CS 2620 Fundamentals of Programming II University of Lethbridge

Procedural vs. Object-Oriented Programming'

e Procedural Programming

— top down design
— create functions to do small tasks

— communicate by parameters and return values

e Object-Oriented Programming
— design and represent objects
— determine relationships between objects
— determine attributes each object has
— determine behaviours each object will respond to

— create objects and send messages to them to use or manipulate their

attributes

\ _/

Object-Oriented Programming 1 - 98 Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge

-~

\

Object-Oriented Programming I \

An object is a model of a real or imaginary object (e.g. bank account,
address),

Each object is defined by attributes (data members) and operations
(member functions/method).

A class is a set of objects with the same properties.

A client may create a class object and operate on it through a set of
operations that are declared public.

Each object maintains the state of its private data structure, and
responds to clients by executing code that implements a particular
method.

During the execution of a program, objects are created and operated on,
and the application program solves the problem by sending messages to

various objects. /

Object-Oriented Programming 2 - 98 Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge

4 A
Examples of Classes'

e name, address, person, employee, student

e die, spinner, card, race car, robot

e clock, timer, elevator

e bank account, time card, transcript

e date, time

e point, vector, matrix, fraction, complex, term, polynomial
e inventory (grocery, bookstore, auto parts)

e book, CD, DVD, journal

e house, room, hotel

\ _/

Object-Oriented Programming 3 — 98 Howard Cheng

CS 2620

Fundamentals of Programming II

University of Lethbridge

-~

\

data members and methods

1. Data

2. Methods—functions which access/modify data members

Classes '

e A class is a blueprint for an object—it defines its attributes including

e We have used some classes: string and iostream

e We can define our own classes—we need to include

~

_/

Object-Oriented Programming

Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge

4 N

\

Examples I

e Example: name class which has two attributes firstName and lastName
e For date we can require month, day and year

e These could be encapsulated into a date class
1. Data would be 3 integers day, month, year

2. Methods could be read date, print date, print date using
month name, assign one date to another, increment date by
days, increment date by months, increment date by years,
compare same date, compare date comes before, compare date
comes after, get month, get day, get year, set month, set day,

set year, get todays date, check if a year if leap year, etc.

_/

Object-Oriented Programming 5— 98 Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge

4 N

Methods '

e Methods fall into two categories
1. Accessors: retrieve the values of the data members
2. Modifiers: modify the values of the data members

e Consider the fraction—we had to use two integers to represent it—we
could encapsulate it into a class with data members numerator and

denominator and methods read, print, assign, get numerator, get

denominator, add, sub, mult, div, reduce, etc.

\ _/

Object-Oriented Programming 6 — 98 Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge

4 N
Constructors '

e In addition to the methods we have talked about we also need a way to

build (and initialize) an object
e The methods to do this are called constructors

e T'wo kinds of constructors

1. Default constructor—constructor with no arguments— data members

are initialized with default values

2. Constructor with arguments—data members are initialized with the

input arguments

\ _/

Object-Oriented Programming 7 — 98 Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge

4 N

Constructors I

Constructor rules
1. If no constructor—data members are not initialized
2. If no parameter—call default constructor
3. It is generally a good practice to always provide a default constructor

4. If any non-default constructor is defined, default constructor is not

implicitly defined.

\ _/

Object-Oriented Programming 8 — 98 Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge

4 N
Operators I

Note that the C++4 standard operators do not work with user-defined

objects unless we define them to do so (operator overloading). So we cannot

use + or == with fractions or ++ or == with dates.

However there are two exceptions

1. The assignment operator works: it just assigns each data member of an

object

2. The dot operator works: it allows us to access the class members

\ _/

Object-Oriented Programming 9 - 98 Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge

4 N
Class Construction '

e (lasses consist of two parts

1. The interface: contains the declaration of the class including the data

members and methods

2. The implementation: contains the definition of the methods

e It could be one file but typically is two files
1. header—interface—.h file

2. implementation—definition—. cc or .cpp file

e We will need to include (#include "header-file.h") whenever we

want to use objects of the class it defines

\ _/

Object-Oriented Programming 10 — 98 Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge

4 N

Client Program I

e The program we write that uses the class is called the client program

e So far we have been writing clients only. All our programs used

iostream class objects. Many have used string class objects

e We will switch gears a little. We will now spend most of our time
writing classes and the client will just be a driver to test the classes and
their methods

\ _/

Object-Oriented Programming 11 — 98 Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge

4 N
Class Definition '

e The public section (public:) of a class consists of the specification of

any variables, types, constants, and function prototypes that are

accessible to another program component

e The private section (private:) of a class consists of the specification of
any variables, types, constants, and function prototypes to be hidden

from other program components

e A record (struct) is a class in which all members and methods are

declared public.

\ _/

Object-Oriented Programming 12 — 98 Howard Cheng

CS 2620 Fundamentals of Programming II

University of Lethbridge

-~

\

Information Hiding I

We should declare data members private unless we have a good reason

to do otherwise.

Access to the data members should be done through accessor and

modifier methods only.

Debugging is easier if data members can only be changed by the

members defined by the class itself.

Users of the class do not need to know the internal representation of the

data (easier to use).

Implementation of the class can change without affecting its users (as

long as the interface is the same).

~

_/

Object-Oriented Programming 13 — 98

Howard Cheng

CS 2620 Fundamentals of Programming II

University of Lethbridge

-~

Compiler Directives I

e Sometimes, a number of classes all use other classes.

~

e Chains of #include may end up including a header file multiple times.

e A class will be defined multiple times.

#ifndef CLASS_NAME_H
#define CLASS_NAME_H

// class definition

#tendif

\

_/

Object-Oriented Programming 14 — 98

Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge

-~

\

~

Class Implementation I

The implementation file contains the C++ code for the class member

functions

With the scope resolution operator :: as a prefix to the function
name in each function header
The implementation file contains the following member functions

1. Constructors that execute when an object of a class is declared and
that set the initial state of the new object

2. Accessors that retrieve the value of a data member

3. Modifiers that modify the value of a data member

Notice that the implementation file contains

#include "class—-name.h"

_/

Object-Oriented Programming 15 - 98 Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge

-~

\

~

Use of Classes and Objects'

The client program (i.e., program component) contains the declaration

class—-name object;

Any program component may apply member functions that are public

as operations on the declared object

Member functions that are private are not directly accessible outside

the class

The client program may declare and manipulate objects of the data type

defined by the server class

Notice that the client program contains

#include "class—name.h"

_/

Object-Oriented Programming 16 — 98 Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge

4 N

Classes as Operands and Arguments'

e If class-name is a class type, use class-name& object to declare

object as a formal reference parameter

e If class—-name is a class type, use const class-name& object to
specify that formal parameter object cannot be changed by the

function’s execution

e Accessor methods should be const

\ _/

Object-Oriented Programming 17 — 98 Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge

-~

~

Static Members and Methods'

Normally, data members and methods are associated with each object.
Different instances of a class have separate copies.

Static data members are associated with the class, not to individual

instances.
Similarly, static methods are associated with the class.

To declare static members and methods, add static in front of the
declaration.

To refer to a static member or to call a static method, use

class—name: :member or class-name: :method ().

Useful for constants related to the class, or methods not associated with

_/

a particular object.

