , + . . . +  Vi_,+ ~ +  U * ( N - j )  < m (16) 
N 

But the values of the - n o d e s  below the n-valued *node are n - IN, . . . .  n - 1, 
n + 1 . . . . .  i1 + �89 with an average value of i1. For large N, j becomes  large as 
well, and the expected value of the relative difference between (Vl + - - - +  V/) 
and jn approaches 0. 

Although the average expected value of a function is not in general the same 
as the expected value of the average of the function, in the present  nearly- 
linear situation, it gives a good approximation.  Thus, using the ' in '  value 
derived above as an approximation,  we obtain 

in + (3N - 1) * (N - j)  ~ m N  (17) 

whose high-order terms give 

2in + 3N  * N - 3jN <~ 2raN (18) 

which reduces to give a value for j, which we denote  by J (m,  n), of 

J (m ,  n) = 3N - 2hi �9 N (19) 
3N - 2n " 
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T^nLE 5. Algebraic average-case analysis of Starl compared with empiri- 
cal findings 
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N 4 6 8 l0 20 30 40 

Algebraic 57 188 438 846 6557 21805 51174 
Empirical 54 178 418 810 6389 21382 50425 
Percent difference 5.6 5.3 4.6 4.3 2.6 1.9 1.5 

This means that the average number of nodes searched beneath *nodes that 
are not better than all preceding *nodes is 

N - I  n - I  

~_, ~ D ( , n ) * J ( - m , - n ) * N  
B(N)  = "=' ,~-o (20) 

N! 

By supplying the expressions for tile D and Y functions, simplifying, and 
adding A(N) ,  we find the total number of leaves searched to be 

C(N) = N * N * H ( N )  + 
N - m - 2  

N*~'~N-' .-1~,~ "3-N--2-nn * 3 N  - 2m N-,,,-2~ (su_t + I) �9 l-I t. 
n = l  m=O s=O l - lx=N_s_l  X t=N-rn- l -s  

(20 

Table 5 gives leaf exploration figures for specific values of N, and compares the 
experimentally derived results against them. 

Since simplifications were made in deriving B(N), asymptotic agreement is 
not guaranteed. However, it can be seen that the agreement is reasonably good 
(less than 2 percent deviation) for larger values of N. 

6.3. Summary of results for two-ply trees 

We summarize the preceding results in Fig. 9. 

6.4. Empirical analysis for deeper trees 
! 

Having observed an appreciable savings for trees of depth 3, we decided to 
investigate the performance of the *-minimax algorithms on deeper trees. Since 
even levels of our trees are associated with chance events rather than player 
moves, 3-ply and 4-ply trees have depths of 5 and 7, respectively, while the 
leaves of trees of depth 4 and 6 forrespond to positions where chance events 
have occurred but not yet been responded to. The empirical analysis performed 
is analogous to that described above. Results are given in Table 6. Readers can 
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LEAVES SEARCHED * *  3 

3 ~ Z Z Z . @ a  

Star2 

BRANCHING FACTOR 

FiG. 9. A graphical summary of best-case and average-case results for various *-minimax al- 
gorithms. 

determine the approximate number of leaves explored by multiplying the 
percentages given by B**D, where B represents branching factor and D 
represents depth. For instance, the best-case leaf exploration of Star2 for 3-ply 
(depth 5) trees of branching factor 10 is about 0.11.(10. .5)  or about 11000. 

7. Additional Modifications 

When a cutoff has not occurred below a given *node during the preliminary 
probing phase, Star2 performs an exhaustive search of -nodes.  Instead of 
doing this, we might consider just one additional child of each -node  below the 

~*node in question. If a cutoff has still not occurred, a third of each -node  
would be considered, and so forth, until either a cutoff occurs or an exhaustive 
search is completed. We refer to this modified form of Star2 as the 'cyclic 
Star2.5' procedure. 

