CS 2620 Fundamentals of Programming II University of Lethbridge

4 N

Basic Algorithm Analysis'

e There are often many ways to solve the same problem.
e We want to choose an efficient algorithm.
e How do we measure efficiency? Time? Space?

e We don’t want to redo our analysis every time we reimplement our

algorithm, or use a different machine.

\ _/

Searching and Sorting 1-37 Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge

-~

\

Basic Algorithm Analysis' \

To analyze the amount of time required, we count the number of
operations needed.

But not all operations require the same amount of time.

Different compiler /machine may translate the same C++ code to
different number /type of instructions.

Instead, we pick one “representative operation” and count that (e.g.

comparisons, variable assignments).

The idea is that the total amount of time is proportional to the
number of representative operations. The constant of proportionality

depends on compiler, machine, etc.

That is, the analysis is dependent only on the algorithm, not on the

implementation. /

Searching and Sorting 2 - 37 Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge

4 A
Big-O Notation I

e We express the number of operations in “big-O” notation.

e The number of operations depends on the size of input (e.g. number of

array elements). Usually denoted n.
e Roughly, “big-O” means “proportional to” for large enough inputs.

e c.g. O(n) means run time is proportional to input size. Doubling the

input means roughly doubling the running time.

® e.g. O(n2) means run time is proportional to the square of input size.

Doubling the input means roughly quadrupling the running time.
e We want an algorithm with a small “big-O”.

e “Run time” is usually called the (time) complexity.

\ _/

Searching and Sorting 3 — 37 Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge

Worst case vs. Average Case'

e Some algorithms behave differently depending on input.

e For example, some sorting algorithms will be very fast if the input is

already sorted, but they may be much slower on other cases.

e We can talk about the worst case complexity: how fast will the

algorithm run regardless of what input it receives?

e We can also talk about average case complexity: how does it do on

average?
e Average case is hard: we need to know what “average” means.

e We will concentrate on worst case complexity.

\ _/

Searching and Sorting 4 — 37 Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge

Searching: Linear Search'

int find(int A[], int n, int key)
{
for (int 1 = 0; i < n; i++)
if (A[i] == key)

return 1i;

return -1; // not found

¥

e In the worst case (key is in the last position/not found), we need to do n

comparisons.

e The algorithm has O(n) complexity.

\ _/

Searching and Sorting 5— 37 Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge

/ Searching: Binary Search' \

int find(int A[], int n, int key)
{
int 1lo = 0, hi = n-1;
while (lo <= hi) {
int mid = (lo + hi) / 2;
if (A[mid] == key)
return mid;
else if (key < A[mid])

hi = mid-1;
else
lo = mid+1;

return -1; // not found

_ _/

Searching and Sorting 6 — 37 Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge

Searching: Binary Search'

e The array must be sorted.

e The worst case happens if the key is not found.
e Every time the size of the range [1lo,hi] is reduced by at least half.

e That means it takes approximate log, n iterations to reduce [0,n-1] to

the empty range.

e Each iteration does a “constant” amount of work, so the algorithm has

O(log, n) complexity.

e We usually write O(logn) because logarithms of different bases are
related by a constant: log, n = logn/log 2

\ _/

Searching and Sorting 7 — 37 Howard Cheng

CS 2620 Fundamentals of Programming II

University of Lethbridge

-~

~

Complexity: Does It Matter?'

e For large n, the difference between O(n) and O(log, n) is big. The

number of iterations:

\

_/

n O(n) O(log, n)
32 32 5!
1024 1024 10
1048576 | 1048576 20
Searching and Sorting 8 — 37 Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge

Sorting: Selection Sort'

for (int i = 0; i < n; i++) {

int index = find_min(A, i, n);
swap(A[i], Alindex]);
}

e Finding the minimum on n elements requires O(n) comparisons.
e With n iterations this becomes O(n?).

e More precisely, the i-th iteration requires about n — ¢ operations, so the

total is:

n+(n—1)+<n—2)+---+2+1=”(n;l) =0(n’)

e O(n?) is slow. Sorting 10° entries requires roughly 10'? operations!

