CS 2620 Fundamentals of Programming II University of Lethbridge

4 N

Recursion '

e A function which calls itself (directly or indirectly) is called a recursive

function.
e Recursion can be used to do something repeatedly (similar to loops).

e For many problems, it is much easier to use recursion than loops to solve

the problems.

e This is especially true for many problems which can be defined

recursively.

_ _/

Recursion 1—-12 Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge

4 A
Example: Factorial I

e The factorial is defined in this way:

1 n=20

1 x2%x:---xn n>0

n! =

This can be computed by a loop.
e We can also define the factorial as:

1 n=~0
nx(n-—1 n>0

n! =

So, if we know how to compute the factorial of n — 1, we know how to

compute the factorial of n.

_ _/

Recursion 2—-12 Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge

-~

Example: Factorial I

int factorial(int n) // assumes n >= 0
{
if (n == 0)
return 1;
else

return n * factorial(n-1);

¥

To see how the computation is done, trace factorial(3):

3 x factorial(2)

= 3 * (2 x factorial(1l))

3 x (2 * (1 x factorial(0)))
3 (2 (1 x1))

factorial(3)

_

~

_/

Recursion 3—12

Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge

-~

_

Recursion vs. Iteration.

In iteration, we start from the “bottom” and iterate up to build the
result.
In recursion, we start from the “top” (what we are interested in at the

end), and reduce the problem until we reach the bottom.

Note that in recursion we must have a “bottom” (known as the base

case) which stops the recursion. Otherwise, we will have infinite

recursion.

The computations are done in reverse order as each invocation of the

recursive function exits (in this case).

~

_/

Recursion 4 —12

Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge

Example: List Reversal'

e We can take advantage of the “reversal” property in some applications.

e Example: we wish to print out the elements in a linked list in reverse

order.

void printList(Element *e)

{
if (e) { // if NULL do nothing
printList(e->next) ;
cout << e—->data << endl;
by
+

e Putting the print statement before the recursive call would print the list

elements in order.

_ _/

Recursion 5—12 Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge

-~

_

Recursion: Local Variables and Parameters'

When a “normal” function is called, it has its own local variables and
parameters.
This is the same for a recursive function: each time the function is called

it gets its own local variables and parameters.

Changing local variables in one invocation does not affect the values in

another invocation.

Recursive invocations communicate to each other by return value or

reference parameters (or global /static variables. ..not recommended).

~

_/

Recursion 6 — 12 Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge

4 N

Writing Recursive Functions'

e Identify easy or “small” inputs such that the computation is trivial. e.g.

0! is easy, printing an empty list is easy.

e For other inputs, try to see if you can break up the problem into smaller

problem(s) of the same type.

_ _/

Recursion 7 —12 Howard Cheng

CS 2620 Fundamentals of Programming II

University of Lethbridge

-~

_

Tower of Hanoi'

Three pegs, n disks of different sizes.

Originally all n disks are on peg 1, with the disks sorted by size (largest

at the bottom).

Rule: move one disk at a time, never putting a larger disk on top of a

smaller disk.

Goal: move all the disks to peg 3.

~

_/

Recursion 8 —12

Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge

4 N

Recursive Solution I

e If we want to move 1 disk from peg a to peg b, it is easy (just do it).

e If we want to move n disks from peg a to peg b, what we need to do is:
— Move the top n — 1 disks to a temporary peg c # a, b.
— Move the largest disk from a to b.
— Move the top n — 1 disks from c to b.

e “Moving the top n — 1 disks” is a smaller problem of the same type.

_ _/

Recursion 9 - 12 Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge

4 N
Tower of Hanoi'

void hanoi(int n, int from, int to, int temp)

{
if (n == 1)
cout << from << " -> " << to << endl;
else {
hanoi(n-1, from, temp, to);
cout << from << " -> " << to << endl;
hanoi(n-1, temp, to, from);
}
t
Start with

hanoi(n, 1, 3, 2);

_ _/

Recursion 10 — 12 Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge

/ Tic Tac Toe: Perfect Player' \

e Write one routine to decide for the best move for player 1, and another

routine for player 2.

e In player 1:
— Try all possible locations. If it is a legal move, make the move.
— Call the other player and see what his/her best move is.
— Choose the move that makes the other player’s best move the worst.

— Remember to “undo” a move before trying the next one (if pass by

reference).

— Base case: when the game is finished (win/tie/loss).

e The code for player 2 is the same as that for player 1 (except what is
best for player 2 is different).

e You can write both functions into one (with a parameter on whose turn

K it is). /

Recursion 11 - 12 Howard Cheng

CS 2620 Fundamentals of Programming II University of Lethbridge

Tic Tac Toe: Perfect Player'

e Basically, the algorithm looks at all possible sequences of moves.

e So if there is a sequence that forces a win, it will find it.
e Failing that, if there is a sequence that forces a tie, it will find it.

e There are at most 9! = 362, 830 sequences of moves in this game, so we

can look at all possibilities.

e You can write similar routines for other games (e.g. chess), but there are

many more possibilities and it may be too slow.

e Lots of tricks are used to speed up such searches (take courses on Al and

algorithms if interested).

_ _/

Recursion 12 — 12 Howard Cheng

