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N INTERIOR-POINT ALGORITHM

In Sec. 4.9 we discussed a dramatic development in linear programming that occurred in g
1984, namely, the invention by Narendra Karmarkar of AT&T Bell Laboratories of a pow-
erful algorithm for solving huge linear programming problems with an approach very dif-
ferent from the simplex method. We now introduce the nature of Karmarkar’s approach
by describing a relatively elementary variant (the “affine” or “affine-scaling” variant) of
his algorithm.6 (Your TOR Tutorial also includes this variant under the title, Solve Auto-
matically by the Interior-Point Algorithm.) '
Throughout this section we shall focus on Karmarkar’s main ideas on an intuitive
level while avoiding mathematical details. In particular, we shall bypass certain details

“Fhe basic approach for this vartant actually was proposed in 1967 by a Russian mathematician I I Dikin and
then rediscovered soon after the appearance of Karmarkar’s work by a number of researchers, including E. R.
Barnes, T. M. Cavalier, and A, L. Soyster. Also see R. J. Vanderbei, M. S. Meketon, and B. A. Freedman, “A Mod-
ification of Karmarkar’s Linear Programming Algorithm,” Algorithmica, 1(4) (Special Tssue on New Approaches
to Linear Programming): 395-407, 1986. il "
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B FIGURE 7.3
Example for the interior-point
algorithm,
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g & (0. 8) optimal
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lies in the interior of the feasible region, i.e., inside the boundary of the feasible oyl

that are needed for the full implementation of the algorithm (e.g., how to find an inj

feasible trial solution) but are not central to a basic conceptual understanding. The i
to be described can be summarized as follows:

Concept 1: Shoot through the interior of the feasible region toward an optimal solu|
Concept 2: Move in a direction that improves the objective function value at the fi
possible rate.

Concept 3. Transform the feasible region to place the current trial solution near its i
ter, thereby enabling a large improvement when concept 2 is implemess

To illustrate these ideas throughout the section, we shall use the following example: 5
Maximize Z=x1 + 2x,,
subject to
Xy +x=28
and
x3 =0, X =0,

This problem is depicted graphically in Fig. 7.3, where the optimal solution is seen i,

(1. 22) = (0, 8) with Z = 16. (We wil! describe the significance of the arrow in the fi
ure shortly.)

You wilt see that our interior-point algorithm requires a considerable amount of wig
to solve this tiny example. The reason is that the algorithm is designed to solve huge p
lems efficiently, but is much less efficient than the simplex method (or the graphical mellj
in this case) for small problems. However, having an example with only two variables
allow us to depict graphically what the algorithm is doing,

The Relevance of the Gradient for Concepts 1 and 2

The algorithm begins with an initial trial solution that (like all subsequent trial solut}

Thus, for the example, the solution must not lie on any of the three lines (x; = 0, x,
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X1 + x; = 8) that form the boundary of this region in Fig. 7.3. (A trial solution that lies
on the boundary cannot be used because this would lead to the undefined mathematical
operation of division by zero at one point in the algorithm.) We have arbitrarily chosen
(%1, %) = (2, 2) to be the initial tria} solution. _

To begin implementing concepts 1 and 2, note in Fig. 7.3 that the direction of move-
ment from (2, 2) that increases Z at the fastest possible rate is perpendicular to (and to-
ward) the objective function line Z = 16 = x, + 2x,. We have shown this direction by the
arrow from (2, 2) to (3, 4). Using vector addition, 'we have

G.H=022+ 1,2,

where the vector (1, 2) is the gradient of the objective function. (We will discuss gradi-
ents forther in Sec. 12.5 in the broader context of nonlinear programming, where algo-

rithms similar to Karmarkar’s have long been used.) The components of (1, 2) are just the:

coefficients in the objective function. Thus, with one subsequent modification, the gradi-
ent (1, 2) defines the ideal direction to which to move, where the question of the distance
to move will be considered later. .

