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Standard computer implementations of Dantzlg's simplex 
method for linear programming are based upon forming the 
inverse of the basic matrix and updating the inverse after every 
step of the method. These implementations have bad round-off 
error properties. This paper gives the theoretical background 
for an implementation which is based upon the LU decomposi- 
tion, computed with row interchanges, of the basic matrix. The 
implementation is slow, but has good round-off error behavior. 
The implementation appears as CACM Algorithm 350. 
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1. LU D e c o m p o s i t i o n  

The linear programming problem: 

maximize drx 

I Gx = b (1) 
subject to Ix > 0 

where d r = [do, . . .  , d,_~], b r = [b0, . . .  , bin-a], and 

I 00 00:] 
e = : : 

L g ~ - i , 0  • " • g m - l , ~ - l _ j  

are given, with b > 0, is commonly solved by a two-phase 
process built upon the simplex method of G. B. Dantzig 
[2]. Each step of this method requires the solution of three 
systems of linear equations involving a common matrix of 
coefficients, the basis matrix P.  I t  is the usual practice to 
solve these systems by forming P-~, either directly or in 

This paper gives the theoretical background of Algorithm 350, 
"Simplex-Method Procedure Employing LU Decomposition," by 
the same authors, which appears on pages 275-278. 

* Computer Science Department. This project was supported 
in part by NSF under project GP948 and ONI~ under project iNK 
044 211. 

J. F. TRAUB, Editor 

factored form as a product  of transformations, and then 
applying it to the right-hand sides of the systems. 

The basis matrix of any simplex step differs from tha t  
of the preceding step in only one column, so it is easier to  
update P-1 than to invert the new P. While this generally 
produces satisfactory results, it is vulnerable to computa- 
tional problems in two respects. First, if P-~ is continually 
updated, computational inaccuracies imposed by limited- 
precision arithmetic (round-off errors) are allowed to 
propagate from step to step. Second, the updating, in 
whatever way it is carried out, is equivalent to premulti- 
plying p-1 by a matrix of the form: 

0 

0 - yo/yk 

- yk-i/y~ 

1/yk 

- yk+i/Yk 

-- y,,ri/Y~ 

0 

In  the presence of round-off errors this computation can be 
quite inaccurate if yk is small relative to the other Yi - 

Both  of these problems can be eliminated if, instead of 
p - l ,  the LU decomposition of P is computed using row 
interchanges to select pivots. The problem of solving a 
linear system based upon P is then reduced to tha t  of 
backsolving two triangular linear systems. The numerical 
stability of this scheme is generally quite good (see [4]). 
Advantage can be taken of the similarity between any two 
successive matrices so as to economize on the computation 
of the LU decompositions. For  details see [1, Secs. 5-6]. 

Additional accuracy is obtained in the program (see 
Algorithm 350) by iteratively refining the solution to 
problem (1),  after it has been found, according to the 
scheme given in [4, p. 121]. 

The algorithm requires ha~6 + 0 (n  2) multiplications per 
exchange on the average. Thus the algorithm is most ef- 
fectively used for very ill-conditioned problems or in con- 
junction with other implementations of the simplex algo- 
r i thm which produces an initial basis more cheaply. A fast 
and accurate version of the simplex algorithm is described 
in [5] but  this requires additional storage. 
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2. T h e  T w o - P h a s e  S o l u t i o n  P r o c e s s  

The possibility of degeneracy is ignored, as is cus tomary .  
PHASE 1 (Find a basic feasible solution.) 

maximize -- e Ta 

I Gx + a = b (2)  
subject  to Ix >_ 0, a ~ 0, 

where a r = [a0, " .  , a,,_l] is a vector  of "artificial vari-  
ables" and e r = [1, - . .  , 1] (m components ) .  The  solution 
is obta ined by  s tar t ing with a = b as a basic feasible solu- 
t ion and applying the simplex method.  As each a~ becomes 
nonbasic,  it m a y  be dropped f rom the  problem altogether.  
Since - - eTa  < 0 for all a, p roblem (2)  has a solution. I f  
m a x ( - - e r a )  ~ O, then  problem (1)  has no basic feasible 
solution. Otherwise, the second phase is entered. 