\ _/

Searching and Sorting 9 - 37 Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge

4 N

Other “Slow” Sorting Algorithms'

e The following common sorting algorithms are also O(n?):
— Bubble sort

— Insertion sort
e But these algorithms can be O(n) if the array is already sorted.

e Selection sort is always O(n?) even if the array is already sorted.

\ _/

Searching and Sorting 10 — 37 Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge

4 A
Merge Sort I

e This is our first fast sorting algorithm.

e The basic idea is this:
— If the array has only one element, it is easy.
— Otherwise, split the array into two halves.
— Recursively sort each half.

— Merge the two sorted lists together.

e The only “real work” is in the merging.

\ _/

Searching and Sorting 11 - 37 Howard Cheng

CS 2620 Fundamentals of Programming II

University of Lethbridge

-~

\

Merge Sort I

void mergesort(int A[], int start, int end)
{
if (end - start > 1) {
int mid = (start+end)/2;
mergesort (A, start, mid);
mergesort (A, mid, end);
merge (A, start, mid, end);

~

_/

Searching and Sorting 12 — 37

Howard Cheng

CS 2620

Fundamentals of Programming II

University of Lethbridge

-~

void merge(int A[], int start, int mid, int end)

{

\\\\}

Merging I

Merging is done with a “marching algorithm”:

int R[SIZE], i1, i2, j;
il = start; 12 = mid; j = O;
while (i1 < mid && i2 < end) {
if (A[i1] < A[i2]) // A[il] comes next
R[j++] = A[il++];
else
R[j++] = A[i2++];
+
copy(A+il, A+mid, R+j);
copy (A+i2, A+end, R+j+(mid-il));
copy(R, R+(end-start), A+start);

~

_/

Searching and Sorting 13 — 37

Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge

4 N

Merging I

e Notice that each loop iteration copies one element from either half.
e The two copy()’s merge the leftovers.

e Each element is copied once into R and once back into A.

e So merging has complexity O(end — start).

e Notice that we need an auxillary array.

\ _/

Searching and Sorting 14 — 37 Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge

Merge Sort: Complexity'

e At the top level, merging takes O(n) operations.

e At the next level, merging takes O(n/2) operations on each half, but
there are two halves. Total: O(n).

e The next level works on quarters: O(n/4) for merging, but there are 4
quarters. Total: O(n).

e Every level requires O(n) work.

e How many levels are there?

e Fach level the size is reduced by half: O(log, n) levels
e Total complexity: O(nlogn).

\ _/

Searching and Sorting 15 - 37 Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge

4 A
Quicksort I

e A very common “fast” sorting algorithm.

e It is commonly considered to be one of the fastest algorithms.

e Same complexity as merge sort on average, but “proportionality

” 1s much smaller.

constan
e Requires relatively little extra space.

e Like mergesort, quicksort is recursive.

\ _/

Searching and Sorting 16 — 37 Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge

4 A
Quicksort I

The idea:
e If there is one element or less, the array is sorted.
e Otherwise, choose a pivot element.

e Partition the array so all elements to the left of the pivot are no bigger
than the pivot, and all elements to the right are larger.

e Recurse on the subarrays to the left and right of the pivot.

The only real work is done in the partitioning.

\ _/

Searching and Sorting 17 - 37 Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge

4 N
Quicksort I

void quicksort(int A[], int start, int end)

{

if (end - start > 1) A
int pivot = partition(A, start, end);
quicksort (A, start, pivot);
quicksort (A, pivot+l, end);

}

\ _/

Searching and Sorting 18 — 37 Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge

-~

Partitioning I \

The pivot can be any element in the array. It is easiest to choose the
first one (A[start])

One way: scan from left to right, and maintain two indices: i and j so
that

— A[start+1..1i) are < A[start]

— A[i,j) are > A[start]

Initially, i = j = start+1.

We go through j = start+1 to end.
If A[j] > Al[start], just increment j.

Otherwise, swap A[j] and A[i] and increment both i and j.

