
CPSC 3710 Computer Graphics University of Lethbridge✬

✫

✩

✪

Graphics Programming

• We will focus on OpenGL

• We will discuss “new” OpenGL (Version 4.5 in Red Book)

• C++ knowledge assumed

Graphics Programming 1 – 23 Howard Cheng



CPSC 3710 Computer Graphics University of Lethbridge✬

✫

✩

✪

OpenGL History

• OpenGL 1.0 (1992)

• Immediate-mode graphics

• Graphic primitives (e.g. draw a line) were specified in applications

• Immediately passed to hardware for display

• Redisplay requires all primitives to be resent (and redraw)

Graphics Programming 2 – 23 Howard Cheng



CPSC 3710 Computer Graphics University of Lethbridge✬

✫

✩

✪

OpenGL History

• OpenGL 2.0 (2004)

• Introduced OpenGL Shading Language (GLSL)

• Can write own shaders and use GPUs

• Retained-mode graphics: geometry information can be stored or retained

in GPU memory

Graphics Programming 3 – 23 Howard Cheng



CPSC 3710 Computer Graphics University of Lethbridge✬

✫

✩

✪

OpenGL History

• OpenGL 3.0 (2008)

• “Old” style OpenGL deprecated

• OpenGL 4.0 (2010)

Graphics Programming 4 – 23 Howard Cheng



CPSC 3710 Computer Graphics University of Lethbridge✬

✫

✩

✪

Pipeline Architecture

• Tasks are split up into multiple stages in the pipeline

• Different stages can operate at the same time on different data

(increasing throughput)

• Main steps:

– Vertex processing

– Clipping and primitive assembly

– Rasterization

– Fragment processing

Graphics Programming 5 – 23 Howard Cheng



CPSC 3710 Computer Graphics University of Lethbridge✬

✫

✩

✪

Vertex Processing

• A vertex is a location in space (e.g. a point)

• Geometric objects (primitives) are specified by vertices

• Coordinate transformations are done here:

– translation, rotation, scaling

– world coordinates to camera coordinates

– projection onto display plane

– done by matrix multiplication

• Assignment of colour to a vertex is also done here

• Output is the location, colour and other attributes of each vertex

Graphics Programming 6 – 23 Howard Cheng



CPSC 3710 Computer Graphics University of Lethbridge✬

✫

✩

✪

Clipping and Primitive Assembly

• The output device (e.g. screen) cannot display the entire world

• Clipping is done to remove objects that are not in the clipping volume

(some can be partially visible)

• Clipping cannot be done individually by vertices.

• Sets of vertices are assembled into primitives (e.g. lines, triangles) before

clipping can be done

• Output is a set of primitives that will appear in the display

Graphics Programming 7 – 23 Howard Cheng



CPSC 3710 Computer Graphics University of Lethbridge✬

✫

✩

✪

Rasterization

• Primitives are converted to pixels

• The rasterizer determines which pixels in the frame buffer are affected

by the primitive (e.g. lines, triangles)

• Output is a set of fragments: each fragment is a pixel together with

information (e.g. colour, location, depth)

• Fragments are used to update the corresponding pixels in the framebuffer

Graphics Programming 8 – 23 Howard Cheng



CPSC 3710 Computer Graphics University of Lethbridge✬

✫

✩

✪

Fragment Processing

• In simple scenes, each pixel has a corresponding fragment which is used

to display that pixel

• However some pixels may have multiple fragments (e.g. 3D scenes with

many objects and different depth)

• Some fragments may be blocked and not visible

• Fragments can also be blended (e.g. transparent objects)

Graphics Programming 9 – 23 Howard Cheng



CPSC 3710 Computer Graphics University of Lethbridge✬

✫

✩

✪

Programmable Pipelines

• In “old” OpenGL (1.0), some of the stages are fixed and cannot be

changed.

• Modern OpenGL allows stages to be customized.

• Both vertex and fragment processing can be customized

Graphics Programming 10 – 23 Howard Cheng



CPSC 3710 Computer Graphics University of Lethbridge✬

✫

✩

✪

OpenGL Shading Language (GLSL)

• A C-like language for shaders

• Designed to execute directly on GPU (instead of CPU)

• Loaded at run time, not compile time

• Need to set up input/output to communicate with main program

Graphics Programming 11 – 23 Howard Cheng



CPSC 3710 Computer Graphics University of Lethbridge✬

✫

✩

✪

Interface

• There are a number of different GUI libraries for OpenGL applications.

• We will use GLUT in this course

• See example code from previous editions of textbook

• The Red Book uses GLFW

• Set up window, display function, callback for input, etc.

• Run display loop

• Event-based programming: display, reshape, keyboard, mouse, idle, etc.

• Multiple viewports

Graphics Programming 12 – 23 Howard Cheng



CPSC 3710 Computer Graphics University of Lethbridge✬

✫

✩

✪

Workflow Step 1: Vertex Array Objects

• The first step is to set up geometric primitives (e.g. objects) to display.

• Geometric primitives are specified by vertices.