PHASE 2 (F ind  an opt imal  basic feasible solution.)  
I f  the solution to problem (2)  contains only components  

of x as basic variables, these become the initial basic 
variables for solving problem (1)  by  the simplex method.  
I f  artificial variables, say a~0, . . .  , ai~ , remain basic bu t  
at  zero level in the solution of (2),  an equivalent  problem 
to ( 1 ) is solved: 

maximize drx 

subject to 

G ejo • " • eil 0 

0 1 . . .  1 1 

X 

aJ o 

a5 l 

8 

(3) 

x >_ 0, s > 0, aj 0 ~ 0, . . .  ,aj~ _> 0 

where ek represents the  k th  column of the  ident i ty  matr ix 
(column number ing  begun at  zero).  T he  addit ional  vari-  
able s, together  with the addit ional  const ra int  

l 

s + a i ,  = O, 
i = O  

holds the  artificial variables at  zero level th roughou t  
fur ther  computa t ion.  T he  simplex method  is applied to 
problem (3) with s and the  basic variables f rom problem 
(2) as the  initial set of basic variables. (For an example of 
this two-phase process in operat ion see [3, Sec. 7.7].) 

3. S o m e  C o m p u t a t i o n a l  D e t a i l s  

Phase  1 is skipped if a basic feasible set of variables for 
problem (1)  is known a priori. I f  a part ial  set of basic 
variables is known for problem (1),  the  computa t ion  of 
phase 1 can be res t ructured to take  this into account .  To  be 
precise, let K (1 < ~ < m - 1) columns of G (wi thou t  loss 
of general i ty these can be made g~_~, • • • , g~-l ,  the last 

columns of G) be used to const ruct  the  following matr ix :  

P = e0 [ --" e,~-~-i g~-~ [ - '" g,,-1 

Suppose t h a t  p - l b  ~ O. (This  s i tuat ion arises if the  vari-  
ables are numbered  so t h a t  x~_~, • • • , x~-i are the  slack 
variables and the  constraints  are ordered so t h a t  
g~_~ = e,~_~, . . .  , g , - t  = era-l, whereby P becomes the  
ident i ty  matrix.  ) Then  problem (2)  can be replaced by  the 
problem:  

maximize --~T5 

subject to (4) 

x (1) >_ x (2) _> 0, ~ > 0 

where x ( 1 ) =  Ix0, . . - ,  x . . . .  1], x (2)= [Xn--K, " " ,  Xn--t], 

G (I) and G (2) are appropr ia te  submatr ices  of G, 5 = 
[a0, • • • , a . . . .  1], ~ = [1, . . .  , 1] (m - K components) ,  and  i 
is the  (m -- ~)-order ident i ty  matrix. The  simplex method  
is begun with a0, . - .  , a . . . .  1, x . . . .  - . .  , x~_l as basic 
variables. Since there are fewer artificial variables to be 
driven to zero in problem (4)  than  in problem (2),  we ex- 
pect  problem (4)  to require on the average less work to 
solve. 

A reduct ion of computa t ion  beyond t h a t  described in [1] 
can be arranged for the LU decomposit ions calculated in 
phase 1. Each  t ime an artificial var iable  becomes nonbasic,  
a row and column interchange can be applied to the  basis 
matr ix so tha t  it always has the  par t i t ioned form 

where I is the ident i ty  matrix of appropr ia te  order, and R 
and S are composed of components  of G. The  L U  decompo- 
sition of P is known when the decomposi t ion S = ~11 has 
been computed;  viz. 

P ~ 

The  tr iangular  systems of equat ions induced by  this for- 
ma t  are solved in a par t icular ly  efficient manner  b y  Al- 
gor i thm 350. 

