
CS 2620 Fundamentals of Programming II University of Lethbridge✬

✫

✩

✪

Basic Algorithm Analysis

• There are often many ways to solve the same problem.

• We want to choose an efficient algorithm.

• How do we measure efficiency? Time? Space?

• We don’t want to redo our analysis every time we reimplement our

algorithm, or use a different machine.

Searching and Sorting 1 – 37 Howard Cheng



CS 2620 Fundamentals of Programming II University of Lethbridge✬

✫

✩

✪

Basic Algorithm Analysis

• To analyze the amount of time required, we count the number of

operations needed.

• But not all operations require the same amount of time.

• Different compiler/machine may translate the same C++ code to

different number/type of instructions.

• Instead, we pick one “representative operation” and count that (e.g.

comparisons, variable assignments).

• The idea is that the total amount of time is proportional to the

number of representative operations. The constant of proportionality

depends on compiler, machine, etc.

• That is, the analysis is dependent only on the algorithm, not on the

implementation.

Searching and Sorting 2 – 37 Howard Cheng



CS 2620 Fundamentals of Programming II University of Lethbridge✬

✫

✩

✪

Big-O Notation

• We express the number of operations in “big-O” notation.

• The number of operations depends on the size of input (e.g. number of

array elements). Usually denoted n.

• Roughly, “big-O” means “proportional to” for large enough inputs.

• e.g. O(n) means run time is proportional to input size. Doubling the

input means roughly doubling the running time.

• e.g. O(n2) means run time is proportional to the square of input size.

Doubling the input means roughly quadrupling the running time.

• We want an algorithm with a small “big-O”.

• “Run time” is usually called the (time) complexity.

Searching and Sorting 3 – 37 Howard Cheng



CS 2620 Fundamentals of Programming II University of Lethbridge✬

✫

✩

✪

Worst case vs. Average Case

• Some algorithms behave differently depending on input.

• For example, some sorting algorithms will be very fast if the input is

already sorted, but they may be much slower on other cases.

• We can talk about the worst case complexity: how fast will the

algorithm run regardless of what input it receives?

• We can also talk about average case complexity: how does it do on

average?

• Average case is hard: we need to know what “average” means.

• We will concentrate on worst case complexity.

Searching and Sorting 4 – 37 Howard Cheng



CS 2620 Fundamentals of Programming II University of Lethbridge✬

✫

✩

✪

Searching: Linear Search

int find(int A[], int n, int key)

{

for (int i = 0; i < n; i++)

if (A[i] == key)

return i;

return -1; // not found

}

• In the worst case (key is in the last position/not found), we need to do n

comparisons.

• The algorithm has O(n) complexity.

Searching and Sorting 5 – 37 Howard Cheng



CS 2620 Fundamentals of Programming II University of Lethbridge✬

✫

✩

✪

Searching: Binary Search

int find(int A[], int n, int key)

{

int lo = 0, hi = n-1;

while (lo <= hi) {

int mid = (lo + hi) / 2;

if (A[mid] == key)

return mid;

else if (key < A[mid])

hi = mid-1;

else

lo = mid+1;

}

return -1; // not found

}

Searching and Sorting 6 – 37 Howard Cheng



CS 2620 Fundamentals of Programming II University of Lethbridge✬

✫

✩

✪

Searching: Binary Search

• The array must be sorted.

• The worst case happens if the key is not found.

• Every time the size of the range [lo,hi] is reduced by at least half.

• That means it takes approximate log
2
n iterations to reduce [0,n-1] to

the empty range.

• Each iteration does a “constant” amount of work, so the algorithm has

O(log
2
n) complexity.

• We usually write O(logn) because logarithms of different bases are

related by a constant: log
2
n = log n/ log 2

Searching and Sorting 7 – 37 Howard Cheng



CS 2620 Fundamentals of Programming II University of Lethbridge✬

✫

✩

✪

Complexity: Does It Matter?

• For large n, the difference between O(n) and O(log
2
n) is big. The

number of iterations:

n O(n) O(log
2
n)

32 32 5

1024 1024 10

1048576 1048576 20

Searching and Sorting 8 – 37 Howard Cheng



CS 2620 Fundamentals of Programming II University of Lethbridge✬

✫

✩

✪

Sorting: Selection Sort

for (int i = 0; i < n; i++) {

int index = find_min(A, i, n);

swap(A[i], A[index]);

}

• Finding the minimum on n elements requires O(n) comparisons.

• With n iterations this becomes O(n2).

• More precisely, the i-th iteration requires about n− i operations, so the

total is:

n+ (n− 1) + (n− 2) + · · ·+ 2 + 1 =
n(n+ 1)

2
= O(n2)

• O(n2) is slow. Sorting 106 entries requires roughly 1012 operations!

