CPSC 3710 Computer Graphics University of Lethbridge

4 N

Graphics Programming I

e We will focus on OpenGL
e We will discuss “new” OpenGL (Version 4.5 in Red Book)

e C++ knowledge assumed

_ _/

Graphics Programming 1-23 Howard Cheng

CPSC 3710 Computer Graphics University of Lethbridge

4 N

OpenGL History I

e OpenGL 1.0 (1992)

e Immediate-mode graphics

e Graphic primitives (e.g. draw a line) were specified in applications
e Immediately passed to hardware for display

e Redisplay requires all primitives to be resent (and redraw)

_ _/

Graphics Programming 2 - 23 Howard Cheng

CPSC 3710 Computer Graphics University of Lethbridge

4 N

OpenGL History I

e OpenGL 2.0 (2004)
e Introduced OpenGL Shading Language (GLSL)
e Can write own shaders and use GPUs

e Retained-mode graphics: geometry information can be stored or retained

in GPU memory

_ _/

Graphics Programming 3 —23 Howard Cheng

CPSC 3710 Computer Graphics University of Lethbridge

4 N

OpenGL History I

e OpenGL 3.0 (2008)
e “0Old” style OpenGL deprecated

e OpenGL 4.0 (2010)

_ _/

Graphics Programming 4 — 23 Howard Cheng

CPSC 3710 Computer Graphics University of Lethbridge

Pipeline Architecture I

e Tasks are split up into multiple stages in the pipeline

e Different stages can operate at the same time on different data
(increasing throughput)
e Main steps:
— Vertex processing
— Clipping and primitive assembly
— Rasterization

— Fragment processing

_ _/

Graphics Programming 5—23 Howard Cheng

CPSC 3710 Computer Graphics University of Lethbridge

4 A
Vertex Processing I

e A vertex is a location in space (e.g. a point)

e Geometric objects (primitives) are specified by vertices

e Coordinate transformations are done here:
— translation, rotation, scaling
— world coordinates to camera coordinates
— projection onto display plane

— done by matrix multiplication
e Assignment of colour to a vertex is also done here

e Qutput is the location, colour and other attributes of each vertex

_ _/

Graphics Programming 6 — 23 Howard Cheng

CPSC 3710 Computer Graphics University of Lethbridge

Clipping and Primitive Assembly'

e The output device (e.g. screen) cannot display the entire world

e Clipping is done to remove objects that are not in the clipping volume
(some can be partially visible)

e Clipping cannot be done individually by vertices.

e Sets of vertices are assembled into primitives (e.g. lines, triangles) before
clipping can be done

e Output is a set of primitives that will appear in the display

_ _/

Graphics Programming 7T — 23 Howard Cheng

CPSC 3710 Computer Graphics University of Lethbridge

4 N

Rasterization '

e Primitives are converted to pixels

e The rasterizer determines which pixels in the frame buffer are affected

by the primitive (e.g. lines, triangles)

e Output is a set of fragments: each fragment is a pixel together with
information (e.g. colour, location, depth)

e Fragments are used to update the corresponding pixels in the framebuftfer

_ _/

Graphics Programming 8 — 23 Howard Cheng

CPSC 3710 Computer Graphics University of Lethbridge

4 N

Fragment Processing I

e In simple scenes, each pixel has a corresponding fragment which is used

to display that pixel

e However some pixels may have multiple fragments (e.g. 3D scenes with

many objects and different depth)
e Some fragments may be blocked and not visible

e Fragments can also be blended (e.g. transparent objects)

_ _/

Graphics Programming 9 - 23 Howard Cheng

CPSC 3710 Computer Graphics University of Lethbridge

4 N

Programmable Pipelines I

e In “old” OpenGL (1.0), some of the stages are fixed and cannot be
changed.

e Modern OpenGL allows stages to be customized.

e Both vertex and fragment processing can be customized

_ _/

Graphics Programming 10 — 23 Howard Cheng

CPSC 3710 Computer Graphics University of Lethbridge

4 N

OpenGL Shading Language (GLSL)I

e A C-like language for shaders
e Designed to execute directly on GPU (instead of CPU)
e Loaded at run time, not compile time

e Need to set up input/output to communicate with main program

_ _/

Graphics Programming 11 - 23 Howard Cheng

CPSC 3710 Computer Graphics University of Lethbridge

4 N
Interface I

e There are a number of different GUI libraries for OpenGL applications.

e We will use GLUT in this course

e See example code from previous editions of textbook

e The Red Book uses GLFW

e Set up window, display function, callback for input, etc.

e Run display loop

e Lvent-based programming: display, reshape, keyboard, mouse, idle, etc.

e Multiple viewports

_ _/

Graphics Programming 12 — 23 Howard Cheng

CPSC 3710 Computer Graphics University of Lethbridge

-

_

~

Workflow Step 1: Vertex Array Ob jects'

The first step is to set up geometric primitives (e.g. objects)

Geometric primitives are specified by vertices.

to display.

Many GPUs can only render (quickly) points, lines, and triangles—these

are the only primitives supported.

