CPSC 3710 Computer Graphics University of Lethbridge

4 N
Clipping I

e Once model-view-projection is performs, the clipping volume is used to

determine what is drawn

e Clipping requires not only the coordinates of the vertices, but also the

primitive (line, triangle, etc.)

e Performed before rasterization: clipping produces coordinates of vertices

of the primitive so that it is fully inside clipping volume

e Focus on two dimensions—three-dimensional extensions possible but

may be more tricky

\ _/

Clipping 1-10 Howard Cheng




CPSC 3710 Computer Graphics

University of Lethbridge

-

Line Clipping I

e Clipping rectangle is bounded by 1 < x < x9, 11 <y < ys.

e Line defined by the two end points (ps,p,) and (g, qy)-

e Possibliities:

\

Line completely inside
Line completely outside
Partially inside (one end point inside)

Partially inside (no end point inside)

~

_/

Clipping

2—-10

Howard Cheng



CPSC 3710 Computer Graphics University of Lethbridge

-

\

Line Clipping: Naive Algorithm'

If any end point is inside, keep them.

Each of the four boundaries can be represented by a line segment.
Perform line segment intersection for each of the four boundaries.

If there are any intersection points, replace the outside end points by

intersection (watch out for multiple intersections at corners).

This works but not the most efficient (intersection test requires many

arithmetic operations).

~

_/

Clipping 3 — 10

Howard Cheng



CPSC 3710 Computer Graphics University of Lethbridge

-

~

Line Clipping: Cohen-Sutherland Algorithm'

For each end point, we compute a 4-bit outcode. Each bit corresponds to
a boundary, and it is 1 if it is outside according to that boundary (0
otherwise).

e.g. if x1 = 10, the point (4,5) will have an outcode of 1777 (if first bit
corresponds to left boundary).

Outcode is 0000 for a point inside.
Outcodes are very easy to compute for each end point (4 comparisons).

There are 4 bits but all coordinates are assigned one of 9 possible
outcodes. (why not 167)

If a certain bit in the two end points are different, it means the line

crosses that boundary.

_/

Clipping 4 —-10 Howard Cheng



CPSC 3710 Computer Graphics University of Lethbridge

-

\

Line Clipping: Cohen-Sutherland Algorithm'

If both points have outcode 0000, entire line is visible. Done.

If bitwise AND of two outcodes is non-zero, then the two points are both

outside with respect to one boundary. So entire line is not visible. Done

Otherwise, pick one of the bit at which the outcodes differ. The line
crosses that boundary. Do line intersection, replace the outside point

with intersection.

Repeat until the entire line is visible or invisible.

~

_/

Clipping 5—-10 Howard Cheng



CPSC 3710 Computer Graphics University of Lethbridge

4 N

Polygon Clipping I

e A polygon is defined as a sequence of vertices listed in some orientation
(e.g. counter-clockwise)

e List of vertices vy, va,...,v,.
e Convex polygon: clipped polygon is still one polygon

e Concave polygon: clipped polygon can become many dijoint polygons

\ _/

Clipping 6 — 10 Howard Cheng




CPSC 3710 Computer Graphics University of Lethbridge

4 N

Polygon Clipping: Sutherland-Hodgman Algorithm'

e We assume clipping polygon is convex (even simpler: rectangular)
e Input is a list of vertices for the polygon

e The algorithm clips the polygon against each of the four boundaries one

boundary at a time.

e If the polygon is concave, the output may be overlapping edges (on the

boundary).

\ _/

Clipping 7— 10 Howard Cheng




CPSC 3710 Computer Graphics University of Lethbridge

/ Polygon Clipping: Sutherland-Hodgman Algorithm I \

To clip against one boundary (e.g. x = x1):

output = []
for (i = 0; i < m; i++) {
curr = v[i]; next = v[(i+1)%n];
pt = intersect(curr to next, boundary)
if (next is inside) {
if (curr not inside)
append pt to output
append next to output
} else if (curr is inside)

append pt to output
+

ths is O(n) time, and output can have O(n) points. /

Clipping 8 — 10 Howard Cheng



CPSC 3710 Computer Graphics University of Lethbridge

4 N

Line Clipping in SDI

e Similar to 2D: outcode now has 6 bits
e Lines have to be intersected against planes

e Otherwise it is very similar

\ _/

Clipping 9-10 Howard Cheng




CPSC 3710 Computer Graphics University of Lethbridge

4 N

Polygon Clipping in SDI

e Clip polygon against bounding plane one plane at a time
e Similar to 2D: replace line intersection with line-plane intersection

e If polygons are restricted to triangles, this can be done very fast

\ _/

Clipping 10 - 10 Howard Cheng