• Many GPUs can only render (quickly) points, lines, and triangles—these

are the only primitives supported.

• The vertices (positions and other attributes) are sent to the GPU using

a vertex array object.

• The function glDrawArrays is used to draw the primitives specified by

the vertices (a mode parameter is used to interpret the primitive).

• GL POINTS just draws individual points

Graphics Programming 13 – 23 Howard Cheng



CPSC 3710 Computer Graphics University of Lethbridge✬

✫

✩

✪

Vertex Array Objects

• Identified by an non-negative integer ID (for communicating with

OpenGL).

enum VAO_IDS { Triangles, Lines, NumVAOs };

• These VAO needs to be created with glGenVertexArrays or

glCreateVertexArrays.

• An array of GLuint should be used to store the IDs returned.

• Then a VAO has to be bound as the current object glBindVertexArray.

• Bind with 0 and use glDeleteVertexArrays when done.

Graphics Programming 14 – 23 Howard Cheng



CPSC 3710 Computer Graphics University of Lethbridge✬

✫

✩

✪

Buffer Objects

• VAOs only give IDs. Buffer objects are needed to pass data to GPU.

• glCreateBuffers or glGenBuffers: returns IDs of buffer objects.

Delete with glDeleteBuffers.

• Need to bind it with GLBindBuffer: for now use GL ARRAY BUFFER as

target. There are other types of buffers.

• Loading data: gl(Named)BufferStorage, gl(Named)BufferData

Graphics Programming 15 – 23 Howard Cheng



CPSC 3710 Computer Graphics University of Lethbridge✬

✫

✩

✪

Coordinate System

Vertices have to be specified in some coordinate system.

• 3D coordinates: x, y, and z.

• For 2D coordinates, keep z constant.

• All coordinates a floating-point number between -1 and 1 to be visible

• There can be many coordinate systems in an application:

– Model coordinates

– Object/World coordinates

– Eye/Camera coordinates

– Clip coordinates

– Window coordinates

Graphics Programming 16 – 23 Howard Cheng



CPSC 3710 Computer Graphics University of Lethbridge✬

✫

✩

✪

Line Primitives

Given an array of vertices:

• GL LINES: many line segments specified by points 0 and 1, 2 and 3, 4

and 5, etc.

• GL LINE STRIP: adjacent vertices specify lines

• GL LINE LOOP: similar to line strip but last vertex connected to first one.

Graphics Programming 17 – 23 Howard Cheng



CPSC 3710 Computer Graphics University of Lethbridge✬

✫

✩

✪

Triangle Primitives

• GL TRIANGLES: each group of 3 vertices specify a triangle

• GL TRIANGLE STRIP: each group of 3 adjacent vertices specify a triangle

• GL TRIANGLE FAN: each triangle is specified by the first vertex and 2

adjacent vertices

• Orientation are used to determine “front” or “back”

• More complex shapes (e.g. polygons) are specified by triangles

• e.g. a solid circle (disc) can be approximated with a fan

Graphics Programming 18 – 23 Howard Cheng



CPSC 3710 Computer Graphics University of Lethbridge✬

✫

✩

✪

Shaders

• Shaders have to be loaded using custom code

• See example code

• Need to set up input and output to communicate with main program

Graphics Programming 19 – 23 Howard Cheng



CPSC 3710 Computer Graphics University of Lethbridge✬

✫

✩

✪

Shaders

• Shader variables: input/output to main program

• Can use layout to specify a position to communicate with main program

• Special output variables (e.g. gl Position)

• Connect data to shaders with glVertexAttribPointer and

glEnableVertexAttribArray.

Graphics Programming 20 – 23 Howard Cheng



CPSC 3710 Computer Graphics University of Lethbridge✬

✫

✩

✪

Colours

• Specified by RGB values (each between 0 to 1)

• RGBA: a 4th channel called alpha is used to allow for transparency or

opacity: 0 = transparent, 1 = opaque.

Graphics Programming 21 – 23 Howard Cheng



CPSC 3710 Computer Graphics University of Lethbridge✬

✫

✩

✪

Viewing

By default:

• Only coordinates within -1 to 1 are visible

• Orthographic projection: what you would see if you place the camera

infinitely far from objects

• Camera is placed at origin, looking in the negative z direction

• Takes a point (x, y, z) and projects it into (x, y, 0)

• Objects “behind” the camera can also be seen

• The clippping rectangle is what can be seen (between -1 and 1)

• Aspect ratio of clipping rectangle vs. aspect ratio of viewport can lead

to distortion

Graphics Programming 22 – 23 Howard Cheng



CPSC 3710 Computer Graphics University of Lethbridge✬

✫

✩

✪

Double Buffering

Useful especially for animiation:

• If the drawing occurs on the visible screen, there may be flicker

• Use 2 buffers: one for current display (front) and one for drawing (back)

• When drawing is complete, swap the buffers (glutSwapBuffers)

• glutPostRedisplay can be used to force redraw

• Make use of Idle event callback to recalculate and update, uninstall

callback if animation should stop.

Graphics Programming 23 – 23 Howard Cheng