Searching and Sorting 9 – 37 Howard Cheng



CS 2620 Fundamentals of Programming II University of Lethbridge✬

✫

✩

✪

Other “Slow” Sorting Algorithms

• The following common sorting algorithms are also O(n2):

– Bubble sort

– Insertion sort

• But these algorithms can be O(n) if the array is already sorted.

• Selection sort is always O(n2) even if the array is already sorted.

Searching and Sorting 10 – 37 Howard Cheng



CS 2620 Fundamentals of Programming II University of Lethbridge✬

✫

✩

✪

Merge Sort

• This is our first fast sorting algorithm.

• The basic idea is this:

– If the array has only one element, it is easy.

– Otherwise, split the array into two halves.

– Recursively sort each half.

– Merge the two sorted lists together.

• The only “real work” is in the merging.

Searching and Sorting 11 – 37 Howard Cheng



CS 2620 Fundamentals of Programming II University of Lethbridge✬

✫

✩

✪

Merge Sort

void mergesort(int A[], int start, int end)

{

if (end - start > 1) {

int mid = (start+end)/2;

mergesort(A, start, mid);

mergesort(A, mid, end);

merge(A, start, mid, end);

}

}

Searching and Sorting 12 – 37 Howard Cheng



CS 2620 Fundamentals of Programming II University of Lethbridge✬

✫

✩

✪

Merging

Merging is done with a “marching algorithm”:

void merge(int A[], int start, int mid, int end)

{

int R[SIZE], i1, i2, j;

i1 = start; i2 = mid; j = 0;

while (i1 < mid && i2 < end) {

if (A[i1] < A[i2]) // A[i1] comes next

R[j++] = A[i1++];

else

R[j++] = A[i2++];

}

copy(A+i1, A+mid, R+j);

copy(A+i2, A+end, R+j+(mid-i1));

copy(R, R+(end-start), A+start);

}

Searching and Sorting 13 – 37 Howard Cheng



CS 2620 Fundamentals of Programming II University of Lethbridge✬

✫

✩

✪

Merging

• Notice that each loop iteration copies one element from either half.

• The two copy()’s merge the leftovers.

• Each element is copied once into R and once back into A.

• So merging has complexity O(end− start).

• Notice that we need an auxillary array.

Searching and Sorting 14 – 37 Howard Cheng



CS 2620 Fundamentals of Programming II University of Lethbridge✬

✫

✩

✪

Merge Sort: Complexity

• At the top level, merging takes O(n) operations.

• At the next level, merging takes O(n/2) operations on each half, but

there are two halves. Total: O(n).

• The next level works on quarters: O(n/4) for merging, but there are 4

quarters. Total: O(n).

• Every level requires O(n) work.

• How many levels are there?

• Each level the size is reduced by half: O(log
2
n) levels

• Total complexity: O(n log n).

Searching and Sorting 15 – 37 Howard Cheng



CS 2620 Fundamentals of Programming II University of Lethbridge✬

✫

✩

✪

Quicksort

• A very common “fast” sorting algorithm.

• It is commonly considered to be one of the fastest algorithms.

• Same complexity as merge sort on average, but “proportionality

constant” is much smaller.

• Requires relatively little extra space.

• Like mergesort, quicksort is recursive.

Searching and Sorting 16 – 37 Howard Cheng



CS 2620 Fundamentals of Programming II University of Lethbridge✬

✫

✩

✪

Quicksort

The idea:

• If there is one element or less, the array is sorted.

• Otherwise, choose a pivot element.

• Partition the array so all elements to the left of the pivot are no bigger

than the pivot, and all elements to the right are larger.

• Recurse on the subarrays to the left and right of the pivot.

The only real work is done in the partitioning.

Searching and Sorting 17 – 37 Howard Cheng



CS 2620 Fundamentals of Programming II University of Lethbridge✬

✫

✩

✪

Quicksort

void quicksort(int A[], int start, int end)

{

if (end - start > 1) {

int pivot = partition(A, start, end);

quicksort(A, start, pivot);

quicksort(A, pivot+1, end);

}

}

Searching and Sorting 18 – 37 Howard Cheng



CS 2620 Fundamentals of Programming II University of Lethbridge✬

✫

✩

✪

Partitioning

• The pivot can be any element in the array. It is easiest to choose the

first one (A[start])

• One way: scan from left to right, and maintain two indices: i and j so

that

– A[start+1..i) are ≤ A[start]

– A[i,j) are > A[start]

• Initially, i = j = start+1.

• We go through j = start+1 to end.

• If A[j] > A[start], just increment j.

• Otherwise, swap A[j] and A[i] and increment both i and j.

• At the end, swap A[start] and A[i-1].