Object-Oriented Programming 18 — 98 Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge

/ Name Class: Interface (name.h)'

// Interface file for a simple name class
#ifndef NAME_H

#define NAME_H

using namespace std;

class Name {

public:
// constructors
Name () ; // default constructor
Name (const string& surname); // given name will be enpty

Name (const string& given, const string& surname);

// input/output methods

\

void read(); // read in a name in form given last
void print() const; // print in format given last
void revPrint() const; // print in format last, given

~

_/

Object-Oriented Programming 19 — 98

Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge

///, // set methods \\\\

void setSurname(const string&); // change the surname

void setGiven(const string&); // change the given name

void setName(const string& given, const string& surname); // whole name

// get methods

string surname() const; // return the surname
string givenName() const; // return the given name
string initials() const; // return the initials

// comparison methods

bool sameAs(const Name&) const; // is the name the same as this one

bool isBefore(const Name&) const;// does this name come before the
// param telephone directory style
// i.e. lastname, firstname

private:

// data members

string last;

string first;

s // ’;’ is required

@ndif J

Object-Oriented Programming 20 — 98 Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge

/ Name Class: Implementation (name.cc)'

// implementation of the name class

// preprocessor directives
#include <iostream>
#include <string>

#include "name.h" // class definition for this class

using namespace std;

/) /%3 3k 3k 3k 3k sk sk ok sk ok ok ok kK K KK KKK KK K K K K K K K o o o o ok oK oK K K K K K K K K
// default constructor
// post-condition -- last name will be "UNKNOWN" and the given name
// will be the empty string
/) /%3 3k 3k 3k 3k sk sk sk sk ok ok ok kK K KK KKK K K K K K K K K K o o o o ok oK oK oK K K K K K K K
Name: :Name () {

last = "UNKNOWN";

first = "";

¥

\

~

_/

Object-Oriented Programming 21 — 98 Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge

///;;***
// constructor to set the last name

// parameter usage : surname imports the name to use as the last name
// post-condition -- last name will be the surname and the given name
// will be the empty string

/ /% 3Kk ok sk ok sk ok sk ok sk sk ok sk ok sk ok ok ok sk ok ok sk ok sk ok sk ok sk ok ok sk ok sk ok ok ok sk ok ok sk ok sk ok sk ok sk sk ok sk ok sk ok ok ok sk ok ok sk ok sk ok ok ok ok ok ok
Name: :Name (const string& surname) {

last = surname;

first = "";

}

//**

// constructor to set both names

// parameter usage : surname -- imports the name to use as the last name
// given -- imports the name to use as the first name
// post-condition -- last name will be the surname and the given name

// will be given

/ /% 3Kk sk sk ok sk ok sk ok sk sk ok sk ok sk ok sk ok sk sk ok sk ok sk ok sk k sk sk ok sk ok sk ok ok ok sk sk sk sk ok sk ok sk ok sk sk sk sk ok sk ok sk ok sk sk sk sk ok sk ok sk ok ok sk sk sk ok
Name: :Name (const string& given, const string& surname) {

last = surname;

first = given ;

}

\

~

_/

Object-Oriented Programming 22 — 98 Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge

//jj** ‘\\\
// method to read a name
// post-condition -- the name will be set to the input value

/) /oK sk ke ok sk ok s ok sk ok ok ok sk s ok sk ok sk ok sk ok ok ok ok sk ok sk o sk ok sk o ok sk ok s ok sk ok sk ok sk s ok sk ok s ok sk o ok ok sk o ok ok ok sk ok ok ok k
void Name::read() { cin >> first >> last; }

/) /%3 3Kk 3k 3k sk sk ok ok ok KoK KK KK KK KKK KKK KK K K K K K K K K ok o o o o ok oK
// method to print a name

//**

void Name: :print() const { cout << first << ’ ’ << last; }

[/%K ok ok ok ok sk sk sk sk ok o o ok ok ok ok ok K K ok ok ok ok ok ok 3K K K o o ok ok ok ok ok 3 K o ok ok ok ok ok ok K K K ok ok ok ok ok K K K K

// method to print a name in format surname, givenName

[/%K ok ok ok ok ok sk sk sk sk ok o ok ok ok ok sk K K K K o ok ok ok ok ok K K K K o ok ok ok ok ok K K K K o ok ok ok ok ok K K K K o ok ok ok ok ok K K Kk

void Name: :revPrint() const { cout << last << ", " << first; }

/) /%K ok ok ok ok sk sk sk sk ok o o ok ok ok ok K K K o o ok ok ok ok sk 3K K K o o ok ok ok ok K 3K K o ok ok ok ok ok K 3K K K o ok ok ok ok ok K K ok ok ok ok ok K
// method to change the surname

// parameter usage : surname —- imports the name to use as the last name

// post-condition -- last name will changed to surname
/ /%% 3k ok sk ok sk ok sk ok sk sk ok ok ok sk ok sk ok st ok sk sk ok s ok ok ok sk ok sk ok sk ke sk sk ok ok sk ok sk ok sk ke sk sk ok o ok sk ok sk ok sk ke sk sk ok s ok ook ok ok ok ok

void Name::setSurname(const string& surname) { last = surname; }

\ _/

Object-Oriented Programming 23 — 98 Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge

///;;*** \\\\
// method to change the given name
// parameter usage : given -- imports the name to use as the first name

// post-condition -- first name will changed to given
[/3 3K ok ok ok o ko ok sk sk sk ok ok ok ok ok ok o o o K K K K KoK oK ok ok ok ok ok o o o K K K KK 3k ok ok ok ok ok ok ok o o K K K K Kok ok ok ok ok ok ok ok o K

void Name: :setGiven(const string& given) { first = given; }
[/%33 3k 3k sk sk sk ok ok ok ok kK K K KK KK KKK K K K K K K K K K o o o o o ok oK ok K K K K K

// method to change both names

// parameter usage : surname -- imports the name to use as the last name
// given -- imports the name to use as the first name
// post-condition -- last name will changed to surname and

// first name will changed to given

//**

void Name::setName(const string& given, const string& surname) {
last = surname; first = given;

}

//*******************************

// method to return the surname
[/ k% sk ok sk ok sk o ok sk sk ok ok ok sk ook sk s ok ok sk ok ook ok ook ok ok

string Name::surname() const { return last; }

\ _/

Object-Oriented Programming 24 — 98 Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge

//;;******************************** ‘\\\

// method to return the given name

[/3K 3k 3k sk sk sk sk sk ok ok sk sk ok sk sk sk ok sk ok ok ok ok Kk
string Name::givenName() const { return first; }
/) /% 3K 3k 3k 3k sk sk sk sk sk ok ok ok kK K K KKK K K K K K K K K K K K o o o o ok ok ok ok ok ok ok ok ok ok ok ok oK oK ok ok ok ok oK ok oK oK oK K K K K K K K K K
// method to return the initials
// post-condition -- a string containing the first letters of the name
// will be returned
/) /3K 3k 3k 3k sk sk sk sk sk ok ok ok kK K K KK K K K K K K K K K K K K o o o o ok ok ok ok ok ok ok ok ok ok ok ok oK ok oK ok ok oK ok ok oK oK oK K K K K K K K K K
string Name::initials() const {

string temp = "";

if (first !'= "") temp += first[O]; // add first initial

if (last != "UNKNOWN") temp += last[0];// add last initial

return temp;

}

/[%3k ok sk ok ok sk ok sk ok sk ok sk ok ok ok ok s ok s ok sk ok ok ok ok s ok s ok sk ok ok sk ok s ok sk ok sk ok ok sk ok s ok sk ok sk ok ok sk ok ook sk ok sk ok ok ook k
// method to determine is the parameter is the same as this name

// parameter usage : name imports the name to compare to this one
// post-condition -- true is returned if the parameter is exactly

the same as this name

\\\z** ////

Object-Oriented Programming 25 — 98 Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge

4 N

bool Name: :sameAs(const Name& name) const {

return first == name.first && last == name.last;

//**

// method to determine if this name comes before the parameter

//

// parameter usage : name imports the name to compare to this one

// post-condition -- true is returned if the parameter alphabetically
// comes before this name when considered last name
// first

//**

bool Name: :isBefore(const Name& name) const {

return last < name.last || last == name.last && first < name.first;

\ _/

Object-Oriented Programming 26 — 98 Howard Cheng

CS 2620 Fundamentals of Programming II

University of Lethbridge

-~

~

#include <iostream>
#include <string>

#include "name.h"

using namespace std;

\

Name Class — Client Program I

//***

// client testing program for the Name class
/) /%K ok ok ok sk sk sk sk sk ok o ok ok ok ok sk sk K Kk o ok ok ok ok ok sk K K K o ok ok ok ok ok sk K K o ok ok ok ok ok K K Kk ok ok ok ok ok ok K Kk o ok ok ok

