
CPSC 3710 Computer Graphics University of Lethbridge✬

✫

✩

✪

Clipping

• Once model-view-projection is performs, the clipping volume is used to

determine what is drawn

• Clipping requires not only the coordinates of the vertices, but also the

primitive (line, triangle, etc.)

• Performed before rasterization: clipping produces coordinates of vertices

of the primitive so that it is fully inside clipping volume

• Focus on two dimensions—three-dimensional extensions possible but

may be more tricky

Clipping 1 – 10 Howard Cheng



CPSC 3710 Computer Graphics University of Lethbridge✬

✫

✩

✪

Line Clipping

• Clipping rectangle is bounded by x1 ≤ x ≤ x2, y1 ≤ y ≤ y2.

• Line defined by the two end points (px, py) and (qx, qy).

• Possibliities:

– Line completely inside

– Line completely outside

– Partially inside (one end point inside)

– Partially inside (no end point inside)

Clipping 2 – 10 Howard Cheng



CPSC 3710 Computer Graphics University of Lethbridge✬

✫

✩

✪

Line Clipping: Näıve Algorithm

• If any end point is inside, keep them.

• Each of the four boundaries can be represented by a line segment.

• Perform line segment intersection for each of the four boundaries.

• If there are any intersection points, replace the outside end points by

intersection (watch out for multiple intersections at corners).

• This works but not the most efficient (intersection test requires many

arithmetic operations).

Clipping 3 – 10 Howard Cheng



CPSC 3710 Computer Graphics University of Lethbridge✬

✫

✩

✪

Line Clipping: Cohen-Sutherland Algorithm

• For each end point, we compute a 4-bit outcode. Each bit corresponds to

a boundary, and it is 1 if it is outside according to that boundary (0

otherwise).

• e.g. if x1 = 10, the point (4, 5) will have an outcode of 1??? (if first bit

corresponds to left boundary).

• Outcode is 0000 for a point inside.

• Outcodes are very easy to compute for each end point (4 comparisons).

• There are 4 bits but all coordinates are assigned one of 9 possible

outcodes. (why not 16?)

• If a certain bit in the two end points are different, it means the line

crosses that boundary.

Clipping 4 – 10 Howard Cheng



CPSC 3710 Computer Graphics University of Lethbridge✬

✫

✩

✪

Line Clipping: Cohen-Sutherland Algorithm

• If both points have outcode 0000, entire line is visible. Done.

• If bitwise AND of two outcodes is non-zero, then the two points are both

outside with respect to one boundary. So entire line is not visible. Done

• Otherwise, pick one of the bit at which the outcodes differ. The line

crosses that boundary. Do line intersection, replace the outside point

with intersection.

• Repeat until the entire line is visible or invisible.

Clipping 5 – 10 Howard Cheng



CPSC 3710 Computer Graphics University of Lethbridge✬

✫

✩

✪

Polygon Clipping

• A polygon is defined as a sequence of vertices listed in some orientation

(e.g. counter-clockwise)

• List of vertices v1, v2, . . . , vn.

• Convex polygon: clipped polygon is still one polygon

• Concave polygon: clipped polygon can become many dijoint polygons

Clipping 6 – 10 Howard Cheng



CPSC 3710 Computer Graphics University of Lethbridge✬

✫

✩

✪

Polygon Clipping: Sutherland-Hodgman Algorithm

• We assume clipping polygon is convex (even simpler: rectangular)

• Input is a list of vertices for the polygon

• The algorithm clips the polygon against each of the four boundaries one

boundary at a time.

• If the polygon is concave, the output may be overlapping edges (on the

boundary).

Clipping 7 – 10 Howard Cheng



CPSC 3710 Computer Graphics University of Lethbridge✬

✫

✩

✪

Polygon Clipping: Sutherland-Hodgman Algorithm

To clip against one boundary (e.g. x = x1):

output = []

for (i = 0; i < n; i++) {

curr = v[i]; next = v[(i+1)%n];

pt = intersect(curr to next, boundary)

if (next is inside) {

if (curr not inside)

append pt to output

append next to output

} else if (curr is inside)

append pt to output

}

This is O(n) time, and output can have O(n) points.

Clipping 8 – 10 Howard Cheng



CPSC 3710 Computer Graphics University of Lethbridge✬

✫

✩

✪

Line Clipping in 3D

• Similar to 2D: outcode now has 6 bits

• Lines have to be intersected against planes

• Otherwise it is very similar

Clipping 9 – 10 Howard Cheng



CPSC 3710 Computer Graphics University of Lethbridge✬

✫

✩

✪

Polygon Clipping in 3D

• Clip polygon against bounding plane one plane at a time

• Similar to 2D: replace line intersection with line-plane intersection

• If polygons are restricted to triangles, this can be done very fast

Clipping 10 – 10 Howard Cheng