At the end, swap A[start] and A[i-1]. /

Searching and Sorting 19 — 37 Howard Cheng

CS 2620 Fundamentals of Programming II

University of Lethbridge

-~

Partitioning I

int partition(int A[], int start, int end)
{
int i, j;
1 = start+1;
for (j = start+l; j < end; j++)
if (A[j] <= Al[start])
swap (A[i++], A[j1);
swap(A[start], A[i-1]);

return i-1; // return where the pivot is

\

~

_/

Searching and Sorting 20 — 37

Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge

4 A
Complexity I

e The sizes of the two subarrays depend on the choice of pivot.

e If we are lucky, the two subarrays are roughly half the size of the original.

e Since partition takes O(n) operations, quicksort has O(nlogn)

complexity (same reasoning as merge sort).

e If we are unlucky, the pivot is the smallest/largest element. Since we

reduce the size by 1, we need O(n) levels and the complexity is O(n?).

e The worst case of quicksort happens when the array is already sorted (or

sorted in reverse)!

e On average, the complexity is O(nlogn).

\ _/

Searching and Sorting 21 — 37 Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge

/ Another Partitioning Algorithm' \

We can move from both ends:

int partition(int A[], int start, int end)
{
int pivot = A[start];
int i = start+l, j = end-1;
while (i <= j) A
while (A[i] <= pivot) i++;
while (pivot < A[jl) j--;
if (14 < j) swap(A[il, A[j1);
}
swap (A[start], A[j]);

return j;

+
ths is slightly more efficient but more difficult to get correctly (still O(n)) /

Searching and Sorting 22 — 37 Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge

4 N

Another Partitioning Algorithm'

Did you see the bug(s)?

\ _/

Searching and Sorting 23 — 37 Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge

-~

\

Optimizations I \

Instead of choosing the first element as pivot, we can choose a random
element. It is unlikely to be the smallest /largest.

Another common approach: pick three elements and use the middle one
as pivot.

“Fat pivot”: partition array into three subarrays: less than the pivot,
equal to the pivot, and greater than the pivot. If there are many equal
elements, the left and right subarrays are smaller.

Recursion has overhead (function calls): it is worthwhile only for large
arrays. When the size of subarray is small enough, use a different sorting
algorithm (e.g. insertion sort).

The “cutoftf” point to switch between algorithms depends on compiler,

machine, etc. It needs to be tuned experimentally. /

Searching and Sorting 24 — 37 Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge

4 A
Generic Sorting I

e The STL sorting algorithms are “generic”: it works as long as operator<

is defined on the elements (or with a supplied comparison function).

e Also, it uses the standard STL iterators to specify the range (random
access iterators).
e Our code can be easily adapted for templates:

— Instead of comparing by <=, use OR of < and == (or use less_equal

from <functional>).

— Since the start and end iterators are random access, we can use

iterator arithmetic to jump to particular elements in the range.

\ _/

Searching and Sorting 25 — 37 Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge

Data Structure: Heaps'

e A heap is a binary tree with the following properties:

— each element in the heap is > its two children (if they exist);
— the tree is completely filled on all levels except possibly the lowest,
which is filled from the left.
e Because of this property, we can represent a heap of n elements in an
array of size n, such that:
— The two children of node 7 is in positions 2¢ + 1 and 27 + 2.
— The parent of node ¢ is in position | (i — 1)/2].

e Note: the word “heap” is also used to describe dynamically allocated

memory. This is a completely different use of this word.

\ _/

Searching and Sorting 26 — 37 Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge

-~

Heaps: Sifting Up'

~

Suppose we have a heap A of size n — 1 and we want to add an extra element

to A[n-1]. We can fix up the heap by “sifting up”:

void sift_up(int A[], int n)
{
int 1;
for (i = n-1; 1 > 0 && A[i] > A[(i-1)/2]; i = (i-1)/2)
swap(A[i], A[(i-1)/2]);
+

In other words, if A[i] is larger than its parent, we swap A[i] with its

parent and repeat.

\

_/

Searching and Sorting 27 — 37 Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge

4 A
Heaps: Sifting Up'

The sifting up procedure is correct, because:

e We assume that the array has the heap property except possibly with
A[i] and its parent (true at the beginning).

e At each iteration, if the heap property is violated, we swap A[i] with its
parent. Otherwise, we are done.

o If A[i] > A[(i-1)/2], then after swapping A[(i-1)/2] is still > its
children.

e We can also show that after swapping A[i] is still > its children (we
won’t prove this formally).