_/

Object-Oriented Programming

27 — 98

Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge

/ Name Class: Client Program'

int main() {
// test the three constructors
cout << "Testing the 3 constructors" << endl;
Name namel;
Name name2("Bennett");
Name name3("Sophie Louise", "MacGregor");
Name name4 = name3;

cout << "The constructed names are : " << endl;
namel.revPrint(); cout << endl;

name2.revPrint(); cout << endl;

name3.revPrint(); cout << endl;

cout << "Assignment operator test." << endl;

cout << "After name4 = name3;";

cout << " name 4 is "; named.revPrint(); cout << endl << endl;

return O;

N

~

_/

Object-Oriented Programming 28 — 98

Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge

/ Date Class: Interface (date.h)'

//interface file for a simple date class
#ifndef DATE_H
#define DATE_H

using namespace std;

class Date
{
public:
// constructors
// default values are yr -- 2000; mon -- 1; day -- 1;
// default values will be used if no parameter or parameter is invalid

Date(); // default constructor set to 2000/1/1
Date(int yr); // set to yr/1/1
Date(int yr, int mon); // set to yr/mon/1

Date(int yr, int mon, int dd); // set to yr/mom/dd

\\\\ // input/output methods

~

_/

Object-Oriented Programming 29 — 98 Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge

///, void read(); // read in a date \\\\

// acceptable formats are

// yyyy/mm/dd

// yyyy-mm-dd

// yyyy:mm:dd

// if format is incorrect or the

// date is invalid, date is not changed
void print() const; // print in format yyyy/mm/dd
void printWithWord() comnst;// print in format month dd, yyyy

// set methods -- date is left unchanged if parameters are not valid
bool setYear(int); // set the year

bool setMonth(int); // set the month

bool setDay(int) ; // set the day

// get methods -- return the values of the private data members

int year() const;

int month() const;

int day () const;

// increment methods

void addYear(int); // add int years to the date

\\\\ void addMonth(int); // add int months to the date ////

Object-Oriented Programming 30 — 98 Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge

-~

void addDay(int); // add int days to the date

// comparison methods
bool sameAs(const Date&) const;

bool isBefore(const Date&) const;

// static method -- for the class
// not available to a specific instance

static bool leapYear(int yr); // is the parameter a leap year?

private:

int yy; int mm; int dd;

// private helper functions
bool setDate(int yr, int mon, int dd);// set the date to this date
static bool validDate(int yr, int mon, int day);
static int daysIn(int mon, int yr); // returns # of days in the month
+s // ’;’ is required
#endif

\

‘\\\

_/

Object-Oriented Programming 31 — 98 Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge

-

// preprocessor directives

Date Class: Implementation (date.cc)

#include <iostream>
#include <string>
#include "date.h" // class definition for this class

using namespace std;

// lowest valid year for this type of calendar
const int baseYear = 1582;

// an array of strings which are the names for each month;

// used to simplify the printing of the month name

string monthName[] = {"Jan","Feb","Mar","Apr","May","June",
IlJulyll , IIAugH , llSeptH R llOCtll , IINOVII , "DeC"};

//**

// constructor to initialize to 2000/1/1

// post-condition -- the date will be initialized to the default
[/%KoK ok ok ok ko ok ok ok ok ok o K K KK oK ok ok ok ok o o K KK oK oK ok ok ok o o K KK Kok ok ok ok ok o K KKK ok ok ok ok ok o o K K K ok ok

Date::Date() { yy = 2000; mm = 1; dd = 1; }

\

~

_/

Object-Oriented Programming 32 — 98 Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge

ﬁ** \

// constructor to initialize to yr/1/1

// parameter usage : yr -- imports the year to use for the date
// post-condition -- if the year is valid the date will be yr/1/1
// otherwise it will be 2000/1/1
[/KKK KKK KKK KKK K KKK KKK KKK KK KKK KK KK KK KK KKK KK KK KKK KK KKK KK K KK KK KK KK K
Date::Date(int yr) {
if (yr >= baseYear) yy = yr; else yy = 2000;
mm = 1; dd = 1;
}
[/3K 3Kk Kk ok ok ok kK K
// constructor to initialize to yr/mon/1
// parameter usage : yr -- imports the year to use for the date
// mon -- imports the month to use for the date
// post-condition -- if the year and month are valid the date will be yr/mon/1
// otherwise it will be 2000/1/1
[/KKK KKK KKK KKK KKK KKK KKK KKK KKK KK KKK KK KKK KK KKK KKK KKK KKK KK R R R R R Rk

Date::Date(int yr, int mon) {

dd = 1;
if (validDate(yr, mon, dd)) {
yy = yr; mm = mon; // set date to the entered date
} else { // date was not valid so use default values

yy = 2000; mm = 1; }
}

\ _/

Object-Oriented Programming 33 — 98 Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge

///;r**

// constructor to initialize to yr/mon/day

//

// parameter usage : yr -- imports the year to use for the date

// mon -- imports the month to use for the date

// day -- imports the day to use for the date

//

// post-condition -- if the parameters are valid the date will be yr/mon/day
// otherwise it will be 2000/1/1

//**

Date::Date(int yr, int mon, int day) {

if (validDate(yr, mon, day)) {

~

_/

yy = yr; // set date to the entered date
mm = mon;
dd = day;
}
else { // date was not valid so use default values
yy = 2000;
mm = 1;
dd = 1;
}
}
Object-Oriented Programming 34 — 98 Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge

///;r**

// set the year of this object to yr

//

// parameter usage : yr -- imports the year to change to

//

// post-condition -- if yr is valid the date’s year will be set to yr

// and true will be returned. If invalid, no change is
// made and false is returned

//**

bool Date::setYear(int yr) { return setDate(yr,mm,dd); }

[/KK ok ok ok ok ok sk ok ok o o ok ok ok ok o oK oK ok ok o K K oK ok o o K oK ok ok o o K oK ok o o K K oK ok o o K ok ok ok o o K oK ok ok o K oK ok ok ok o K K ok ok
// set the month of this object to mon

//

// parameter usage : mon -- imports the month to change to

//

// post-condition -- if moh is valid the date’s month will be set to mon
// and true will be returned. If invalid, no change is
// made and false is returned

//**

bool Date::setMonth(int mon) { return setDate(yy,mon,dd); }

\

~

_/

Object-Oriented Programming 35 — 98

Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge

///;’**
// set the day of this object to day

//

// parameter usage : day -- imports the day to change to

//

// post-condition -- if day is valid the date’s day will be set to day
// and true will be returned. If invalid, no change is
// made and false is returned

//**

bool Date::setDay(int day) { return setDate(yy,mm,day); }

//**

// function to return this objects year

//

// post-condition -- the year is returned
[/K Kk sk ok ok ok sk sk ok ok o ok sk ok ok o K K ok ok o K oK ok ok ok K Kok ok o K K ok ok o K K ok ok ok K sk ok ok o oK sk ok ok o K K ok ok ok K sk ok ok o

int Date::year() const { return yy; }

//**

// function to return this objects month

//

// post-condition -- the month is returned
[/3% sk ko ok sk ok sk ok sk sk ok ok ok sk ok ok ok sk ko ok sk stk ok sk ko ok sk ko ok sk sk ok ok

int Date::month() const { return mm; }

\

~

_/

Object-Oriented Programming 36 — 98

Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge

///;r** ‘\\\\

// function to return this objects day

//
// post-condition -- the dayis returned

[/Ko ok ko ok ok ok sk ok ok o K ok ok ok o K Kok ok ok K Kok ok o Kok ok ok o KK ok ok ok K Kok ok o K sk ok ok o K Kok ok ok K Kok ok
int Date::day() const { return dd; }

//**

// function to add a specified number of years to his ojects date.

//

// parameter usage

// numYrs -- imports the number of years to add to this objects date.

//

// post-condition -- the date is adjusted by numYr; if numYrs > O

// they are added to the date, if < O they are subtracted
// from the date.