In practice, to avoid the unpleasant time and space overhead involved in 
doing the breadth-first, traversai required by the cyclic Star2.5 algorithm, we 
might resort to exhaustive searching of the remaining children of each -node  
after having considered a predetermined number of its children. We refer to 
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TABLE 6. Empirical analysis of leaf exploration (in 
percent) for *-complete trees of varying depth and 
branching factor 

Star l  Star2 

Branching 
factor Depth Best Average  Best Average  

4 3 62 84 45 87 

4 4 58 81 38 75 

4 5 55 77 38 64 
4 6 56 77 32 40 

4 7 54 - -  28 - -  

6 3 64 82 30 71 

6 4 56 77 24 61 
6 5 56 74 21 38 

6 6 55 73 17 25 
6 7 53 - -  11 

10 3 67 81 18 57 

10 4 55 73 14 46 
10 5 58 73 I1 22 

10 6 54 - -  8 12 

I0 7 56 - -  4 - -  

20 3 7(1 80 9 44 

20 4 55 70 7 32 

20 5 60 - -  5 12 
20 6 55 - -  3 - -  

Starl 

t 

Star~ 

Star2.5 
(cyclic) 

Star2.5 
(seq) 

l 2 3 4 5 6 7 8 11 12 13 14 15 16 

l 5 6 7 2 8 9 10 3 11 12 13 4 14 15 16 

] 5 9 lO 2 6 II 12 3 7 13 14 4 8 15 16 

1 2 g I0 3 4 II 12 5 6 13 14 7 8 15 16 

FIG. 10. Order  of leaf explorat ion for various *-minimax algorithms. The Star2.5 procedures are 

given with a probing factor of 2. 
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this va lue  as the  ' p r o b i n g  fac tor ' .  Wi th  a p rob i ng  fac tor  of 1, cyclic Star2 .5 .  
r educes  to Star2.  W i t h  a p rob ing  fac tor  of  0 it r educes  to S t a r l .  

A dif ferent  way  to mod i fy  S ta r2  wou ld  be  to  have  jus t  o n e  p r o b i n g  phase  p e r  
- n o d e  bu t  to cons ide r  severa l  of  its ch i ld ren  dur ing  it. A l t h o u g h  this s t ra tegy  is 
p r o b a b l y  infer ior ,  in t e rms  of e x p e c t e d  n u m b e r  of leaves  to be  e x a m i n e d ,  to the  
cycl ing desc r ibed  above ,  it r equ i r e s  c o n s i d e r a b l y  less o v e r h e a d .  W e  call this  the  

I 

' s equen t i a l  Star2 .5 '  p rocedu re .  A s  b e f o r e  we use the  t e rm ' p r o b i n g  fac tor '  to  
d e n o t e  the  n u m b e r  of  ch i ldren  of  each - n o d e  to be  e x a m i n e d  b e f o r e  we resor t  
to  an exhaus t ive  search .  Wi th  a p r o b i n g  fac tor  of 1, sequen t i a l  Star2.5 r educes  
to  Star2.  Wi th  a p rob ing  fac tor  of  0 or  N it r educes  to S t a r l .  

T o  clar ify the  exact  b e h a v i o r  of the  a lgo r i thms  p r e s e n t e d  thus far,  an 
e x a m p l e  is given in Fig. 10 of the  o r d e r  of leaf  e xp lo r a t i ons  b e n e a t h  a *node  
for  a t ree  with a b ranch ing  fac tor  of  4. 

7.1. E m p i r i c a l  average-case  s tudy  of the  S ta r2 .5  a lgo r i thms  

T o  eva lua t e  the  Star2.5 p r o c e d u r e s ,  we  g e n e r a t e d  100 t rees  of  d e p t h  3 and  

TABLE 7. Empi r i ca l  ave rage -case  s tudy  of the  
Star2.5 a lgor i thms  on a t ree  of  d e p t h  3 and  
b r anch ing  fac tor  20 

Star2.5 (cyclic) Star 2.5 (seq.) 

Probing Prelim Percent Prelim Percent 
factor cutoffs leaves cutoffs leaves 

1 8.0 40.7 8.0 40.7 
2 11.3 34.4 11.1 36.8 
3 12.7 31.7 13.0 34.7 
4 13.7 30.2 14.2 34.7 
5 14.4 29.3 14.8 36.6 
6 14.8 28.7 14.9 39.8 
7 15.2 28.4 15.4 41.6 
8 15.5 28.1 16.5 45.2 
9 15.7 28.0 15.9 46.7 

i 0 16.0 27.9 16.0 50.4 
11 16.2 27.9 16.4 52.4 
12 16.3 27.9 16.2 56.3 
13 16.3 27.9 i 6.5 58.7 
14 16.3 27.9 16.4 61.8 
15 16.3 27.9 16.2 65.6 
16 16.3 27.9 16.3 68.0 
17 16.3 27.9 16.3 71.1 
18 16.3 27.9 16.5 73.7 
19 16.3 27.9 16.4 76.7 
20 16.3 27".9 16.5 79.6 
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branching factor 20, then ran each of the Star2.5 algorithms for probing factors 
ranging from 1 to 20. Since all cutoffs that will occur in the best-case situations 
for Star2 occur during the initial probing phase, only average-case analysis is 
worth considering. The results appear in Table 7. 