The algorithm actually operates on linear programming problems after they have been
rewritten in augmented form. Letting x5 be the slack variable for the functional constraint
of the example, we see that this form is

Maximize Z=x; + 2x,,
subject to
x + Xy + X3 = 8

and

In matrix notation (slightly different from Chap. 5 because the slack variable now is in-
corporated into the notation), the augmented form can be written in general as

Maximize  Z = ¢x,

subject to
Ax=Db
and
x=0,
where
1 X1 ‘ 0
c=|2], X=| x|, A=][1, 1, 1], b = [8], 0=|0
0 X3 . 0

for the example. Note that ¢ = [1, 2, 0] now is the gradient of the objective function.

The augmented form of the example is depicted graphically in Fig. 7.4. The feasible
region now consists of the triangle with vertices (8, 0, 0), (0, 8, 0), and (0, 0, 8). Points
in the interior of this feasible region are those where x>0, %, > 0, and x; > 0. Each of
these three x; > O conditions has the effect of forcing (xy, x,) away from one of the three
lines forming the boundary of the feasible region in Fig. 7.3.

e —
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B FIGURE 7.4

Example in augmented form
for the interior-point
algorithm,
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Using the Projected Gradient to implement Concepfs 1and 2

In augmented form, the initial trial solution for the example is (x;, x5, x3) = (2,2, 4
Adding the gradient (1, 2, 0} leads to

G 449D=02,2,49+q0,20.

However, now there is a complication. The algorithm cannot move from (2,2, 410
4), becanse (3, 4, 4) is infeasible! When % =3andx, =4, then x; = § — X1—xp =]
stead of 4. The point (3, 4, 4) lies on the near side as you look down on the feasibla [}

(xl: X2, x3) = (3: 43 4) - 6(13 1, 1)3

where 6 is a scalar. Since the triangle satisfies the equation x; + x, + x; = 8, this p
pendicular line intersects the triangle at (2, 3, 3), Because

2.33)=2,249H+©1,-1),




ngle, so!

X3 = 8, t
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the projected gradient of the objective function (the gradient projected onto the feasible
region) is (0, 1, —1). It is this projected gradient that defines the direction of movement
from (2, 2, 4) for the algorithm, as shown by the arrow in Fig, 7.4.

A formula is available for computing the projected gradient directly. By defining the
projection matrix P as

P=1-ATAAT) 1A,
the profected gradient (in column form) is
¢, = Pc.

Thus, for the example,

1 0 0 1 1\ ?
P=|0 1 0l-11]ln 1 111 11 1
0 0 1 1 1
1 0 0] 1‘1
=0 1 0|~Z{1{ll 1 1
0 0 1] 1
1 0 0] 1’111 R
=10 10 -1 1 1|=|-3 3§ -}
0 0 1) 11t -4 -5
SO
-t [ [ o
e =|—-3 i =dllz2{=| 1|
i
- =5 3lo —1

Moving from (2, 2, 4) in the direction of the projected gradient (0, 1, —1) involves
increasing o from zero in the formula

2 2 0
x=|2|+4ac,=|2|+4a| 1],
4 4 -1

where the coefficient 4 is used simply to give an upper bound of 1 for & to maintain fea-
sibility (all x; = 0). Note that increasing & to @ = 1 would cause x; to decrease to

=4+ 4(1)(—1) = 0, where @ > 1 yields x5 << 0. Thus, & measures the fraction used
of the distance that could be moved before the feasible region is left.

How large should & be made for moving to the next trial solution? Because the in-
crease in Z is proportional to @, a value close to the upper bound of 1 is good for giving
a relatively large step toward optimality on the current iteration. However, the problem with
a value too close to 1 is that the next trial solution then is jammed against a constraint
boundary, thereby making it difficult to take large improving steps during subsequent itera-
tions. Therefore, it is very helpful for trial solutions to be near the center of the feasible
region (or at least near the center of the portion of the feasible region in the vicinity of an
optimal solution), and not too close to any constraint boundary. With this in mind, Karmarkar
has stated for his algorithm that a value as large as @ = 0.25 should be “safe” In practice,
much larger valves (for example, & = 0.9) sometimes are used. For the purposes of this
example (and the problems at the end of the chapter), we have chosen & = 0.5. (Your IOR

Tutorial uses e = 0.5 as the default valve, but also has o = 0.9 available.)
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A Centering Scheme for Implementing Concept 3