//**

void Date::addYear(int numYrs) {
yy += numYrs;
// in a non leap year we can not have Feb 29 so change it to the 28th

if (!leapYear(yy) && mm == 2 && dd == 29) dd = 28;
}

\ _/

Object-Oriented Programming 37 — 98 Howard Cheng

CS 2620

Fundamentals of Programming II University of Lethbridge

ﬁ**

//

//

}

\

parameter usage

mm += numMonths;

while (mm > 12)
mm -= 12;
yy++;

}

while (mm < 1)
mm += 12;
yy=——s

// adjust end of month if dd is past end of current month this will ensure
// that the date is always valid, i.e we do not end up with Feb 30 or something

// function to add a specified number of months to his ojects date.

: numMonths -- imports the number of months to add

{

{

// post-condition -- the date is adjusted by numMonths; if numMonths > O they are
added to the date, if < O they are subtracted from the date.
/) /55K ok ok ok o ok koo ok ok ok ok o o o K K K oK oK ok ok ok ok o o K K K K 3K ok ok ok ok o o K KK oK ok ok ok ok ok o o K K K 3k ok ok ok ok ok o o K K K oK ok oK

void Date::addMonth(int numMonths) {

// while more months than in a year
// reduce number of months and
// adjust to next year

// while less months than in a year
// increase number of months and
// adjust to prev year

if (dd > daysIn(mm,yy)) dd = daysIn(mm,yy);

~

_/

Object-Oriented Programming 38 — 98

Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge

///;’**
// function to add a specified number of days to this objects date.
// parameter usage : numDay —-- imports the number of days to add
// post-condition -- the date is adjusted by numDays; if numDays > O they are

/) /3K 5k ok ok o ok ok ok sk sk ok ok ok ok o o K K K 3K oK oK ok ok ok o o K KKK oK ok ok ok ok o o K K KK oK ok ok ok ok o o K KK Kok ok ok ok ok o o K K KoKk ok ok ok ok o K
void Date::addDay(int numDays) {

dd += numDays;

while (dd > daysIn(mm,yy)) {// while more days than in current month

dd -= daysIn(mm,yy); // subtract number of days in current month
mm++; // go to next month
if (mm > 12) { // check for new year and adjust if necessary
mm = 1; yy++;
}
}
while (dd < 1) { // while fewer days than in a month
mm--; // go to prev month
if (mm < 1) { // check for new year and adjust if necessary
mm = 12;
yy==s
}
dd += daysIn(mm,yy); // add number of days in this month
}

}

\

// added to the date, if < 0 they are subtracted from the date.

~

_/

Object-Oriented Programming 39 — 98 Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge

///;r**

// function to return true if the date is the same as the date argument

//

// parameter usage : date -- imports the date to be compared with
//
// post-condition -- returns true if the same date

//**

bool Date::sameAs(const Date& date) const {

return (dd == date.dd && mm == date.mm && yy == date.yy);
}

//**

// function to return true if the date comes before the date argument.

//

// parameter usage : date -- imports the date to be compared with
//
// post-condition -- returns true if it comes before

//**

bool Date::isBefore(const Date& date) const {

return (yy < date.yy ||
(yy == date.yy && mm < date.mm) ||
(yy == date.yy && mm == date.mm && dd < date.dd));
}

\

~

_/

Object-Oriented Programming 40 — 98

Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge

///;r**

// function to return true if year is a leap year.

//

// parameter usage : year —- imports the year to evaluate
//

// post-condition -- returns true if it is a leap year

[/KK ks ok ok o ko ok ok ok o koK ok ok o K K oK ok o K K oK ok o o K K oK oK o o K oK ok ok o K K oK ok ok o K K ok ok o o K K ok ok o K K oK ok ok o K K ok ok o
bool Date::leapYear(int year) {
return (year % 400==0 || year % 4 == 0 && year % 100 != 0);

//**

// print the date in form yyyy/mm/dd
/) /3K ok ok o o ko koK sk sk ok ok ok ok o o K K K 3K oK oK ok ok ok o o K K K 3K 3K oK ok oK ok o o o K KK 3K oK ok ok ok ok o o K KK 3K oK oK ok ok ok o o K K K oK ok oK

void Date::print() const {
cout << yy << ?/? << mm << ’/’ << dd;

//**

// print the date in form mon dd, yyyy
[/3K 5k ok ok kKoo ok ok ok ok o K K K KoK ok ok ok ok o o K K K KoK oK ok ok ok o o K KK Kok ok ok ok ok o o K K K Kok ok ok ok ok o o K K K K ok oK
void Date::printWithWord() const {

cout << monthName[mm-1] << 2> ’ << dd << ", " << yy;

}

\

~

_/

Object-Oriented Programming 41 — 98

Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge

///;’**
// function to read a date.
[/%% sk sk ok sk sk ok ok ok sk sk sk o ok sk ok sk s ok sk ok sk sk ok s ok sk sk ok s ok sk sk ok s ok sk sk sk s ok sk ok sk s ok ok ok sk sk ok sk ok sk sk ok sk ok sk sk ok ook ok sk ok ook
void Date::read() {

int day,mon,yr; char sepl,sep2;

cin >> yr >> sepl >> mon >> sep2 >> day;
if (cin.good() && (sepl == ’/’ || sepl == ’:’ || sepl == ’-’) && sep2 == sepl)
if (!setDate(yr,mon,day)) {
cout << "Invalid date. Date has not been changed." << endl;
}
else { // bad data found -- warn
cout << "Invalid date format. Date has not been changed." << endl;
cin.clear(); // clear the stream error flag

\

~

_/

Object-Oriented Programming 42 — 98 Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge

///;r**

// utility helper functions
// set the date to the parameter values

//

// parameter usage : yr -- imports the year to use for the date

// mon -- imports the month to use for the date

// day -- imports the day to use for the date

//

// post-condition -- if the date is valid the date will be set to it

// and true will be returned. If invalid, no change is
// made and false is returned

//**

bool Date::setDate(int yr, int mon, int day) {

return true;

}

return false;

\

if (validDate(yr,mon,day)) { // if valid change it otherwise do not
yy = ¥yrs
mm = mon;
dd = day;

~

_/

Object-Oriented Programming 43 — 98

Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge

ﬁ** \

// function to determine if a date is valid

//

// parameter usage : yr -- imports the year to check
// mon -- imports the month to check
// day -- imports the day to check
//

// post-condition -- returns true if the date is valid

[/K Kk ok ok o ok ok ok ok o o koK ok ok o K K oK oK ok o K K oK ok o o K K oK ok o o K oK ok ok o K K oK ok o o K ok ok ok o o K oK ok ok o K K oK ok ok o K K ok ok o
bool Date::validDate(int year, int mon, int day) {
return (year >= baseYear && (mon >= 1 &% mon <= 12) &&
(day > 0 && day <= daysIn(mon,year)));

\ _/

Object-Oriented Programming 44 — 98 Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge

-~

//***

// function to determine the number of days in a given month

//

// parameter usage : yr -- imports the year to use

// mon -- imports the month to use

//

// post-condition -- returns the number of days in the mon for the given yr

//**

int Date::daysIn(int mon, int yr) {
switch(mon) {
case 4
case 6
case 9

case 11 : return 30;

\

_/

case 2 : if (mon == 2 && leapYear(yr)) return 29; else return 28;
default : return 31;
}
}
Object-Oriented Programming 45 — 98 Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge

/ Date Class: Client Program' \

//***

// Driver program to test the date class

[/KKK KKK KKK KKK KKK KKK KKK KKK KKK KK KKK KKK KKK KK KKK KKK KKK KK KKK R R K
#include <iostream>

#include "date.h"

using namespace std;

int main()
{
// get valid user input
Date dayO;
cout << "Enter an valid date in the format yyyy/mm/dd -- ";
dayO.read();
cout << "After valid input day O is ";
dayO.print () ;
cout << endl;

// get invalid user input
cout << "Enter an invalid date in the format yyyy/mm/dd -- ";
dayO.read();

\\\\‘ cout << "After invalid input day O is "; 4////

Object-Oriented Programming 46 — 98 Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge

////, dayO.print () ;

cout << endl;

