2: Elementary mathematical notions

<ロト <回ト < 国ト < 国ト < 国ト 三 国

Vector spaces

2 Combinations of vectors

- Linear hull
- Affine hull
- Convex hull
- Positive cone

- Decision variables: $x_1, x_2, \dots x_n$
- Onstraints:

 $f_j(x_1,\ldots,x_n) \leq \gamma_j,$ $g_h(x_1,\ldots,x_n) = \delta_h$

Objective function: $z(x_1, \ldots x_n)$

Mathematical representation

- Decision variables: $x_1, x_2, \dots x_n$
- Onstraints:

 $f_j(x_1,\ldots,x_n) \leq \gamma_j,$ $g_h(x_1,\ldots,x_n) = \delta_h$

Objective function: $z(x_1, \ldots x_n)$

Mathematical representation

Real vector spaces (with inner product), \mathbb{R}^n :

- Decision variables: $x_1, x_2, \dots x_n$
- Onstraints:

 $f_j(x_1,\ldots,x_n) \leq \gamma_j,$ $g_h(x_1,\ldots,x_n) = \delta_h$

Objective function: $z(x_1, \ldots x_n)$

Mathematical representation

Real vector spaces (with inner product), \mathbb{R}^n :

• decision variables: vector.

- Decision variables: $x_1, x_2, \dots x_n$
- Onstraints:

 $f_j(x_1,\ldots,x_n) \leq \gamma_j,$ $g_h(x_1,\ldots,x_n) = \delta_h$

Objective function: $z(x_1, \ldots x_n)$

Mathematical representation

Real vector spaces (with inner product), \mathbb{R}^n :

• decision variables: vector.

scalar: the reals

- Decision variables: $x_1, x_2, \dots x_n$
- Onstraints:

 $f_j(x_1,\ldots,x_n) \leq \gamma_j,$ $g_h(x_1,\ldots,x_n) = \delta_h$

Objective function: $z(x_1, \ldots x_n)$

Mathematical representation

Real vector spaces (with inner product), \mathbb{R}^n :

- decision variables: vector.
- scalar: the reals
- operations:
 - Vector addition
 - Scalar-vector multiplication.
 - Closed under vector addition and scalar-vector multiplication.

(see course external resources)

(Matrix) Notation

- Column vectors: *a*,...*z*.
- Row vectors: $a^T, \ldots z^T$.
- Matrices: *A*,...*Z*.
- Scalars: $\alpha, \ldots \omega$.

・ロト ・四ト ・ヨト ・ヨト

æ

Linear Hulls (subspaces)

Subspace S of \mathbb{R}^n : a vector spaces with S closed over vector + and scalar \cdot . (0 \in S).

 $\boldsymbol{b} = \alpha_1 \boldsymbol{x}_1 + \alpha_2 \boldsymbol{x}_2 + \ldots + \alpha_k \boldsymbol{x}_k.$

<ロト <回ト < 国ト < 国ト = 国

Affine Hulls

$\alpha_1 x_1 + \alpha_2 x_2 + \ldots + \alpha_k x_k = b$ $\alpha_1 + \alpha_2 + \ldots + \alpha_k = 1$

(日) (四) (里) (里)

- 2

Convex Hulls

$$\alpha_1 x_1 + \alpha_2 x_2 + \ldots + \alpha_k x_k = b$$

$$\alpha_1 + \alpha_2 + \ldots + \alpha_k = 1$$

$$\alpha_1, \ldots, \alpha_k > 0$$

・ロト ・御ト ・ヨト ・ヨト

- 王

Positive cone

◆□▶ ◆□▶ ◆注≯ ◆注≯ 三注。