We now have just one more step to complete the description of the algorithm, name
special scheme for transforming the feasible region to place the current trial solution
its center, We have just described the benefit of having the trial solution near the ceilf
but another important benefit of this centering scheme is that it keeps turning the lfg
tion of the projected gradient to point more nearly toward an optimal solution as (i
gorithm converges toward this solution. ) L]

The basic idea of the centering scheme is straightforward—simply change the s
(units) for each of the variables so that the trial solution becomes equidistant fron |
constraint boundaries in the new coordinate system. (Karmarkar's original algorithm
a more sophisticated centering scheme.) '

For the example, there are three constraint boundaries in Fig. 7.3, each onc
responding to a zero value for one of the three variables of the problem in augmes
form, namely, x, = 0, x, = 0, and x3 = 0. In Fig. 7.4, see how these three cons
boundaries intersect the Ax = b (xy + x5 + x3 = 8) plane to form the boundary of
feasible region. The initial trial solution is (x1, %2, x3) = (2, 2, 4), 30 this solutiy
2 units away from the x; = 0 and x, = 0 constraint boundaries and 4 units away i
the x; = 0 constraint boundary, when the units of the respective variables are yj
However, whatever these units are in each case, they are quite arbitrary and can

changed as desired without changing the problem. Therefore, let us rescale the v
ables as follows:

A ~ Ko ~ X3
= — Xq = — Xm = —
2 T T4

in order to make the current trial solution of (X1, X2, x3) = (2, 2, 4) become
(351! EZ? }3) = (1, 1: 1)

In these new coordinates (substituting 2%, for x3, 2%, for x,, and 4%; for x3), the prob|
becomes

%

Maximize Z=2%, + 4%,,
subject to

2%+ 2, + 4% =8
and

=0, X, =0, X3 =0,

as depicted graphically in Fig. 7.5.

Note that the trial solution (1, 1, 1) in Fig. 7.5 is equidistant from the three construl
boundaries ¥, = 0, %, = 0, %; = 0. For each subsequent iteration as well, the problei
rescaled again to achieve this same property, so that the current trial solution alwayi
(1, 1,1) in the current coordinates,

Summary and lllustration of the Algorithm

the example, then giving a summary of the general procedure, and finally applying [l
summary to a second iteration. '

lteration 1. Given the initial trial solution (15 X2, x3) = (2, 2, 4), let D be the co
sponding diagonal matrix such that x = DX, so that
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The rescaled variables then are the components of
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2 1 2
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Therefore, the projection matrix is
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y applyin
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0 0 1 4 4
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100 4 4 8 : -t
=0 1 0|34 4 |=|-t = -1
0 0 1 8 8 16) |-3 -1 !
8o that the projected gradient is '
f o 2] o
e, =P8=|-t 1 -L4|=]| 3 K
-1 - o) [

Define v as the absolute value of the negative component of ¢, having the largest abyg
value, so that v = [ —2| = 2 in this case. Consequently, in the current coordinate
algorithm now moves from the current trial solution (B, %, F3)=(1, 1, 1) to the |
trial solution

N
]

i
g=|1]+
I

1
2]
as shown in Fig. 7.5. (The definition of v has been chosen to make the smallest col

nent of X equal to zero when o = 1 in this equation for the next trial solution.) In the
inal coordinates, this solution is

X 2 0 0|2 2
n|=DX=[0 2 ofi|=!1|
X3 0 0 4j|2 2

This completes the iteration, and this new solution will be used to start the next iterulf
These steps can be summarized as follows for any iteration.