// initiallize date with no parameters -- result should be the default
Date dayl;

cout << "after declaration with no parameters " << "dayl is ";
dayl.print();

cout << endl;

// check assignment of a date

dayl = dayO;

cout << "after assignment to day O, day 1 is ";
dayl.print();

cout << endl;

// create a valid date

Date day2{2000,2,29%};

cout << "After Date day(2000,2,29), day 2 is ";
day2.printWithWord() ;

cout << endl;

// createing an invalid date
Date day3{1997,9,31}; // not 31 days in 9th month
cout << "After Date day3(1997,9,31), day 3 is ";

day3.printWithWord() ;
\\\\‘ cout << " since Sept 31 is invalid. " << endl;

~

_/

Object-Oriented Programming 47 — 98

Howard Cheng

CS 2620 Fundamentals of Programming II

University of Lethbridge

-

\

// set the year valid

day2.setYear (1992);

cout << "After setting year to 1992, day2 is ";
day2.print();

cout << endl;

// set the year invalid

day2.setYear(1997);

cout << "After setting year to 1997, day2 is ";
day2.printWithWord() ;

cout << " since 29 Feb 1997 is invalid. " << endl;

// set the month valid

day2.setMonth(7) ;

cout << "After setting month to July, day2 is ";
day2.print();

cout << endl;

// set the day valid

day2.setDay(31);

cout << "After setting day to 31, day2 is ";
day2.print Q) ;

cout << endl;

~

_/

Object-Oriented Programming 48 — 98

Howard Cheng

CS 2620

Fundamentals of Programming II

University of Lethbridge

-

\

// set the month invalid
day2.setMonth(6) ;

cout << "After setting month to Jun, day2
day2.print () ;

is ";

cout << " since 1992/6/31 is invalid. " << endl;

// set the month valid

day3.setMonth(2);

cout << "After setting month to Feb, day3
day3.printWithWord(); cout << endl;

// set the day invalid

day3.setDay(31);

cout << "After setting day to 31, day3 is
day3.printWithWord () ;

cout << " since 31 Feb 2000 is invalid. "

// set the day valid

day3.setDay(29);

cout << "After setting day to 29, day3 is
day3.print () ;

cout << endl;

day3.addYear(-4);

is ";

<< endl;

~

// subtracting 4 years from Feb 29 -- should still be Feb 29, 1996 4////

Object-Oriented Programming

49 —

98

Howard Cheng

CS 2620 Fundamentals of Programming II

University of Lethbridge

////, cout << "after subtracting 4 years from day3, it is ";
day3.printWithWord(); cout << endl;

// subtracting 365 days from Feb 29 -- should be Mar 1, 1995
day3.addDay (-365) ;

cout << "after subtracting 365 days from day3, it is ";
day3.print(); cout << endl;

// subtracting 37 months -- should be 1 Feb 1992
day3.addMonth(-37) ;

cout << "after subtracting 37 months from day3, it is ";
day3.print(); cout << endl;

Date day4{1996,2,29};
cout << "day4 is ";
day4.print(); cout << endl;

// subtracting 366 days -- should be 28 Feb 1995
day4.addDay (-366) ;

cout << "after subtracting 366 days from day4, it is ";
day4.print () ; cout << endl;

// subtracting 28 days to get to the 31st of Jan 1995
day4.addDay (-28) ;
\\\\‘ cout << "after subtracting 28 days from day4, it is ";

day4.print(); cout << endl;

~

_/

Object-Oriented Programming 50 — 98

Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge

-

// checking that subtracting 2 months from 31 gives end of prev month
// subtracting 2 months -- should be 30 Nov 1994

day4.addMonth(-2) ;

cout << "after subtracting 2 months from day4, it is ";

day4.print(); cout << endl;

// testing the leapYear function

day4.print(); cout << " is";

if (!Date::leapYear(day4.year())) cout << " not";
cout << " in a leap year." << endl;

// testing lots of them -- should be 30 Sep 1997
day4.addYear (+2) ;

day4.addDay (+31) ;

day4.addMonth (+9) ;

cout << "after adding 2 years, 31 days and 9 months, day 4 is ";
day4.print(); cout << endl;

// testing comparison operators
day2.print();

if (day2.sameAs(day2)) cout << " is the same as ";

\\\\‘ else cout << " is not the same as ";

~

_/

Object-Oriented Programming 51 — 98

Howard Cheng

CS 2620 Fundamentals of Programming II

University of Lethbridge

-~

day2.print(); cout << endl;

day3.print () ;
if (day3.sameAs(day2)) cout << " is the same as ";
else cout << " is not the same as ";

day2.print(); cout << endl;

day4.print () ;

if (day4.isBefore(day3)) cout << " comes before ";
else cout << " does not come before ";
day3.print(); cout << endl;

day3.print () ;
if (day3.isBefore(day4)) cout << " comes before ";
else cout << " does not come before ";

day4.print(); cout << endl;

return O;

\

\

_/

Object-Oriented Programming 52 — 98

Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge

4 N

// Interface file for FRACTION class -- fraction.h
#ifndef FRACTION_H
##define FRACTION_H

Fraction Class: Interface (fraction.h)

using namespace std;

class Fraction {

public:
// constructors
Fraction(); // default constructor -- results in 0/1
Fraction(int num); // one parameter -- results in num/1
Fraction(int num, int den); // two parameters -- results in num/den

// input and output methods

void read(); // input must be one of the following forms
// 1. integer
// 2. integer/integer

// Note: no spaces allowed in the fraction
void print() const;
void printMixed() const; // print as a mixed number if the

// fraction is improper

\\\\‘ // accessor methods 4////

Object-Oriented Programming 53 — 98 Howard Cheng

CS 2620 Fundamentals of Programming II

University of Lethbridge

-~

int numerator() const;
int denominator() const;

// arithmetic methods

Fraction add(const Fraction& frac) const;

Fraction sub(const Fraction& frac) const;

Fraction mult(const Fraction& frac) comnst;
Fraction div(const Fraction& frac) const;

Fraction reciprocal() const;

// comparison methods
bool sameAs(const Fraction& frac) const;
bool isBefore(const Fraction& frac) const;

private:
// Data members
int numer;

int denom;

// Function member

};
#tendif

\

// returns
// returns
// returns
// returns
// returns

the
the
the
the
the

// equality
// less than

// returns the numerator
// returns the denominator

sum
difference
product
quotient
reciprocal

void reduce(); // reduces to lowest terms with denom > O

\

_/

Object-Oriented Programming 54 — 98

Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge

4 N

// Class implementation file: fractiom.cc

Fraction Class: Implementation (fraction.cc)

#include <cassert>
#include <cstdlib> // this is needed for the abs function
#include "mymath.h"
#include "fraction.h"
using namespace std;
[/% Kk ok sk ok sk ok sk ok sk ok sk ok sk ok ok ok ok ok ok sk ok s ok 3 ok 3 ok 3 ok 3 ok 3 ok 3 ok 3k ok 3k ok 3k ok ok oK
// default constructor; creats 0/1
[/% Kk ok ok ok sk ok sk ok sk ok sk ok ok ok ok ok ok ok ok sk ok s ok s ok 3 ok 3 ok 3 ok 3 ok 3k ok ok ok ok ok ok ok ok ok
Fraction: :Fraction() {

numer = 0;

denom = 1;
}
[/ % ok sk ok ok ok ok ok sk ok sk ok ok s ok ok s ok sk ok ok sk ok ok s ok ok o ok sk ok ok sk ok ok o ok ok ok ok ok ok ok
// constructor to create num/1.
// num imports the numerator to use
[/% Kk ok sk ok sk ok sk ok sk ok sk ok sk ok ok ok ok ok ok sk ok s ok 3 ok 3 ok 3 ok 3 ok 3 ok 3k ok 3 ok 3k ok 3k ok ok oK
Fraction: :Fraction(int num) {

numer = num ;

denom = 1;

}

\ _/

Object-Oriented Programming 55 — 98 Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge

///;’***

// constructor to create num/den.