Searching and Sorting 19 – 37 Howard Cheng



CS 2620 Fundamentals of Programming II University of Lethbridge✬

✫

✩

✪

Partitioning

int partition(int A[], int start, int end)

{

int i, j;

i = start+1;

for (j = start+1; j < end; j++)

if (A[j] <= A[start])

swap(A[i++], A[j]);

swap(A[start], A[i-1]);

return i-1; // return where the pivot is

}

Searching and Sorting 20 – 37 Howard Cheng



CS 2620 Fundamentals of Programming II University of Lethbridge✬

✫

✩

✪

Complexity

• The sizes of the two subarrays depend on the choice of pivot.

• If we are lucky, the two subarrays are roughly half the size of the original.

• Since partition takes O(n) operations, quicksort has O(n logn)

complexity (same reasoning as merge sort).

• If we are unlucky, the pivot is the smallest/largest element. Since we

reduce the size by 1, we need O(n) levels and the complexity is O(n2).

• The worst case of quicksort happens when the array is already sorted (or

sorted in reverse)!

• On average, the complexity is O(n log n).

Searching and Sorting 21 – 37 Howard Cheng



CS 2620 Fundamentals of Programming II University of Lethbridge✬

✫

✩

✪

Another Partitioning Algorithm

We can move from both ends:

int partition(int A[], int start, int end)

{

int pivot = A[start];

int i = start+1, j = end-1;

while (i <= j) {

while (A[i] <= pivot) i++;

while (pivot < A[j]) j--;

if (i < j) swap(A[i], A[j]);

}

swap(A[start], A[j]);

return j;

}

This is slightly more efficient but more difficult to get correctly (still O(n)).

Searching and Sorting 22 – 37 Howard Cheng



CS 2620 Fundamentals of Programming II University of Lethbridge✬

✫

✩

✪

Another Partitioning Algorithm

Did you see the bug(s)?

Searching and Sorting 23 – 37 Howard Cheng



CS 2620 Fundamentals of Programming II University of Lethbridge✬

✫

✩

✪

Optimizations

• Instead of choosing the first element as pivot, we can choose a random

element. It is unlikely to be the smallest/largest.

• Another common approach: pick three elements and use the middle one

as pivot.

• “Fat pivot”: partition array into three subarrays: less than the pivot,

equal to the pivot, and greater than the pivot. If there are many equal

elements, the left and right subarrays are smaller.

• Recursion has overhead (function calls): it is worthwhile only for large

arrays. When the size of subarray is small enough, use a different sorting

algorithm (e.g. insertion sort).

• The “cutoff” point to switch between algorithms depends on compiler,

machine, etc. It needs to be tuned experimentally.

Searching and Sorting 24 – 37 Howard Cheng



CS 2620 Fundamentals of Programming II University of Lethbridge✬

✫

✩

✪

Generic Sorting

• The STL sorting algorithms are “generic”: it works as long as operator<

is defined on the elements (or with a supplied comparison function).

• Also, it uses the standard STL iterators to specify the range (random

access iterators).

• Our code can be easily adapted for templates:

– Instead of comparing by <=, use OR of < and == (or use less_equal

from <functional>).

– Since the start and end iterators are random access, we can use

iterator arithmetic to jump to particular elements in the range.

Searching and Sorting 25 – 37 Howard Cheng



CS 2620 Fundamentals of Programming II University of Lethbridge✬

✫

✩

✪

Data Structure: Heaps

• A heap is a binary tree with the following properties:

– each element in the heap is ≥ its two children (if they exist);

– the tree is completely filled on all levels except possibly the lowest,

which is filled from the left.

• Because of this property, we can represent a heap of n elements in an

array of size n, such that:

– The two children of node i is in positions 2i+ 1 and 2i+ 2.

– The parent of node i is in position ⌊(i− 1)/2⌋.

• Note: the word “heap” is also used to describe dynamically allocated

memory. This is a completely different use of this word.

Searching and Sorting 26 – 37 Howard Cheng



CS 2620 Fundamentals of Programming II University of Lethbridge✬

✫

✩

✪

Heaps: Sifting Up

Suppose we have a heap A of size n− 1 and we want to add an extra element

to A[n-1]. We can fix up the heap by “sifting up”:

void sift_up(int A[], int n)

{

int i;

for (i = n-1; i > 0 && A[i] > A[(i-1)/2]; i = (i-1)/2)

swap(A[i], A[(i-1)/2]);

}

In other words, if A[i] is larger than its parent, we swap A[i] with its

parent and repeat.

Searching and Sorting 27 – 37 Howard Cheng



CS 2620 Fundamentals of Programming II University of Lethbridge✬

✫

✩

✪

Heaps: Sifting Up

The sifting up procedure is correct, because:

• We assume that the array has the heap property except possibly with

A[i] and its parent (true at the beginning).

• At each iteration, if the heap property is violated, we swap A[i] with its

parent. Otherwise, we are done.