Summary of the Interior-Point Algorithm

1. Given the current trial solution (x;, x,, . . ., X.), set
X1 0 0 i 0
0 » 0 - 0
D= 0 0. X3 0
0 0 0 - x

2. Calculate A = AD and § = De.

3. Calculate P =1 AT(AATY A and ¢, = P¢.

4. Identify the negative component of ¢, having the largest absolute value, and set v eyl
to this absolute value. Then calculate

1
1

£= + Ecp,
1

where « is a selected constant between 0 and 1 (for example, & = 0.5).
5. Calculate x = DX as the trial solution for the next iteration (step 1). (If this trial sol
tion is virtually unchanged from the preceding one, then the algorithm has virtuy}
converged to an optimal solution, so stop.)
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Now let us apply this summary to iteration 2 for the example,

Iteration 2
Step 1.
Given the current trial solution (x;, x5, x3) = (g, %, 2), set
200
D=|0 1 0
1
0 0 2 ’ '
(Note that the rescaled variables are
e larg?t' kR : 0 0llx ix |
f coordin, EZ = D_]x =0 % ( Xaj = ,g,.xz s
i, Dto ~ 1 1
) X3 0 0 s5][x 373 |

8] [%¥ 0
¥=DYol= 0} ¥=D7'8
K 0 0
: smalfest and
ition.) In th 0] 0
E=D7Y0|= 0]
| 8 | 4

as depicted in Fig. 7.6.)

the next ite) Step 2:

=De

ol

A=AD=[}22] and

so that the BF solutions in these new coordinates are

Fo

S =D o

RE 7.6 T3 d
after rescaling for

e, and set

1 16
16 ® (0.83,1.40,0.5) 3

3 (0,52, 0) optimal

ithm has vir

2ty
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Step 3.
B _7  _z2 1
18 18 g ) 2
P= —]7@ % —%’ and c, = %
2z _ud 37 4
9 45 45 15
Step 4
p b
|—%| > |—12l, sov:éand
1 05 - = 0.83
~ _ . 13| _ | 481 ]
x=i1|+ | e | T || 1.40.
41 i
1 B -5 5 0.50
Step 5. §
us 2.08
x=DX %2‘7 = | 4,92
1 1.00

is the trial solution for iteration 3.

Since there is little to be leared by repeating these calculations for additional i
ations, we shall stop here. However, we do show in Fig. 7.7 the reconfigured feasible |
gion after rescaling based on the trial solution just obtained for iteration 3. As alwi

# FIGURE 7.7
Example after rescaling for
iteration 3,

Y

3.85

BT

1.63 (0, 1.63, O) optimal
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the rescaling has placed the trial solution at (¥,, ¥, ¥3) = (1, 1, 1), equidistant from the
%1 =0,% =0, and X3 = 0 constraint boundaries. Note in Figs. 7.5, 7.6, and 7.7 how the
sequence of iterations and rescaling have the effect of “sliding” the optimal solution to-
ward (1, 1, 1) while the other BF solutions tend to slide away. Eventually, after enough -
iterations, the optimal solution will lie very near (X, Xa, ¥3) = (0, 1, 0) after rescaling,
while the other two BF solutions will be very far from the origin on the ¥, and ¥; axes.
Step 5 of that iteration then will yield a solution in the original coordinates very near the
optimal solution of (x,, x,, x3) = (0, 8, 0). ’ '

Figure 7.8 shows the progress of the algorithm in the original x, = xz coordinate sys-
tem before the problem is augmented. The three points—(x;, x3) = (2, 2), (2.5, 3.5), and
(2.08, 4.92)—are the trial solutions for initiating iterations 1, 2, and 3, respectively. We
then have drawn a smooth curve through and beyond these points to show the trajectory
of the algorithm in subsequent iterations as it approaches (x;, x,) = (0, 8). '

The functional constraint for this particular example happened to be an inequality
constraint. However, equality constraints cause no difficulty for the algorithm, since it
deals with the constraints only after any necessary augmenting has been done to convert
them to equality form (Ax = b) anyway. To illustrate, suppose that the only change in the
example is that the constraint x; + x, = 8 is changed to x; + x, = 8. Thus, the feasible
region in Fig. 7.3 changes to just the line segment between (8, 0) and (0, 8). Given an ini-
tial feasible trial solution in the interior (x; > 0 and x3 > 0) of this line segment—say,
(x1, %5) = (4, 4)—the algorithm can proceed just as presented in the five-step summary
with just the two variables and A = [1, 1). For each iteration, the projected gradient points
along this line segment in the direction of (0, 8). With o = %, iteration 1 leads from (4, 4)
to (2, 6), iteration 2 leads from (2, 6) to (1, 7), etc. (Problem 7.4-3 asks you to verify these
results.) ‘

Although either version of the example has only one functional constraint, having more
than one leads to just one change in the procedure as already illustrated (other than more
extensive calculations). Having a single functional constraint in the example meant that A

ry of the interior-
gorithm for the
:In the original
ordinate system.