// num imports the numerator to use

// den imports the denominator to use

// pre-condition -- den is not O

[/%% sk ok sk sk sk ok ok sk sk sk ok ok sk ok sk sk ok sk ok sk sk ok ok ok sk sk ok ook sk ok ok ook ok ok sk ok ok k

Fraction: :Fraction(int num, int den) {
assert(den '= 0); // denominator of O is invalid so crash
numer = num ;
denom = den;

}

/) /3 3k ko ok ok o ok sk ok ok o o ok ok ok ok o koK ok ok o o K oK oK ok o o K oK ok o o K oK ok ok o o K oK ok ok o K ok ok ok o o K ok ok ok o oK ok ok o o K K oK
// method to add this fraction and the argument and return the result

// frac -- imports the fraction to add to this one
[/33K 5K ok ok ok ko ok ok ok ok ok o K K K KoK ok ok ok ok o o K KKK ok ok ok ok ok o K K K KoK ok ok ok ok o K KKK ok ok ok ok ok o K K

Fraction Fraction::add(const Fraction& frac) const {
Fraction sum;

sum.denom = lcm(denom, frac.denom);
sum.numer = numer * (sum.denom / denom) +

frac.numer * (sum.denom /frac.denom) ;
sum.reduce() ;
return sum;

}

\

reduce() ; // ensure denominator is positive and fraction reduced

~

_/

Object-Oriented Programming 56 — 98

Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge

///;r**

// method to subtract the argument from this fraction and return the result
// frac -- imports the fraction to subtract from this one
/) /%% sk sk ok sk sk ok ok ok sk sk sk ok ok sk sk sk o ok sk sk sk s ok sk sk sk s ok sk sk sk s ok sk ok sk sk ok ok ok sk sk ok ok ok sk sk ok s ok sk sk ok sk ok sk sk ok sk ok sk sk ok ook sk sk ok ook ok ok
Fraction Fraction::sub(const Fraction& frac) const {

Fraction diff;

diff.denom = lcm(denom, frac.denom);

diff .numer = numer * (diff.denom / denom) -

frac.numer * (diff.denom /frac.denom);
diff.reduce();
return diff;

}

//**

// method to multiply this fraction and the argument and return the result

//

// frac —-- imports the fraction to multiply by
[/33K 5K ok ok ok kK ok ok ok ok ok o K K KK oK ok ok ok ok o o K KKK oK ok ok ok o o K K K Kok ok ok ok ok o K K K KoK ok ok ok ok o o K K KK ok ok ok ok o

Fraction Fraction::mult(const Fraction& frac) const {

int num = numer * frac.numer;

int den denom * frac.denom;

Fraction prod(num, den);
return prod;

}

\

~

_/

Object-Oriented Programming 57 — 98

Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge

/ /%% sk sk sk sk sk ok sk ok sk sk ok sk ok ok sk ok ok ok ok sk ok sk sk ok sk ok sk sk ok sk ok sk sk ok ok ok sk ok ok ok sk sk sk ok ok ok sk ok ok ok ok sk ok ok ok ok sk ok ok ok k sk ok ok ok k sk ok k ok ok k
// method to divide this fraction by the argument and return the result
// frac -- imports the fraction to divide by

// pre-condition -- frac is not O
[/3% Kk sk ok ko ok sk ok ko ok sk ok sk ok sk sk ok sk sk ok ko sk sk ok ok sk sk ko ok sk ok ok ok sk ok ko ok sk ok ok

Fraction Fraction::div(const Fraction& frac) const {
return mult(frac.reciprocal());

[/K KKk ok ok o ok sk ok ok o o koK ok ok o o K oK oK ok o oK K oK ok o o K K oK ok o o K oK oK ok o K K oK ok o o K oK ok ok o o K K ok ok o o K oK ok ok o K K oK ok ok o K K oK
// method to return the reciprocal of this fraction

// pre-condition -- this fraction is not O
/) /3K 5K ok ok o ok sk ok sk ok ok ok ok ok o o K K K 3K 3K oK oK ok ok o o o K K 3K 3K oK oK ok ok o o o K K K 3K oK ok ok ok ok o o 3 K K 3K oK oK oK ok ok o o o K K K ok ok ok ok ok ok

Fraction Fraction::reciprocal() const { return Fraction(denom, numer); }

//***

// method to return the numerator
[/ 3k sk ok sk ok sk ok o sk ok sk sk ok sk ok sk sk ok sk ok sk sk ok sk ok sk sk ok s ok sk sk ok s ok sk sk ok s ok ok sk ok s ok sk sk ok s ok sk sk ok s ok ok sk ok s ok ok ok ok ok

int Fraction: :numerator() const { return numer; }

//***

// method to return the denominator
[/ %3k 3k 5k 5k sk sk sk ok ok 5k ok 3k 3k 3k ok ok oK ok 3k 3k 3k 3k ok ok 5K ok 3k 3k 3k K ok 3K ok 3k 3k 3k 3 ok oK ok ok 3k 3k 3k ok oK oK ok 3k 3k 3k ok ok oK ok 3k 3k 3k 3k ok oK >k >k 3k kK

int Fraction::denominator() const { return denom; }

Object-Oriented Programming 58 — 98

Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge

ﬁ**

// method to compare the argument to this fraction and return true if they
// are the same
//
// frac -- imports the fraction to compare to this one
/ /%% sk sk ok sk sk ok sk ok sk sk ok ok ok ok sk ok ok ok ok sk ok ok ok ok sk ok sk ok ok sk ok sk ok ok sk ok sk ok ok ok ok sk sk ok ok sk sk ok ok ok sk sk ok ok ok sk sk ok ok ok ok sk ok ok ok ok sk ok ok ok ok k
bool Fraction::sameAs(const Fraction& frac) const {

return numer == frac.numer && denom == frac.denom;

/ /3K ok sk ok ok ok ok s ok sk ok ok sk ok ke ok ok s ok sk ok ok sk ok sk ok ok s ok sk ok ok ok ok sk ok sk s ok sk ok ok sk ok sk ok sk ok ok sk ok e sk ok sk ok sk ok ok sk ok ke ok ok ook sk ok ok ok ok ok
// method to compare the argument to this fraction and return true if this
// fraction is less than the argument

//

// frac -- imports the fraction to compare to this one
[/3K 5K ok ok kK kKo ok ok ok o o K K K KoK ok ok ok ok o o K K KK ok ok ok ok o o K KK Kok ok ok ok ok o K K Kok ok ok ok ok o o K K K Kok ok ok ok o

bool Fraction::isBefore(const Fraction& frac) const {
return numer * frac.denom < frac.numer * denom;

\

~

_/

Object-Oriented Programming 59 — 98

Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge

ﬁ*** \

// private helper function to reduce fraction

// post-condition -- the fraction is reduced to lowest terms and the
/ /%% sk sk ok sk sk ok ok sk ok sk ok sk ok ok sk ok sk ok ok sk ok sk ok ok ok sk sk ok ok sk ok sk ok sk sk ok sk ok sk sk ok sk ok ok ok ok sk ok sk ok ok sk ok sk ok ok ok ok sk ok ok ok ok sk ok ok ok k k

void Fraction::reduce() {

if (denom < 0) { // ensure that denominator is always positive
numer = -numer;
denom = -denom;

+

// gcd must have positive ints so send absolute value of numerator
int comDivisor = gcd(abs(numer), denom);

numer /= comDivisor;

denom /= comDivisor;

[/KKK KKK KKK KKK KKK KKK KKK KKK KKK KK KKK KKK KKK KKK KKK KKK K
// method to print a fraction
[/KKK KK KKK KKK KK KKK KKK KKK KKK KKK KKK KKK KKK KKK KKK KKK KK K
void Fraction::print() const {
cout << numer;
if (numer '= O && denom != 1) // only print / and denominator
cout << "/" << denom; // if fraction is not O and the denominator is not 1

\ _/

Object-Oriented Programming 60 — 98 Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge

///;r**

// method to print a fraction as a mixed number if necessary
[/%% ok sk ok sk sk ok sk ok ok sk ok ok ok ok sk ok ok ok ok sk ok s sk ok sk ok sk ok ok sk ok sk ok ok ok ok sk ok ok ok ok sk ok ok ok ok sk ok ok ok k sk ok ook k

void Fraction::printMixed() const {

if (numer < denom || denom == 1) // proper fraction so just print it
print () ;
else // improper fraction print as mixed

cout << numer/denom << &’ << numerjdenom << ’/’ << denom;

//**

// method to read a fraction.

