# 10. Broude P bound

Merchant of Venice (Shakespeare) [5] one portrait in one of three castets Led Lailner Lead "Pis her" "Pis not here" "Pister geld auslet"  $Xi = \{ 0, P | S \text{ or casket } i \}$ J:= { 1 , inscription i is true

0 , - 1 1 - mot true A most 1 monition true? ( real inscriptions are ( a)
thakes peare. mit. edu )

#### MOROCCO

The first, of gold, who this inscription bears, 'Who chooseth me shall gain what many men desire;' The second, silver, which this promise carries, 'Who chooseth me shall get as much as he deserves;' This third, dull lead, with warning all as blunt, 'Who chooseth me must give and hazard all he hath.' How shall I know if I do choose the right?

### PORTIA

The one of them contains my picture, prince: If you choose that, then I am yours withal.

- <W. Shakespeare, The Merchant of Venice>
- < 1596 1598 >
- < http://shakespeare.mit.edu/ >

# B&B (clad) if constaints:

P not here
$$\begin{cases}
3z = 1 - xz
\end{cases}$$
or

[lead] 
$$y_3 = 7x_1$$
 or  $y_5 = 1-x_1$ 

· Find a feasible solution.

### BdB (dad)

Total enumeration:

( works if integer variables are constrained from above I below

O < X; < 1

0 6 4: 61

- 1) Enumerate all combinations of un.
- 2) Test feasibility
- 3) Retenu solution with best obj.

X<sub>1</sub> X<sub>2</sub> X<sub>3</sub>

2<sup>3</sup> choices

23 churus

26 hours.

BRB (c'ed)

Smarten approach:

$$X_1 + X_2 + X_3 = 1$$

$$X_1 \in \{0, 1\}.$$

$$Y_1 \in \{0, 1\}.$$

ip' that beeps only constraint (1) from if is a RELAXATION of ip.



| Solve ip!: |   | X. | Xz       | <b>X</b> 3 |
|------------|---|----|----------|------------|
| 3          |   | A  | <b>©</b> | 0          |
| condidate  | S | 0  | 1        | 0          |
| odutions   |   | 0  | 0        | A          |

## BBB (cled)

Solve ip

· for each {x,, x, x, x, f countrolete jp, find youngs to satisfy if.

3 easier il subproblems

Problem a) intensible

$$\begin{cases}
 4 = 0 \\
 4 = 1 - x_2 = 0 \\
 4 = 1 - x_1 = 1
 \end{cases}
 \begin{cases}
 4 = x_1 - x_2 = 0 \\
 4 = 1 - x_1 = 1
 \end{cases}$$

Problem 5) feasible, DONE.

BBB (clad) A similar but general opproach (B&B): Let ip:
min ct se Ax =b \* 6 2 4 - start by solving a relaxation of iP. (other relaxations will do as well) let x'= (0, 02...Om) be the Optimal solution of P.

- let  $x^i = (\theta_1 \theta_2 ... \theta_m)$  be the optimal solution of  $\theta$ .

-> if  $\theta_i \in \mathbb{Z}_+$  for all  $i \in \{1,...m\}$ we are DOHE.

-> suppose  $\theta_i$  is fractional.

B&B (c'ed)

P: a relengation of iP. Let's call it the CURRENT Pb.

(O1...Om): optimal (LP) solution of P Z(P): optimal cost of P.

Di : fractional

-> define two new "out problems".

Pr: PU{\$; \(\int L\theta\) | \(\int \) | \

- recumvely "solve" f, f f2.

### B&B (c'ed)

We obtain a B&B tree:



leaves contain subproblems were LP solutions term out integer.

Il solution = solution af leaf subproblem ville musillest cost.

B&B (clad)

Efferent implementation



- OBS 1) Z(Q) = upper bound on the optimal iP.
- (BS 2) Z(R) = lower bound on the cost of any loaf subproblem in TR
- (OBS 3) if ECRIZE(Q) we can prune TR since TR commot contam a better solution than Q.

B&B (clad)

Search strategres:

· depth find



priority



- must ps selected for explorations from the next of active pb bras min. cost

(this way we hope to obtain a good upper bound that will prune many reales)