4. E x a m p l e  A p p l i c a t i o n  

Let  V be a r andom variable restricted to a finite set of 
values v0, • • • , v=_l. Let  p~ be the  probabi l i ty  t h a t  V has 
value v~. I f  certain moments  

~k -~ E v j k p j  , k ~ { k 0 ,  " ' "  , k in - - l}  
jffi0 

are known together  with the  values v¢,  estimates of the 
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p~ and  of u n k n o w n  momen t s  gl  can be  made  v i a  l inear  
p r o g r a m m i n g ;  viz.  

a ~ < p ~ < f l l  and  7z_<g~_<81, 
where  

a~ = - - m a x ( - - x ~ ) ,  fl~ = m a x ( x l )  

u--1 n - - 1  

7, = - m a x ( - ~  v/xi) ,  5, = m a x ( ~  vitxi), 
5=0 5=0 

all  sub jec t  to  t he  cons t ra in t s  
n--1 

X 0 > 0 ,  " ' " ,  Xn-1 >__ 0, ~ X i - - - -  1, 
1=0 

n--1 

5=0 

T h e  basis  ma t r i ces  encoun te red  in solving these  p rob -  
lems are  subma t r i ce s  of a V a n d e r m o n d e  mat r ix ,  m a k i n g  
t h e m  s o m e w h a t  poor ly  cond i t ioned ;  so i t  is i m p o r t a n t  t h a t  
t he  s implex m e t h o d  be carr ied  ou t  accura te ly .  Only  the  
ob jec t ive  func t ion  differs f rom one e s t ima t ion  p r o b l e m  to 
the  next ;  so t he  so lu t ion  of any  one of t he  p rob l ems  would  
p r ov ide  an in i t ia l  basis  for  t he  o t h e r  p rob lems .  P h a s e  1 
would  need  to  be  car r ied  ou t  on ly  once. 

Thus ,  for example ,  to  c o m p u t e  u p p e r  bounds  for 
p0,  "" • , p~-~ f rom given  va lues  v0, . .  • , v~_~ a n d  g iven  
m o m e n t s  go,  • • • , g~-~ ,  one would  set  up  a r r ays  G[i, j] 
v / a n d  b[i] --= gl and  execute  

kappa :=  0; f o r i  :=  0 s t e p l u n t i l n - -  l d o d [ i ]  := 0; 
for  i := 0 s t e p  1 u n t i l  n -- 1 do  
b e g i n  d[i] := 1; 

i f  i>_ l t h e n d [ i - -  1] := 0; 
linprog(m, n, kappa, G, b, d, x, z, ind, infeas, unbdd, sing); 
upper bound[i] := z; 

e n d ;  

As an  i l lus t ra t ion ,  the  p reced ing  was run  on  S t a n f o r d  
U n i v e r s i t y ' s  B5500 c o m p u t e r  w i th  t he  d a t a  go = 1, #~ = 3, 

g:  = 10.5, g3 = 40.5 and  v~ = i for 
sul ts  are  l i s ted  below. 

Actual Computed upper probabil~ 
bound ity 

• 083333333325 .015625 
• 19999999998 .09375 
• 50000000001 .234375 
• 83333333335 . 3125 
• 49999999999 .234375 
• 20000000001 .09375 
• 083333333334 .015625 

i = 0, . . .  , 6. T h e  re- 

Lower  bounds  for  t he  p~ c o m p u t e d  f rom the  above  d a t a  
in a s imi la r  fashion  were all  zero. C o m p u t e d  b o u n d s  for  

#4 t h r o u g h  glo were  as follows. 

Computed Actual Computed 
upper lower moment 

bound bound 

165.5 168.0 175.5 
700.5 738.0 850.5 

3035.5 3396.75 4495.5 
13390• 5 16251• 75 25150.5 
59965.5 80335.5 145435.5 

272200.5 408280• 5 856210.5 
1251135• 5 2124764.25 5088055.5 
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Two expressions are derived for use in estimating the error 
in the numerical integration of analytic functions in terms of 
the maximum absolute value of the function in an appropriate  
region of regularity. These expressions are then specialized 
to the case of Gaussian integration rules, and the resulting 
error estimates are compared with those obtained by the use of 
tables of error coefficients. 

D a v i s  and  R a b i n o w i t z  [1] p r e sen t ed  a m e t h o d  for est i-  
m a t i n g  the  error  c o m m i t t e d  in  i n t eg ra t ing  an  ana ly t i c  
func t ion  b y  an  a r b i t r a r y  i n t eg ra t ion  rule 

I ( f )  = w , f ( z , ) .  

I f  t he  error  is de no t e d  b y  E(f )  = f i l l ( x )  dx - -  I ( J ) ,  we 
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