//

// post-condition -- if the data entered was valid, the fraction will be
// set to it and reduced. If data entered is not valid
// the value of the fraction is undefined and cin will
// have the error flag set.

//***

\

~

_/

Object-Oriented Programming 61 — 98

Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge

4 N

void Fraction::read() {

cin >> numer;

if (!cin.good()) return; // error so return with error state
if (cin.peek() !'= ’/?) // no slash coming so no denominator
denom = 1; // so set denominator to 1
else { //
cin.ignore(); // ignore the slash
cin >> denom; // get the denominator
if (!cin.good()) return; // error so return with error state
if (denom == 0) { // denominator is o
cin.clear(ios::badbit); // set bad bit -- data lost
return; // return with error state set
}
}

// we have a valid fraction so reduce it

reduce() ;

\ _/

Object-Oriented Programming 62 — 98 Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge

/ Fraction Class — Client Program'

// File: fractionTest.cc

// Tests the fraction class
#include <iostream>
#include "fraction.h"

using namespace std;

int main() {
Fraction f1, f2;

Fraction £3;

// Read two fractions

cout << "Enter the 1st fraction -- " << endl;
fl.read();
cout << "Enter the 2nd fraction -- " << endl;
f2.read();

// Display the results of fraction arithmetic
£3 = f1.mult(£2);

f1.print(); cout << " * ";

f2.print(); cout << " = ";

f3.print(); cout << endl;

\

~

_/

Object-Oriented Programming 63 — 98

Howard Cheng

CS 2620

Fundamentals of Programming II

University of Lethbridge

-~

£3
f1
2

£3
f1
£3
£3

f1
2

\

= f1.div(£f2);

.print (); cout
.print(); cout
£3.

print (); cout

= f1.add(f2);

.print () ; cout
£f2.

print(); cout

.print (); cout

= f1.sub(£f2);

.print (); cout
.print (); cout
£3.

print(); cout

return O;

<<
<<
<<

<<
<<
<<

<<
<<
<<

\

_/

Object-Oriented Programming

64 — 98

Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge

Relationships Among Ob jects'

There are three main type of relationships.

Has : an object in one class may “own” objects of another class. Also

known as composition. e.g. A computer has a keyboard.

Knows : an object in one class may need to know something about another
class. e.g. a student knows which courses he/she is enrolled in, but the

student does not own the courses.

Is : an object of one class may share some of its characteristics with another

class. Also known as inheritance. e.g. a student is a person.

Each relation can be further described by its multiplicity. e.g. Each

student may take many courses.

\ _/

Object-Oriented Programming 65 — 98 Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge

4 N

Classes I

e Allows us to group items of different types.

e Use dot notation to access members (or -> for pointers).

e Class objects are usually passed by (constant) reference for efficiency.
e Can hide data or methods (encapsulation).

e Enable code reuse by using previously defined classes.

\ _/

Object-Oriented Programming 66 — 98 Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge

4 N
Constructors .

e A constructor function is automatically called every time a variable of

the class is declared or created (e.g. by new).
e It has the same name as the class.
e The role of constructor is to initialize the object’s data members.
e The default constructor is a constructor which requires no parameters.
e Constructors can be overloaded.

e If no constructors are defined, the compiler supplies a default

constructor which does nothing.

e When an array of objects is declared, the default constructor is called.

\ _/

Object-Oriented Programming 67 — 98 Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge

/ Constructors ' \

e It is common to have many different forms of constructors.

e Default parameters can reduce the number of constructors.

Fraction(int n = 0, int d = 1);

Then
Fraction zero[3]; // 0/1
Fraction five{5}; // 5/1

Fraction *x = new Fraction{-2,3}; // -2/3

e Note: the default values in the parameters should be given only in the
declaration of the function (inside the class definition), not in the

implementation.

e The syntax for implementing constructors is almost the same as any

K other member function. /

Object-Oriented Programming 68 — 98 Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge

-~

\

Implementation of Constructors' \

Data members can be initialized by assignment statements as in any
other functions, but this is inefficient if the data members are complex
classes (more on this later).

An initialization 1list is preferred.

Fraction: :Fraction(int n, int d)
numer{n}, denom{d} { }

Think of initialization list as calling the constructors for the specified

data members.

The initialization list is executed first before any commands inside {}

are carried out.

Constant and reference data members can only be initialized in

constructors—you must use initialization list for these. /

Object-Oriented Programming 69 — 98 Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge

4 N
Example I

e Suppose we have a Time class which has the constructor

Time(int hr = 0, int min = O, int sec = 0);

e If we have a Lecture class containing two Time data members start

and end. We can write the constructor as:

Lecture: :Lecture(int start_hr, int start_min,
int end_hr, int end_min,
const string& room)
start{start_hr, start_min}, end{end_hr, end_min},

room_name{room}

\ _/

Object-Oriented Programming 70 — 98 Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge

-~

Copy Constructor' \
If we write

Time t1{15,0,0};
Time t2 = t1, t3{t1};

then the declaration of t2 and t3 will call the copy constructor to
initialize them.

The prototype for the copy constructor is

<classname>(const <classname>& Xx) ;

In this case, we want

Time(const Time& x);

The copy constructor is also called when object parameters are passed
by value and when objects are returned in a function.

That is why it is more efficient to pass objects by (constant) reference if

possible. /

Object-Oriented Programming 71 — 98 Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge

4 N

Copy Constructor I

e If no copy constructor is defined, a default copy constructor is defined
for you by the compiler.

e The default copy constructor simply copies each data member using the
assignment operator =.

e In most cases this is what we want.

\ _/

Object-Oriented Programming 72 — 98 Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge

-~

Copy Constructor I

What about for a class like this?

Class Array {
private:
int *p, n;
public:
Array(int size) : n{size} { p = new int[n]; }
void change(int m) {
int *temp;
n = m;
temp = new int[m];
deletel] p;
p = temp,
+

K};

Object-Oriented Programming 73 — 98

~

_/

Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge

4 N
Copy Constructor I

e The default copy constructor performs shallow copying.

e If an object allocates memory dynamically, you need to do deep
copying—space has to be allocated and the content has to be copied.

Array(const Array& a)

: n{a.n}

p = new int[a.n];

for (int i = 0; i < n; i++) {
pli] = a.plil;

+

\ _/

Object-Oriented Programming 74 — 98 Howard Cheng

CS 2620 Fundamentals of Programming II

University of Lethbridge

-~

\

Type Conversion I

We have seen constructors such as

Fraction(int n = 0, int d = 1);

When we write

Fraction x{1};

we are converting the integer value 1 into an equivalent value of type

Fraction.

We can also write x = Fraction(1); to perform type conversion.

In general, type conversion is performed by
<typename> (expression)

where <typename> is the desired type.

~

_/

Object-Oriented Programming 75 — 98

Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge

4 N

Type Conversion I

e Even if you write Fraction x = 1; the compiler automatically calls the

constructor to do type conversion.

e You can use the keyword explicit to suppress automatic type

conversion.

\ _/

Object-Oriented Programming 76 — 98 Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge

-~

~

Destructors .

When an object ceases to exist (e.g. out of scope, delete, etc.),
sometimes we need to “clean up”. e.g. deleting dynamically allocated

memory, closing files, etc.

The destructor is automatically called whenever an object ceases to

exist.
The name of the destructor is “<classname> ().

If a destructor is not defined, the default destructor calls the destructors

for each data member.

If an object contains other objects as data members, the destructors of

the data members are automatically called first.

The destructor cannot be called explicitly.

