
CPSC 3710 Computer Graphics University of Lethbridge✬

✫

✩

✪

Framebuffers

• In OpenGL, there are various framebuffers.

• A framebuffer is simply a rectangular array of values.

• So far, we have used the standard display buffer and depth buffer

• We will look at other uses of framebuffers (in theory).

Framebuffer Techniques 1 – 16 Howard Cheng



CPSC 3710 Computer Graphics University of Lethbridge✬

✫

✩

✪

Blending

• So far, all objects are opaque (α = 1).

• In order to render transparent objects, we need to blend.

• Basic idea: if two objects occupying the same pixel location has colour

(R1, G1, B1, A1) and (R2, G2, B2, A2), the final result should be

c1 · (R1, G1, B1, A1) + c2 · (R2, G2, B2, A2)

for some constants c1 and c2.

• It is often convenient to talk about source and destination: source is the

fragment being rendered, and destination is what has already been

rendered at the location.

Framebuffer Techniques 2 – 16 Howard Cheng



CPSC 3710 Computer Graphics University of Lethbridge✬

✫

✩

✪

Blending

• In the formula,

cS · (RS , GS , BS , AS) + cD · (RD, GD, BD, AD)

we can make different choices for cS and cD.

• One common choice is CS = AS and CD = (1− CS).

• e.g. coloured glass (source) will show a blend of the glass colour and the

objects behind the glass (destination)

• Many other choices of CS and CD possible depending on desired effect.

Framebuffer Techniques 3 – 16 Howard Cheng



CPSC 3710 Computer Graphics University of Lethbridge✬

✫

✩

✪

Blending

• In order for blending to work, depth testing must be disabled. Why?

• Also, switching between source and destination will change the rendering

outcome.

• General order

– Render all opaque objects with depth testing on

– Sort all transparent objects from back to front

– Render transparent objects with depth testing on, but set the depth

buffer to read-only (glDepthMask)

Framebuffer Techniques 4 – 16 Howard Cheng



CPSC 3710 Computer Graphics University of Lethbridge✬

✫

✩

✪

Framebuffer Objects

• In OpenGL, framebuffer objects can be created.

• We can choose to render into our own framebuffer objects off-screen

• We can also read the value at particular coordinates in any framebuffer

objects.

• The values stored in each pixel does not have to be a colour (e.g. depth

buffer)

• There are a number of useful applications.

Framebuffer Techniques 5 – 16 Howard Cheng



CPSC 3710 Computer Graphics University of Lethbridge✬

✫

✩

✪

Multi-pass Rendering

• So far, we have only talked about rendering objects to the display

framebuffer.

• In multi-pass rendering, a scene can be rendered multiple times (in

different ways) to obtain the final scene.

• Each pass can use the information from previous passes.

• e.g. environment maps to model reflection.

Framebuffer Techniques 6 – 16 Howard Cheng



CPSC 3710 Computer Graphics University of Lethbridge✬

✫

✩

✪

Ambient Occlusion

• We have assumed that ambient light is always uniform at all fragments.

• But even ambient light can be blocked.

• First pass: render the scene and record only normal vectors and depth at

each pixel (normal map and depth map)

• Second pass: look at normal vectors and depths around the pixel. The

ambient lighting is reduced by how many pixels around have smaller

depths (in direction of normal).

Framebuffer Techniques 7 – 16 Howard Cheng



CPSC 3710 Computer Graphics University of Lethbridge✬

✫

✩

✪

Buffer Ping-Ponging

• We have used double buffering for smooth animation.

• But what is difficult to read values from the display buffers

• With our own framebuffers, we can easily use a pair of framebuffers.

• We render to one framebuffer, using information from the other

framebuffer.

• Then we switch the roles of the two framebuffers.

• Useful if the animation models some process that is “evolving”

• e.g. simulating how a drop of food colouring spread in a pool of water

Framebuffer Techniques 8 – 16 Howard Cheng



CPSC 3710 Computer Graphics University of Lethbridge✬

✫

✩

✪

Picking

• In many applications, we would like to be able to use the mouse to select

objects on screen.

• The input would be the window coordinates (x, y) from the mouse click.

• How do we actually know which object is selected?

• Issues:

– need to “invert” from window coordinates to object coordinates

– need to ignore objects hidden by depth testing

Framebuffer Techniques 9 – 16 Howard Cheng



CPSC 3710 Computer Graphics University of Lethbridge✬

✫

✩

✪

Picking

• Solution: create a separate framebuffer to render the objects in a parallel

scene

• Ignore all lighting and texture calculations

• Each object and/or surface will be rendered in a unique solid colour.

• Simply read the colour at the picked location in this framebuffer.

• The unique colour tells us which object is picked.

Framebuffer Techniques 10 – 16 Howard Cheng



CPSC 3710 Computer Graphics University of Lethbridge✬

✫

✩

✪

Shadow Maps

• Previously, we have not consider the possibility of shadows.

• During lighting calculations, it is always assumed that there are no

obstacles between the light source and the fragment being rendered.

• This is not realistic.

Framebuffer Techniques 11 – 16 Howard Cheng



CPSC 3710 Computer Graphics University of Lethbridge✬

✫

✩

✪

Shadow Maps

• How do we which object and/or fragment can receive light from a light

source?

• We put a camera at the light source and render the scene!

• What the camera can see are the fragments that receives light.

• Record the distance/depth of those pixels that can be seen relative to

the light source. This is the shadow map.

Framebuffer Techniques 12 – 16 Howard Cheng



CPSC 3710 Computer Graphics University of Lethbridge✬

✫

✩

✪

Shadow Maps

• Perform the actual rendering in a second pass.

• For each fragment, compare the distance between the fragment and the

light against what is stored in the shadow map.

• If it is greater, then the light is blocked.

Framebuffer Techniques 13 – 16 Howard Cheng



CPSC 3710 Computer Graphics University of Lethbridge✬

✫

✩

✪

Shadow Maps

Some details:

• use perspective projection for point light source

• use orthographic projection for parallel light source

• the depth comparison needs to be done in “light camera” coordinate

space: so we need model-view-projection matrices in that space

Framebuffer Techniques 14 – 16 Howard Cheng



CPSC 3710 Computer Graphics University of Lethbridge✬

✫

✩

✪

Anti-aliasing

• The computer screen is a rectangular array of pixels.

• Drawing a simple diagonal line can result in jaggedness if we simply turn

a pixel on or off.

• This is particularly true at low resolution.

• If drawing a triangle, one way to smooth the shape boundaries is to

shade based on how much of the pixel is contained in the shape.

Framebuffer Techniques 15 – 16 Howard Cheng



CPSC 3710 Computer Graphics University of Lethbridge✬

✫

✩

✪

Anti-aliasing

• One method: first render the scene into an internal framebuffer

• Then use multisampling:

– for each pixel, sample a number of different values from the internal

framebuffers around that location

– the samples are combined (e.g. average)

Framebuffer Techniques 16 – 16 Howard Cheng


