
CS 2620 Fundamentals of Programming II University of Lethbridge✬

✫

✩

✪

Recursion

• A function which calls itself (directly or indirectly) is called a recursive

function.

• Recursion can be used to do something repeatedly (similar to loops).

• For many problems, it is much easier to use recursion than loops to solve

the problems.

• This is especially true for many problems which can be defined

recursively.

Recursion 1 – 12 Howard Cheng



CS 2620 Fundamentals of Programming II University of Lethbridge✬

✫

✩

✪

Example: Factorial

• The factorial is defined in this way:

n! =







1 n = 0

1× 2× · · · × n n > 0

This can be computed by a loop.

• We can also define the factorial as:

n! =







1 n = 0

n× (n− 1)! n > 0

So, if we know how to compute the factorial of n− 1, we know how to

compute the factorial of n.

Recursion 2 – 12 Howard Cheng



CS 2620 Fundamentals of Programming II University of Lethbridge✬

✫

✩

✪

Example: Factorial

int factorial(int n) // assumes n >= 0

{

if (n == 0)

return 1;

else

return n * factorial(n-1);

}

To see how the computation is done, trace factorial(3):

factorial(3) = 3 * factorial(2)

= 3 * (2 * factorial(1))

= 3 * (2 * (1 * factorial(0)))

= 3 * (2 * (1 * 1))

Recursion 3 – 12 Howard Cheng



CS 2620 Fundamentals of Programming II University of Lethbridge✬

✫

✩

✪

Recursion vs. Iteration

• In iteration, we start from the “bottom” and iterate up to build the

result.

• In recursion, we start from the “top” (what we are interested in at the

end), and reduce the problem until we reach the bottom.

• Note that in recursion we must have a “bottom” (known as the base

case) which stops the recursion. Otherwise, we will have infinite

recursion.

• The computations are done in reverse order as each invocation of the

recursive function exits (in this case).

Recursion 4 – 12 Howard Cheng



CS 2620 Fundamentals of Programming II University of Lethbridge✬

✫

✩

✪

Example: List Reversal

• We can take advantage of the “reversal” property in some applications.

• Example: we wish to print out the elements in a linked list in reverse

order.

void printList(Element *e)

{

if (e) { // if NULL do nothing

printList(e->next);

cout << e->data << endl;

}

}

• Putting the print statement before the recursive call would print the list

elements in order.

Recursion 5 – 12 Howard Cheng



CS 2620 Fundamentals of Programming II University of Lethbridge✬

✫

✩

✪

Recursion: Local Variables and Parameters

• When a “normal” function is called, it has its own local variables and

parameters.

• This is the same for a recursive function: each time the function is called

it gets its own local variables and parameters.

• Changing local variables in one invocation does not affect the values in

another invocation.

• Recursive invocations communicate to each other by return value or

reference parameters (or global/static variables. . . not recommended).

Recursion 6 – 12 Howard Cheng



CS 2620 Fundamentals of Programming II University of Lethbridge✬

✫

✩

✪

Writing Recursive Functions

• Identify easy or “small” inputs such that the computation is trivial. e.g.

0! is easy, printing an empty list is easy.

• For other inputs, try to see if you can break up the problem into smaller

problem(s) of the same type.

Recursion 7 – 12 Howard Cheng



CS 2620 Fundamentals of Programming II University of Lethbridge✬

✫

✩

✪

Tower of Hanoi

• Three pegs, n disks of different sizes.

• Originally all n disks are on peg 1, with the disks sorted by size (largest

at the bottom).

• Rule: move one disk at a time, never putting a larger disk on top of a

smaller disk.

• Goal: move all the disks to peg 3.

Recursion 8 – 12 Howard Cheng



CS 2620 Fundamentals of Programming II University of Lethbridge✬

✫

✩

✪

Recursive Solution

• If we want to move 1 disk from peg a to peg b, it is easy (just do it).

• If we want to move n disks from peg a to peg b, what we need to do is:

– Move the top n− 1 disks to a temporary peg c 6= a, b.

– Move the largest disk from a to b.

– Move the top n− 1 disks from c to b.

• “Moving the top n− 1 disks” is a smaller problem of the same type.

Recursion 9 – 12 Howard Cheng



CS 2620 Fundamentals of Programming II University of Lethbridge✬

✫

✩

✪

Tower of Hanoi

void hanoi(int n, int from, int to, int temp)

{

if (n == 1)

cout << from << " -> " << to << endl;

else {

hanoi(n-1, from, temp, to);

cout << from << " -> " << to << endl;

hanoi(n-1, temp, to, from);

}

}

Start with

hanoi(n, 1, 3, 2);

Recursion 10 – 12 Howard Cheng



CS 2620 Fundamentals of Programming II University of Lethbridge✬

✫

✩

✪

Tic Tac Toe: Perfect Player

• Write one routine to decide for the best move for player 1, and another

routine for player 2.

• In player 1:

– Try all possible locations. If it is a legal move, make the move.

– Call the other player and see what his/her best move is.

– Choose the move that makes the other player’s best move the worst.

– Remember to “undo” a move before trying the next one (if pass by

reference).

– Base case: when the game is finished (win/tie/loss).

• The code for player 2 is the same as that for player 1 (except what is

best for player 2 is different).

• You can write both functions into one (with a parameter on whose turn

it is).

Recursion 11 – 12 Howard Cheng



CS 2620 Fundamentals of Programming II University of Lethbridge✬

✫

✩

✪

Tic Tac Toe: Perfect Player

• Basically, the algorithm looks at all possible sequences of moves.

• So if there is a sequence that forces a win, it will find it.

• Failing that, if there is a sequence that forces a tie, it will find it.

• There are at most 9! = 362, 880 sequences of moves in this game, so we

can look at all possibilities.

• You can write similar routines for other games (e.g. chess), but there are

many more possibilities and it may be too slow.

• Lots of tricks are used to speed up such searches (take courses on AI and

algorithms if interested).

Recursion 12 – 12 Howard Cheng