_/

Object-Oriented Programming 77 — 98 Howard Cheng

CS 2620

Fundamentals of Programming II

University of Lethbridge

-~

Destructors .

e Back to the Array class:
Array::"Array()

{
deletel] p;
p = NULL;
¥
e Example:
{

Array al1{10};
Array *a2;
a2 = new Array{15};

delete a2;

\\\\ +

~

// constructor called
// constructor called

// destructor for *a2 called
// destructor for al called 4///

Object-Oriented Programming

78 — 98

Howard Cheng

CS 2620 Fundamentals of Programming II

University of Lethbridge

-~

\

Constant Objects I

You may declare an object variable to be constant, just like you can

declare an integer constant.

const Fraction one{1l,1};

If you wish to initialize the constant, you can only do so with the

constructors.

Only accessor functions can be called (those with const) at the end of

the prototype.

You can only pass constant object into a function by value or by

constant reference.

~

_/

Object-Oriented Programming 79 — 98

Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge

4 N

Static Members '

e Static data members are used when something should be shared among

all objects of the same class.

e Static member functions are not called for any particular object and can

only use static data members.

\ _/

Object-Oriented Programming 80 — 98 Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge

4 N
this Pointer '

e Every member function in a class X is passed an implicit parameter

X *this which points to the object for which the member function is
called.

e Inside a member function, *this refer to the object.

int Fraction::getNumerator() const

{

return this->numer; // same as return numer

}
e Why is this useful?

\ _/

Object-Oriented Programming 81 — 98 Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge

4 N
this Pointer '

e One application: cascading functions. We may wish to do:

Fraction x, y, z;
x.add(y) .subtract(z) .times(y); /* x = (x + y - z)*xy */

e If each operation is defined to return a reference to the object, we can

cascade. e.g.

Fraction& Fraction::add(Fraction y)

{
numer = numer * y.denom + y.numer * denom;
denom *= y.denom;
return *this; // should remove gcd
by

\ _/

Object-Oriented Programming 82 — 98 Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge

//, ZFﬁends. \\\

e In C++, the only functions that may access private members of a class

are member functions of the same class, except...

e A class may explicitly grant access to its private members to other
functions.

class X {
private:
int a;
public:
int £();
friend int g(X x); // the function g can access x.a
friend class Y; // member functions of class Y
// can access private members of X
}.
N _

Object-Oriented Programming 83 — 98 Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge

4 N

Friends '

e This breaks encapsulation, but is necessary/convenient in some cases.

e Friendship must be explicitly granted and it is one-way. If class X grants
friendship to class Y, class X cannot access the private members of class Y.

\ _/

Object-Oriented Programming 84 — 98 Howard Cheng

CS 2620 Fundamentals of Programming II

University of Lethbridge

-~

\

Operators I

~

Standard operators such as +, = mean different things for different types.

e.g. there is a - for integers, one for doubles, and one for pointers.

We can consider the same operator to be overloaded for different

operand types.

In C++4, we can overload standard operators for other types (including

user-defined classes).

It is convenient sometimes to define operators. Makes code more

readable when used appropriately.
Instead of

x.add(y) .subtract(z) .times(y);

you can write

x=(x+y-2) *y;

_/

Object-Oriented Programming 85 — 98

Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge

-~

Operators I

Operators that can be overloaded:

Arithmetic: + - x / Y += -= %= /= Y= ++ —-
Logical: ! && ||

Comparison: == != > < >= <=

Input /Ouptut: >> << (they have other meanings. ..)
Assignment: =

Misc: [1 O

And others. ..

NOTE: the precedence and associativity rules for the operators do not

change even if they are overloaded.

_/

Object-Oriented Programming 86 — 98 Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge

4 A
Binary Operators I

e A binary operator has two operands. e.g. x + y

e Syntax for a binary operator that takes an argument of class X and

argument of class Y:

<returntype> operator<symbol>(const X& x, const Y& y);
<returntype> X::operator<symbol>(const Y& y) const;

e Examples:

bool operator==(int y, const Fraction& x);
Fraction Fraction::operator+(const Fraction& y) const;

const Fraction& Fraction::operator+=(int y);

\ _/

Object-Oriented Programming 87 — 98 Howard Cheng

CS 2620

Fundamentals of Programming II University of Lethbridge

-~

Member vs. Non-member Operators'

e Member

first operand must be an object of the class the operator is defined for
first operand is passed implicitly
called by x + y or x.operator+(y)

the operators = [] () —-> must be defined as member functions

e Non-member

\

needs to be friend in order to access private members
first operand can be of any type
called by x + y or operator+(x, y)

the input /output operators << >> must be defined as non-member

functions

_/

Object-Oriented Programming 88 — 98 Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge

4 A
Temporary Objects I

e Some operators such as += change the first operand and return the new

value. i.e. return a constant reference to avoid copying.

e Some operators such as + produce a new value without changing the

original. In this case, allocate a new object and return it.

Fraction Fraction::operator+(const Fraction& y) const

{
Fraction temp{*this};
temp += y; // assume += has been defined

return temp;

¥

Do not return a reference to temp! (Why not?)

\ _/

Object-Oriented Programming 89 — 98 Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge

4 N

Unary Operators I

e Unary operator has only one operand. It is either implicit (member

function) or explicit (non-member).

e Examples

bool operator!(const Fraction& x);

Fraction Fraction::operator-() const;

e called by x.operator-() or -x

\ _/

Object-Oriented Programming 90 — 98 Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge

/ Prefix vs. Postfix Operators'

e How do we distinguish prefix and postfix ++7

e Prefix:

const Fraction& Fraction::operator++()

{
numer += denom;
return *this; // should remove gcd
+
o Postfix:

Fraction Fraction: :operator++(int)
{
Fraction temp{*this};

numer += denom;

return temp; // should remove gcd

k }

~

_/

Object-Oriented Programming 91 — 98

Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge

/ Assignment Operator I \

e The default assignment operator performs shallow copy.

e If deep copy is desired, need to define assignment operator.

Array& Array::operator=(const Array& A)

{

if (this !'= &A) { // self assignment is bad!
deletel] p;
n =A.n;
p = new int[n];
for (int 1 = 0; 1 < n; i++) {

pli]l = A.p[i];

+

+

return *this;

N _/

Object-Oriented Programming 92 — 98 Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge

4 N

Assignment Operator I

e Why did we check if this != &A?
e Should always return a reference so operations can be cascaded.

e Rule of thumb: if you need to write a copy constructor, you probably
need to write an assignment operator.

\ _/

Object-Oriented Programming 93 — 98 Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge

4 A
Indexing Operator I

e Called by A[i]

e Must have one parameter:

int& Array::operator[] (int i);

const int& Array::operator[] (int i) const;

e [t should return a reference so we can write
Ali] = 3;

e Should provide a constant version for constant objects.

\ _/

Object-Oriented Programming 94 — 98 Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge

Input /Output Operators I

e We want to write:

Fraction x, y;
cin >> x >> y;
cout << x << y << endl;

e First operand is a stream, not a Fraction. We cannot define operators

as member functions.

e Operators have to return a reference to the stream to allow cascading.

\ _/

Object-Oriented Programming 95 — 98 Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge

-~

Input /Output Operators I

ostream& operator<<(ostream& os, const Fraction& x)

{
if (x.denom == 1) {
0s << xX.numer;
} else {

0s << x.numer << ’/’ << x.denom;

¥

return os;

+

Note that the operator must be a friend of Fraction for this to work.

\

~

_/

Object-Oriented Programming 96 — 98 Howard Cheng

CS 2620 Fundamentals of Programming II

University of Lethbridge

-~

\

Conversion Operators I

You can also override the cast operator.

Example:

Fraction: :operator double() const

{

return double{numer}/denom;

¥

Note that there is no return type defined: it is implicit by the type

conversion.

Called by

Fraction x{2,3};

double y = x; // automatic conversion, y = 0.666...

~

_/

Object-Oriented Programming 97 — 98

Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge

4 N

Miscellaneous '

e Function call operators: we will look at them later when we discuss
function objects.

e Intialization syntax: () vs. {}.

e Move constructors: implement shallow copying (why?). New C++11
feature.

e C++11 features: member functions marked by default and delete.

\ _/

Object-Oriented Programming 98 — 98 Howard Cheng