• If A[i] > A[(i-1)/2], then after swapping A[(i-1)/2] is still ≥ its

children.

• We can also show that after swapping A[i] is still ≥ its children (we

won’t prove this formally).

Searching and Sorting 28 – 37 Howard Cheng



CS 2620 Fundamentals of Programming II University of Lethbridge✬

✫

✩

✪

Heaps: Sifting Up

• The complexity is the height of the tree, which is O(log n).

• To build a heap, we start from a heap of size 1 and repeatedly sift up

additional elements:

for (i = 2; i <= n; i++)

sift_up(A, i);

• This has complexity O(n log n).

• More precisely, it is O(log 2 + log 3 + · · ·+ log n), which simplifies to

O(n log n), but some math is needed to understand this...

Searching and Sorting 29 – 37 Howard Cheng



CS 2620 Fundamentals of Programming II University of Lethbridge✬

✫

✩

✪

Heaps: Sifting Down

• Suppose that we change the first element A[0] in a heap.

• Then the heap property is preserved except perhaps between A[0] and

its children (i.e. A[0] is too small).

• We can fix it by “sifting down”: swap it with the larger of the two

children.

• Because we choose the larger child, the heap property is restored except

for the heap rooted at the swapped child.

• Move down and repeat.

• Again, the complexity of each sifting down operation is O(log n).

Searching and Sorting 30 – 37 Howard Cheng



CS 2620 Fundamentals of Programming II University of Lethbridge✬

✫

✩

✪

Heaps: Sifting Down

void sift_down(int A[], int n)

{

int i = 0;

while (2*i+1 < n) { // there is a child

int child = 2*i+1; // left child

if (child+1 < n && A[child] < A[child+1])

child++; // check right child, if it exists

if (A[i] >= A[child])

break; // heap property is good

swap(A[i], A[child]);

i = child;

}

}

Searching and Sorting 31 – 37 Howard Cheng



CS 2620 Fundamentals of Programming II University of Lethbridge✬

✫

✩

✪

Heaps: Extracting the Maximum

• The maximum is at the root of the heap.

• To remove the maximum, just put A[n-1] into the root and sift down

(after decrecmenting n).

• Complexity is O(log n).

Searching and Sorting 32 – 37 Howard Cheng



CS 2620 Fundamentals of Programming II University of Lethbridge✬

✫

✩

✪

Priority Queues

• Heaps can be used to implement priority queues.

• Insertion has O(log n) complexity.

• Deleting the maximum has O(log n) complexity.

• Finding the maximum element (without deleting it) has O(1) complexity

(i.e. constant time).

Searching and Sorting 33 – 37 Howard Cheng



CS 2620 Fundamentals of Programming II University of Lethbridge✬

✫

✩

✪

Heap Sort

A heap can be used to sort an array of n elements as follows.

• Build a heap with the n elements: O(n logn).

• Repeatedly extract the maximum of the heap and put the maximum at

the correct spot. Decrease the size of the heap by 1. O(log n) each

iterations gives O(n logn).

• At any time, the first portion of the array is a heap, the second portion

is the sorted list.

• Complexity is O(n log n).

Searching and Sorting 34 – 37 Howard Cheng



CS 2620 Fundamentals of Programming II University of Lethbridge✬

✫

✩

✪

Heap Sort

void heapsort(int A[], int n)

{

// build the heap

for (int i = 2; i <= n; i++)

sift_up(A, i);

for (int i = n-1; i >= 1; i--) {

swap(A[0], A[i]);

sift_down(A, i);

}

}

Searching and Sorting 35 – 37 Howard Cheng



CS 2620 Fundamentals of Programming II University of Lethbridge✬

✫

✩

✪

Sorting: Can we do better?

• The fastest sorting algorithm we have seen has O(n logn) complexity.

• If the data to be sorted is “special”, we can do better.

• e.g. if we are sorting 0 and 1’s, we can just count the number of 0’s and

number of 1’s. This has O(n) complexity.

• “Sorting by counting” is fast as long as the number of different values is

“small”.

• We cannot do better than O(n) because we have to look at every array

element.

Searching and Sorting 36 – 37 Howard Cheng



CS 2620 Fundamentals of Programming II University of Lethbridge✬

✫

✩

✪

Sorting: Can we do better?

• It can be proved that if you sort by comparing elements, it is impossible

to have an algorithm that has a better worst case complexity than

O(n log n) (take CS 3620 if you want a precise statement).

• It does not matter how smart you are. “Impossible” means impossible.

• It means that if you have any sorting “algorithm” which does better

than O(n log n) in the worst case, either:

– the complexity analysis is wrong, or

– there is at least one input array on which your “algorithm” gives the

wrong answer.

Searching and Sorting 37 – 37 Howard Cheng