As indicated in Table 7, tile number of probing cutoffs for cyclic Star2.5 
increases with probing factor, but the rate of increase falls off quickly. In fact, 
virtually no additional cutoffs were observed after a probing factor of ~N was 
reached, since all possible cutoffs had occurred beneath the N - H ( N )  *nodes 
better  than all preceding *nodes. 

The sequential vcrsion of Star2.5 shows improvement as the probing factor 
increases from 1 to 3, then levels off and quickly begins to degrade, ultimately 
reaching tile figure for Starl .  This is bccause as the probing factor increases, we 
are able to obtain cutoffs beneath more *nodes, but at the expense of doing 
more work for those *nodes that would have been cutoff with a smaller probing 
factor. 

7.2. A final modification 

We have sccn that cutoffs can occur only beneath *nodes which are worse than 
some previously searched *node. For this reason, it is useful to find the bcst 
*node, or at least a good one, before carrying out exhaustive or nearly 
exhaustive search beneath inferior *nodes. Experimentation with the existing 
algorithms indicates that if the best *node is seen first, then for leaf depen- 
dencies of the sort defined in Section 6, and for a branching factor of 40, the 
averagc-casc scarch complexity of Star2 is reduced from 35 percent to 30 
percent. Similarly, the average-case performance of Star2.5 with 2-node cycling 
is reduced to 26.3 percent. We have formulated and begun to experiment with 
an algorithm called Star3 which incorporates probing beneath *nodes. Since 
additional overhead is needed for the initial probing, and sincc one cannot 
realistically expect to find the best *node each time, the actual behavior of 
Star3 will not be as good as these benchmark figures. 

8. Remaining Consideralions 

We complete our  presentation and analysis of tile *-minimax search problem, 
and our solution to it, by devoting brief attention to some remaining topics. 

8.1. The efficacy of search 

In developing and examining algorithms for *-minimax trees, we have assumed 
that search proceeds until either a leaf is encountered or an allowable form of 
cutoff occurs. In this case, tile move selected is guaranteed to be optimal, i.e. to 
have an expected value at least as good as the alternatives. As we shall observe 
in Section 8.4, however, it is seldom possible to carry out a complete search, 
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and so in practice the values of many non-terminal nodes must be determined 
by static evaluation. 

When complete search is not possible, both intuition and empirical obser- 
va t ion  suggest that deeper  search will result in better  play. However,  recent 
results by Nau [6] show that for ordinary minimax trees, deeper  search can in 
some situations result in making worse moves. Despite the existence of such 
'pathological' trees (tile tcrminology of [6]), it is probably advantageous for most 
games of interest, including the *-minimax games we have been considered, to 
search as deeply as possible (at least as deeply as current technology permits). 

Although play is likely to be bet ter  with deeper  search, no general statement 
can be made as to how much bet ter  it can be expected to be. For  many games 
of chance, strategy appears to be much more important than search, and in fact 
the currently top-ranked backgammon program (BKG) does not carry out a 
tree search. Although its author indicates that he selected backgammon for 
study because he "wanted was a domain where it is possible t o . . .  make a 
j u d g m e n t . . ,  without having to worry a b o u t . . ,  exhaustive analysis" (Berliner 
[7]), he states elsewhere that " the deeper  one Could look, the better  [a] 
program would play" [8]. 

Perhaps one reason search has received so little attention for games such as 
backgammon is that the O ( N * *  ( 2 D -  1)) complexity of the 'obvious' search 
strategy appears infeasible. For example, Berliner [9] observes that 

" the  throw of a pair of dice can produce 21 different results, and each such throw 
can be played about 20 different ways in the  average position. Thus  a look-ahead 
would have to acquiesce to a branching factor of about  400 for each ply of 
look-ahead; an exponential  growth rate than  could not be tolerated for very long." 

In this paper, however, we have presented an algorithm which reduces this 
branching factor of 400 to 677/20 or about 34. Since we have assumed equally 
likely chance outcomes (however, see Section 8.3) and made other  pedagogical 
assumptions, this should be treated as only an approximate figure for a 
particular game such as backgammon. 