Az 4
(0, 8) optimal

[ (2.08,4.92)

4 -
{2.5,3.5)




298

CHAPTER 7 OTHER ALGORITHMS FOR LINEAR PROGRAMMING

had only a single row, so the (AA”)™! term in step 3 only involved taking the recip
of the number obtained from the vector product AAT Multiple functional constraints mi
that A has multiple rows, so then the (AAT)™! term involves finding the inverse ol {i
matrix obtained from the matrix product AA”,

To conclude, we need to add a comment to place the algorithm into better perspectiy
For our extremely small example, the algorithm requires relatively extensive calculull
and then, after many iterations, obtains only an appreximation of the optimal solution, |
contrast, the graphical procedure of Sec. 3.1 finds the optimal solution in Fig. 7.3 inuji
diately, and the simplex method requires only one quick iteration. However, do not ket
contrast fool you into downgrading the efficiency of the interior-point algorithm. This &
gorithm is designed for dealing with big problems that may have many thousands of [uj
tional constraints. The simplex method typically requires thousands of iterations on »
problems. By “shooting” through the interior of the feasible region, the interior-poini j
gorithm tends to require a substantially smaller number of iterations (although with
siderably more work per iteration). This sometimes enables an interior-point algorith
efficiently solve huge linear programming problems that might even be beyond the r
of either the simplex method or the dual simplex method. Therefore, intertor-point alg
rithms similar to the one presented here should play an intportant role in the future of
gar programrming.

See Sec. 4.9 for a-comparison of the interior-point approach with the sim
method, Section 4.9 also discusses the complementary roles of the interior-point
proach and the simplex method, including how they can even be combined into a hy
algorithm. ‘

Finally, we should emphasize that this section has provided only a conceptual i
ducticn to the interior-point approach to linear programming by describing an elemen
variant of Karmakar’s path-breaking 1984 algorithm. Over the many subsequent yen
number of top-notch researchers have developed many key advances in the interior-|
approach. Further coverage of this advanced topic is beyond the scope of this book. H
ever, the interested reader can find many details in the selected references listed at the
of this chapter. '

fi

The dual simplex method and parametric linear programming are especially valuabl
postoptimality analysis, although they also can be very useful in other contexts.

The upper bound technique provides a way of streamlining the simplex method
the common situation in which many or all of the variables have explicit upper bou
It can greatly reduce the computational effort for large problems.

Mathematical-programming computer packages usually include all three of these
cedures, and they are widely used. Because their basic structure is based largely upoi
simplex method as presented in Chap. 4, they retain the exceptional computational
ciency to handle very large problems of the sizes described in Sec. 4.8,

Various other special-purpose algorithms also have been developed to exploit th
cial structure of particular types of linear programming problems (such as those to be
cussed in Chaps. 8 and 9). Much research is currently being done in this area.

Karmarkar’s interior-point algorithm initiated another key line of research into |
to solve linear programming problems. Variants of this algorithm now provide a poy
ful approach for efficiently solving some very large problems.
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Worked Examples:

Examples for Chapter 7

interactive Procedures in IOR Tutorial:

Enter or Revise a General Linear Programming Model
Set Up for the Simplex Method—Interactive Only
Solve Interactively by the Simplex Method

Interactive Graphical Method

Automatic Procedures in IOR Tutorial:

Solve Automatically by the Simplex Method
Solve Automatically by the Interior-Point Algorithm
Graphical Method and Sensitivity Analysis

An Excel Add-in;

Premium Solver for Education

“Ch, 7—Other Algorithms for LP"” Files for Solving the Examples: -

Excel Files
LINGO/LINDOQO File
MPL/CPLEX File

Glossary for Chapter 7

Supplement to This Chaptér:

Linear Goal Programming and Its Solution Procedures (includes two accompanying cases: A Cure
for Cuba and Airport Security)

See Appendix 1 for documentation of the software.
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