\ _/

Searching and Sorting 28 — 37 Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge

4 A
Heaps: Sifting Up'

e The complexity is the height of the tree, which is O(logn).

e To build a heap, we start from a heap of size 1 and repeatedly sift up
additional elements:

for (i = 2; i <= n; i++)

sift_up(A, 1i);
e This has complexity O(nlogn).

e More precisely, it is O(log2 + log3 + - - - 4+ logn), which simplifies to

O(nlogn), but some math is needed to understand this...

\ _/

Searching and Sorting 29 — 37 Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge

4 N
Heaps: Sifting Down'

e Suppose that we change the first element A[0] in a heap.

e Then the heap property is preserved except perhaps between A[0] and
its children (i.e. A[0] is too small).

e We can fix it by “sifting down”: swap it with the larger of the two
children.

e Because we choose the larger child, the heap property is restored except

for the heap rooted at the swapped child.
e Move down and repeat.

e Again, the complexity of each sifting down operation is O(logn).

\ _/

Searching and Sorting 30 — 37 Howard Cheng

CS 2620 Fundamentals of Programming II

University of Lethbridge

Heaps: Sifting Down'

void sift_down(int A[], int n)
{
int 1 = 0;
while (2%i+1 < n) { // there is a child
int child = 2*i+1; // left child
if (child+l < n &% A[child] < A[child+1])

~

if it exists

child++; // check right child,
if (A[i] >= A[child])

break; // heap property is good
swap(A[i], A[child]);
i = child;

+

\

_/

Searching and Sorting 31 — 37

Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge

4 N

Heaps: Extracting the Maximum'

e The maximum is at the root of the heap.

e To remove the maximum, just put A[n-1] into the root and sift down

(after decrecmenting n).

e Complexity is O(logn).

\ _/

Searching and Sorting 32 — 37 Howard Cheng

CS 2620

Fundamentals of Programming II

University of Lethbridge

-~

\

Heaps can be used to implement priority queues.

Priority Queues I

Insertion has O(logn) complexity.

Deleting the maximum has O(logn) complexity.

~

Finding the maximum element (without deleting it) has O(1) complexity

(i.e. constant time).

_/

Searching and Sorting

33 — 37

Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge

4 N
Heap Sort'

A heap can be used to sort an array of n elements as follows.

e Build a heap with the n elements: O(nlogn).

e Repeatedly extract the maximum of the heap and put the maximum at
the correct spot. Decrease the size of the heap by 1. O(logn) each

iterations gives O(nlogn).

e At any time, the first portion of the array is a heap, the second portion
is the sorted list.

e Complexity is O(nlogn).

\ _/

Searching and Sorting 34 — 37 Howard Cheng

CS

2620 Fundamentals of Programming II

University of Lethbridge

-~

\

Heap Sort I

void heapsort(int A[], int n)
{

// build the heap

for (int 1 = 2; 1 <= n; i++)

sift_up(A, 1i);

for (int i = n-1; i >= 1; i--) {
swap(A[0], A[il);
sift_down(A, 1i);

~

_/

Searching and Sorting 35 — 37

Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge

Sorting: Can we do better?'

e The fastest sorting algorithm we have seen has O(nlogn) complexity.

e If the data to be sorted is “special”’, we can do better.

e c.g. if we are sorting 0 and 1’s, we can just count the number of 0’s and

number of 1’s. This has O(n) complexity.

e “Sorting by counting” is fast as long as the number of different values is

“small”.

e We cannot do better than O(n) because we have to look at every array

element.

\ _/

Searching and Sorting 36 — 37 Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge

Sorting: Can we do better?'

e It can be proved that if you sort by comparing elements, it is impossible

to have an algorithm that has a better worst case complexity than
O(nlogn) (take CS 3620 if you want a precise statement).

e It does not matter how smart you are. “Impossible” means impossible.

e It means that if you have any sorting “algorithm” which does better
than O(nlogn) in the worst case, either:

— the complexity analysis is wrong, or

— there is at least one input array on which your “algorithm” gives the

wrong answer.

\ _/

Searching and Sorting 37— 37 Howard Cheng