8.2. An unusual form of cutoff 

Knuth and Moore  [2] have shown that whereas the alpha-beta algorithm for 
minimax trees is more powerful than the more obvious branch-and-bound 
strategy, t he re  is no uniformly stronger method. This assumes, however, that 
we must detertnine the precise value of tile root,  not just tile best move. Thus, if 
the root node of a minimax tree has N successors, and the first N -  1 of them 
have been searched and all found to have the lowest possible game value (e.g. 
'forced loss'), alpha-beta will still search the remaining node, even though this 
node is known to be at least as good as any of the alternatives! In the 
degenerate case, this 'would mcan searching a tree with only one branch 
(denoting a 'forced'  move) from the root. Needless to say, existing game- 
playing programs typically respond without search in these situations. 
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When searching the last successor of the root of a *-minimax tree, a stronger 
form of cutoff can be made. In particular, we can discontinue search, knowing 
that the rightmost node is strictly better than the alternatives, even though we 
may not know its exact value. This is because the value of a *node is partially 
determined by the value of each of its successors, while a - n o d e  is ful ly  
determined by one of its successors. We implement this form of cutoff by 
discontinuing search beneath the righonost *node when its lower *-value 
exceeds the alpha value (rather than beta) passed into it. Being able to cut off 
below the node corresponding to the best move, without knowing its exact 
value, can be important in reducing search time for *-minimax trees, especially 
with a narrow branching factor below + and - n o d e s  (e.g. in casino blackjack, 
with a branching factor of 2 beneath +nodes). 

8.3. Differing probabilities below a *node 

Neither algorithm presented above considers the situation where not all 
outcomes of the chance event are equally likely. If Pi denotes the probability 
with which tile ith successor of a node occurs, then the left side of (la) is 
replaced by 

(1,, v ,  + . . .  + P,_, v~_,) + P,v,  + u �9 (1 - P, . . . . .  p,) (22) 

and (2a), (3a) and (4a) are modified accordingly. 
In searching ordinary minimax trees, the static evaluation function, or a 

similar 'plausible move generator ' ,  is often used to determine the order  in 
which to consider successors of a node. When the probabilities of outcomes 
differ in *-minimax trees, a potentially useful strategy is to examine more likely 
successors first, since their values will more strongly influence the *node value. 
However,  one must weigh against this the likelihood of a useful (i.e. extreme) 
value, and also the probable number of nodes to be pruned (i.e. below sister 
nodes) if a cutoff does occur. In *-minimax trees, where cutoffs are harder  to 
come by, the typical tradeoff between the likelihood and benefit of a cutoff is 
compounded in the case of differing probabilities. Decisions as to which 
combination of strategies to adopt are probably best made by considering the 
idiosyncrasies of the particular game under consideration. 

As described in [10], we have recently shown that advantages can be obtained 
over minimax by treating the - n o d e s  of ordinary minimax trees as though they 
were *nodes with weights determined by an estimate of the 'fallibility' of the 
opponent .  

8.4. Incorporating *-minimax search into a complete game program 

In programming actual minimax games, adjustments are often made to a pure 
alpha-beta search because of the overwhelming size of most search trees. In 
particular, a static evaluation function is generally used to rank successor nodes 
in what appears (before searching) to be best-to-worst order,  hoping to assure 
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ea r ly  cu tof f s ;  a depth bound is o f t e n  m a i n t a i n e d  in s o m e  f o r m  to  p r e c l u d e  

s e a r c h i n g  p r o h i b i t i v e l y  d e e p  n o d e s ;  forward pruning is p e r f o r m e d ,  m e a n i n g  

tha t  s o m e  n o d e s  w h i c h  l o o k  u n p r o m i s i n g  a r e  n o t  s e a r c h e d  at al l ,  a transposition 
table is m a i n t a i n e d  to  a v o i d  s e a r c h i n g  t h e  s a m e  p o s i t i o n  m o r e  t h a n  o n c e  if it 

a p p e a r s  in s e v e r a l  p l a c e s  ( ' t r a n s p o s i t i o n s ' )  in t h e  s e a r c h  t r e e ;  a n d  so  fo r th .  In  

p r a c t i c e ,  w e  w o u l d  e x p e c t  such  m o d i f i c a t i o n s  to  b e  m a d e  to  t h e  * - m i n i m a x  

p r o c e d u r e s  as wel l ,  a l t h o u g h  t h e  u n d e r l y i n g  a l g o r i t h m s  n e e d  n o t  b e  c h a n g e d .  
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