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Standard computer implementations of Dantzig's simplex
method for linear programming are based upon forming the
inverse of the basic matrix and uvpdating the inverse after every
step of the method. These implementations have bad round-off
error properties. This paper gives the theoretical background
for an implementation which is based upon the LU decomposi-
tion, computed with row interchanges, of the basic matrix. The
implementation is slow, but has good round-off error behavior.
The implementation appears as CACM Algorithm 350.
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1. LU Decomposition
The linear programming problem:
maximize dz
G =1b (1)
x>0

where d” = [dy, -+ , duca], D” = [by, -+~
e gOm.-I

Go.0
¢=| :
Gm—1,0 * - *

are given, with b > 0, is commonly solved by a two-phase
process built upon the simplex method of G. B. Dantzig
[2]. Each step of this method requires the solution of three
systems of linear equations involving a common matrix of
coefficients, the basis matrix P. It is the usual practice to
solve these systems by forming P, either directly or in

subject to

y bm_1] , and

gm-1,n~-1

This paper gives the theoretical background of Algorithm 350,
“Simplex-Method Procedure Employing LU Decomposition,” by
the same authors, which appears on pages 275-278.
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factored form as a product of transformations, and then
applying it to the right-hand sides of the systems.

The basis matrix of any simplex step differs from that
of the preceding step in only one column, so it is easier to
update P~ than to invert the new P. While this generally
produces satisfactory resulfs, it is vulnerable to computa-
tional problems in two respects. First, if P~ is continually
updated, computational inaceuracies imposed by limited-
precision arithmetic (round-off errors) are allowed to
propagate from step to step. Second, the updating, in
whatever way it is carried out, is equivalent to premulti-
plying P~ by a matrix of the form:

1 ‘ 0 — y.o/yk

— Yr-1/Yr

—

k 0 1/ye 0

- yk'+1/ ye |1 0

- yrr;—l/ Yr . ]j
k

In the presence of round-off errors this computation can be
quite inaccurate if yx is small relative to the other y; .

Both of these problems can be eliminated if, instead of
P, the LU decomposition of P is computed using row
interchanges to select pivots. The problem of solving a
linear system based upon P is then reduced to that of
backsolving two triangular linear systems. The numerical
stability of this scheme is generally quite good (see [4]).
Advantage can be taken of the similarity between any two
suceessive matrices so as to economize on the computation
of the LU decompositions. For details see [1, Secs. 5-6).

Additional accuracy is obtained in the program (see
Algorithm 350) by iteratively refining the solution to
problem (1), after it has been found, according to the
scheme given in [4, p. 121].

The algorithm requires #°/6 + O(n*) multiplications per
exchange on the average. Thus the algorithm is most ef-
fectively used for very ill-conditioned problems or in con-
junction with other implementations of the simplex algo-
rithm which produces an initial basis more cheaply. A fast
and accurate version of the simplex algorithm is described
in [5] but this requires additional storage.
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2. The Two-Phase Solution Process

The possibility of degeneracy is ignored, as is customary.
PrasE 1 (Find a basic feasible solution.)

maximize —e’a
Gr+a=0 (2)
z >0, a > 0,

subject to

where a” = [ag, -, Gm_) is & vector of “artificial vari-
ables” and e’ = [1, - -+, 1] (m components). The solution
is obtained by starting with ¢ = b as a basic feasible solu-
tion and applying the simplex method. As each a; becomes
nonbasic, it may be dropped from the problem altogether.
Since —e’a < 0 for all @, problem (2) has a solution. If
maz(—e’a) # 0, then problem (1) has no basic feasible
solution. Otherwise, the second phase is entered.

Puase 2 (Find an optimal basic feasible solution.)

If the solution to problem (2) eontains only components
of * as basie variables, these become the initial basic
variables for solving problem (1) by the simplex method.
If artificial variables, say a;,, -, @ , remain basic but
at zero level in the solution of (2), an equivalent problem
to (1) is solved:

maximize dTz

IG €je €, 0[ z | =] b
0|1 ‘ 1 1' w, 0
subject to . (3)
a;l
S
20,8200, 20--,0,;,20

where ¢, represents the kth column of the identity matrix
(column numbering begun at zero). The additional vari-
able s, together with the additional constraint

1
s+ Za,-,. = 0,
=0

holds the artificial variables at zero level throughout
further computation. The simplex method is applied to
problem (3) with s and the basic variables from problem
(2) as the initial set of basic variables. (For an example of
this two-phase process in operation see [3, See. 7.7].)