The vertices (positions and other attributes) are sent to the GPU using

a vertex array object.

The function glDrawArrays is used to draw the primitives specified by

the vertices (a mode parameter is used to interpret the primitive).

GL_POINTS just draws individual points

_/

Graphics Programming 13 — 23

Howard Cheng

CPSC 3710 Computer Graphics University of Lethbridge

-

Vertex Array Ob jects'

Identified by an non-negative integer ID (for communicating

OpenGL).
enum VAO_IDS { Triangles, Lines, NumVAOs };

These VAO needs to be created with glGenVertexArrays or

glCreateVertexArrays.

An array of GLuint should be used to store the IDs returned.

Then a VAO has to be bound as the current object glBindVertexArray.

Bind with 0 and use glDeleteVertexArrays when done.

~

with

_/

Graphics Programming 14 — 23

Howard Cheng

CPSC 3710 Computer Graphics University of Lethbridge

4 N

Buffer Objects I

e VAOSs only give IDs. Buffer objects are needed to pass data to GPU.

e glCreateBuffers or glGenBuffers: returns IDs of buffer objects.
Delete with glDeleteBuffers.

e Need to bind it with GLBindBuffer: for now use GL_ARRAY _BUFFER as
target. There are other types of buffers.

e [oading data: gl (Named)BufferStorage, gl (Named)BufferData

_ _/

Graphics Programming 15 - 23 Howard Cheng

CPSC 3710 Computer Graphics University of Lethbridge

4 N
Coordinate System I

Vertices have to be specified in some coordinate system.

e 3D coordinates: z, y, and z.
e For 2D coordinates, keep z constant.
e All coordinates a floating-point number between -1 and 1 to be visible

e There can be many coordinate systems in an application:
— Model coordinates
— Object/World coordinates
— Eye/Camera coordinates
— Clip coordinates

— Window coordinates

_ _/

Graphics Programming 16 — 23 Howard Cheng

CPSC 3710

Computer Graphics

University of Lethbridge

-

Given an array of vertices:

Line Primitives '

~

e GL_LINES: many line segments specified by points 0 and 1, 2 and 3, 4

e GL_LINE_STRIP: adjacent vertices specify lines

and 5, etc.

e GL_LINE_LOOP: similar to line strip but last vertex connected to first one.

_

_/

Graphics Programming

17 — 23

Howard Cheng

CPSC 3710 Computer Graphics University of Lethbridge

4 A
Triangle Primitives I

e GL_TRIANGLES: each group of 3 vertices specify a triangle

e GL_TRIANGLE_STRIP: each group of 3 adjacent vertices specify a triangle

e GL_TRIANGLE_FAN: each triangle is specified by the first vertex and 2

adjacent vertices
e Orientation are used to determine “front” or “back”
e More complex shapes (e.g. polygons) are specified by triangles

e c.g. a solid circle (disc) can be approximated with a fan

_ _/

Graphics Programming 18 — 23 Howard Cheng

CPSC 3710 Computer Graphics University of Lethbridge

4 N

Shaders I

e Shaders have to be loaded using custom code
e See example code

e Need to set up input and output to communicate with main program

_ _/

Graphics Programming 19 — 23 Howard Cheng

CPSC 3710 Computer Graphics University of Lethbridge

4 N

Shaders I

e Shader variables: input/output to main program
e Can use layout to specify a position to communicate with main program
e Special output variables (e.g. gl Position)

e Connect data to shaders with glVertexAttribPointer and
glEnableVertexAttribArray.

_ _/

Graphics Programming 20 — 23 Howard Cheng

CPSC 3710 Computer Graphics University of Lethbridge

4 N

Colours '

e Specified by RGB values (each between 0 to 1)

e RGBA: a 4th channel called alpha is used to allow for transparency or

opacity: 0 = transparent, 1 = opaque.

_ _/

Graphics Programming 21 — 23 Howard Cheng

CPSC 3710

Computer Graphics

University of Lethbridge

-

By default:

Viewing I

Only coordinates within -1 to 1 are visible

Orthographic projection: what you would see if you place the camera

infinitely far from objects

Camera is placed at origin, looking in the negative z direction
Takes a point (z,y, z) and projects it into (x,y,0)

Objects “behind” the camera can also be seen

The clippping rectangle is what can be seen (between -1 and 1)

Aspect ratio of clipping rectangle vs. aspect ratio of viewport can lead

to distortion

\

_/

Graphics Programming

22 — 23

Howard Cheng

CPSC 3710 Computer Graphics University of Lethbridge

4 A
Double Buffering I

Useful especially for animiation:

e If the drawing occurs on the visible screen, there may be flicker

e Use 2 buffers: one for current display (front) and one for drawing (back)
e When drawing is complete, swap the buffers (glutSwapBuffers)

e glutPostRedisplay can be used to force redraw

e Make use of Idle event callback to recalculate and update, uninstall

callback if animation should stop.

_ _/

Graphics Programming 23 — 23 Howard Cheng