3. Some Computational Details

Phase 1 is skipped if a basic feasible set of variables for
problem (1) is known a priori. If a partial set of basic
variables is known for problem (1), the computation of
phase 1 can be restructured to take this into account. To be
precise, let « (1 < k < m — 1) columns of G (without loss
of generality these can be made gu_, -+, gn_1, the last
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columns of G') be used to construct the following matrix:

P = €o em—k—1 gn—x s gn—1

Suppose that P~ > 0. (This situation arises if the vari-
ables are numbered so that %, ., - -, Z,—1 are the slack
variables and the constraints are ordered so that
Gnex = €m—c, ** " 5 Jn—1 = €m—, Whereby P becomes the
identity matrix.) Then problem (2) ean be replaced by the
problem:

maximize —&7d

i z®
G G -
0 a
subject to 4
z®
z®» >0, z® >0, az=0
(1) ®
where 7 = [%o, <, ZTpst], T = [Tne, <y Zpl,

G" and G® are appropriate submatrices of G, & =
@, , Gmora), &=[1,---, 1] (m — x components), and T
is the (m — «)-order identity matrix. The simplex method
is begun with @y, -, Gm—s—i, Lo, ***, Lo a8 basic
variables. Since there are fewer artificial variables to be
driven to zero in problem (4) than in problem (2), we ex-
pect problem (4) to require on the average less work to
solve.

A reduction of computation beyond that deseribed in [1]
can be arranged for the LU decompositions calculated in
phase 1. Each time an artificial variable becomes nonbasic,
a row and column interchange can be applied to the basis
matrix so that it always has the partitioned form

I R

P=|——

0] S

where [ is the identity matrix of appropriate order, and B
and S are composed of components of G. The LU decompo-
sition of P is known when the decomposition S = LU has
been computed; viz.

I 0 I B

P= — —

0o | & 0o |

The triangular systems of equations induced by this for-
mat are solved in a particularly efficient manner by Al-
gorithm 350.

4. Example Application

Let V be a random variable restricted to a finite set of
values vy, - -+, vy . Let p; be the probability that V has
value »; . If certain moments

n—1
we= 2 v'pi, K€tk s )
are known together with the values v;, estimates of the
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p: and of unknown moments u; can be made via linear
programming; viz.

ai <pi<B: and vi <ur L 6g,
where
a; = —max(—z;), B: = max(x;)
n—I1 . n—1
v = —max(—zo V5 T5), 8; = max(), vi'z;),
i= 7=0

all subject to the constraints

n—1
220, B 20, D zi=1,
=0
n—1
jz;ﬁvjkxj'—‘uk, k€tko, -+, kma}, k0.

The basis matrices encountered in solving these prob-
lems are submatrices of a Vandermonde matrix, making
them somewhat poorly conditioned; so it is important that
the simplex method be carried out accurately. Only the
objective funetion differs from one estimation problem to
the next; so the solution of any one of the problems would
provide an initial basis for the other problems. Phase 1
would need to be carried out only once.

Thus, for example, to compute upper bounds for
Do, ', Pn1 from given values v, -« , v,y and given
moments o, * -, pm—1 , One would set up arrays G, jl =
v;" and b[7] = u; and execute
kappa := 0; for i := 0 step 1 until n — 1 de d[] := 0;
for ¢ := 0 step 1 until n — 1 do
begin dfz] := 1;

if i > 1 then d[i — 1] := 0;

linprog(m, n, kappa, G, b, d, z, z, ind, infeas, unbdd, sing);

upper boundli] := z;
end;

As an illustration, the preceding was run on Stanford
University’s B5500 computer with the data po = 1, g1 = 3,

pe = 10.5, u3 = 40.5and v; = {for¢ = 0, --+ , 6. The re-
sults are listed below.

Comtand ffa?zzfilb
083333333325 015625
19999999998 .09375
50000000001 234375
83333333335 3125
149999999999 234375
20000000001 09375
083333333334 015625

Lower bounds for the p; computed from the above data
in a similar fashion were all zero. Computed bounds for
ps through i were as follows.

Computed Computed
fose, momnt e,

165.5 168.0 175.5
700.5 738.0 850.5
3035.5 3396.75 4495.5
13390.5 16251.75 25150.5
59965.5 80335.5 145435.5
272200.5 408280.5 856210.5
1251135.5 2124764.25 5088055.5
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Two expressions are derived for use in estimating the error
in the numerical integration of analytic functions in terms of
the maximum absolute value of the function in an appropriate
region of regularity. These expressions are then specialized
to the case of Gaussian integration rules, and the resulting
error estimates are compared with those obtained by the use of
tables of error coefficients.

Davis and Rabinowitz [1] presented a method for esti-
mating the error committed in integrating an analytic
function by an arbitrary integration rule

I(f) = 2 wi(=:).
If the error is denoted by E(f) = [L,f(z)dz — I(}), we
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