
CPSC 3710 Computer Graphics University of Lethbridge✬

✫

✩

✪

Geometric Transformations

• Geometric transformations are used to convert from one coordinate

system to another.

• From model coordinates to window coordinates

• Transformation are represented as matrices and can be combined by

matrix multiplication.

Geometric Transformations 1 – 20 Howard Cheng



CPSC 3710 Computer Graphics University of Lethbridge✬

✫

✩

✪

Homogeneous Coordinates

• For a point in three-dimensions, we represent it as a vector:














x

y

z

w















• For now w = 1 for any point.

• We can represent vectors (directions) with w = 0.

• Homogeneous coordinates allow us to perform all transformations by

matrix multiplication

Geometric Transformations 2 – 20 Howard Cheng



CPSC 3710 Computer Graphics University of Lethbridge✬

✫

✩

✪

Coordinate Systems and Frames

• A coordinate system is represented by three independent (usually

orthogonal) vectors ~v1, ~v2, ~v3. For example, (1, 0, 0, 0), (0, 1, 0, 0) and

(0, 0, 1, 0).

• A coordinate frame is a coordinate system together with a point P that

is the origin of the system

• A point in a coordinate frame can be represented as a coordinate

(α1, α2, α3, 1), which has “world coordinate” (α1, α2, α3, 1) · (~v1, ~v2, ~v3, P )

Geometric Transformations 3 – 20 Howard Cheng



CPSC 3710 Computer Graphics University of Lethbridge✬

✫

✩

✪

Change of Coordinate Frames

• Suppose Frame 1 is represented by (~v1, ~v2, ~v3, P ) and Frame 2 is

represented by (~w1, ~w2, ~w3, Q).

• It is common to need to convert a point (α1, α2, α3, 1) in Frame 1 to a

coordinate (β1, β2, β3, 1) in Frame 2.

• First, represent each of the basis vectors in Frame 2 as a combination of

the basis vectors in Frame 1:

~wi = γi1~v1 + γi2~v2 + γi3~v3

• Represent Q in Frame 2 as a coordinate in Frame 1:

Q = γ41~v1 + γ42~v2 + γ43~v3 + 1 · P

Geometric Transformations 4 – 20 Howard Cheng



CPSC 3710 Computer Graphics University of Lethbridge✬

✫

✩

✪

• Let M be the matrix of γij . Then















~w1

~w2

~w3

Q















= M















~v1

~v2

~v3

P















Geometric Transformations 5 – 20 Howard Cheng



CPSC 3710 Computer Graphics University of Lethbridge✬

✫

✩

✪

Change of Coordinate Frames

• So if we have a coordinate/direction in Frame 2, we have

(β1, β2, β3, β4) · (~w1, ~w2, ~w3, Q)

and hence

(β1, β2, β3, β4) ·M















~v1

~v2

~v3

P















• Therefore, the coordinates in Frame 1 are

(α1, α2, α3, α4) = (β1, β2, β3, β4) ·M

• The book gives the same formula but in transposed form.

• Use M−1 to convert from Frame 1 to Frame 2.

Geometric Transformations 6 – 20 Howard Cheng



CPSC 3710 Computer Graphics University of Lethbridge✬

✫

✩

✪

Model-View-Projection

• Objects are first defined in model coordinates

• Then placed in object/world coordinates with model transformation

• Then placed in eye/camera coordinates with view transformation

• Then placed in clip coordinates with projection transformation

• Perspective division is done to get normalized device coordinates

• Finally window coordinates are computed

• Programmers work with the model frame, object frame, and eye frame

Geometric Transformations 7 – 20 Howard Cheng



CPSC 3710 Computer Graphics University of Lethbridge✬

✫

✩

✪

Affine Transformation

• An affine transformation preserves lines (i.e. lines remain lines after

transformations)

• It is represented by a matrix

M =















α11 α12 α13 α14

α21 α22 α23 α24

α31 α32 α33 α34

0 0 0 1















• Column j of M is where the j-th standard basis gets transformed to. i.e.

(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)

Geometric Transformations 8 – 20 Howard Cheng



CPSC 3710 Computer Graphics University of Lethbridge✬

✫

✩

✪

Translation

• Translate a point by the vector (αx, αy, αz, 0).

• Translation matrix is

T (αx, αy, αz) =















1 0 0 αx

0 1 0 αy

0 0 1 αz

0 0 0 1















• Note: T−1(αx, αy, αz) = T (−αx,−αy,−αz).

Geometric Transformations 9 – 20 Howard Cheng



CPSC 3710 Computer Graphics University of Lethbridge✬

✫

✩

✪

Scaling

• Scale a point by factors of βx, βy and βz in the x, y, and z directions

(i.e. (1, 0, 0, 0) becomes (βx, 0, 0, 0)

• Assume βx, βy, βz 6= 0

• Scaling matrix is

S(βx, βy, βz) =















βx 0 0 0

0 βy 0 0

0 0 βz 0

0 0 0 1















• Note: S−1(βx, βy, βz) = S(1/βx, 1/βy, 1/βz).

Geometric Transformations 10 – 20 Howard Cheng



CPSC 3710 Computer Graphics University of Lethbridge✬

✫

✩

✪

Concatenation of Transformations

• You can combine transformations with matrix multiplication.

• e.g. To scale an object and then translate it, you can use

T (αx, αy, αz) · S(βx, βy, βz)

• Important: matrix multiplication is not commutative. Order of operands

matters!

• If we have a sequence of transformation matrices A, B, C, do we

compute (ABC) · p or A · (B · (C · p))?

• The latter is more efficient for a single point...

• But if we compute ABC first (more work) and then multiply each point

in parallel, it is more efficient for many points. The matrix ABC can be

passed to the shader.

Geometric Transformations 11 – 20 Howard Cheng



CPSC 3710 Computer Graphics University of Lethbridge✬

✫

✩

✪

Rotation

• To define rotation, we need:

– An axis of rotation: an entire line that is unchanged by the rotation

(commonly the x, y, or z-axis)

– An angle of rotation: typically counterclockwise when looking from

the positive axis toward the origin

• Can be generalized to any axis of rotation

Geometric Transformations 12 – 20 Howard Cheng



CPSC 3710 Computer Graphics University of Lethbridge✬

✫

✩

✪

Rotation

For rotation about the z-axis, the matrix is

Rz(θ) =















cos θ − sin θ 0 0

sin θ cos θ 0 0

0 0 1 0

0 0 0 1















Note that R−1

z (θ) = Rz(−θ).

You can define similarly Rx(θ) and Ry(θ) (see textbook).

Geometric Transformations 13 – 20 Howard Cheng



CPSC 3710 Computer Graphics University of Lethbridge✬

✫

✩

✪

Rotation About a Fixed Point

If one wants to perform rotation about a fixed point P other than origin

(let’s say rotation about z-axis):

1. translate P to origin

2. rotate

3. translate origin back to P

The transformation matrix is T (P ) ·Rz(θ) · T (−P ).

Geometric Transformations 14 – 20 Howard Cheng



CPSC 3710 Computer Graphics University of Lethbridge✬

✫

✩

✪

General Rotation about Origin

• Arbitrary rotations can be specified by three successive rotations about

the axes in some (non-unique) order.

• We can rotate first about z-axis, then y, then x.

• R = Rx(θx)Ry(θy)Rz(θz).

• It may be difficult to find these angles.

Geometric Transformations 15 – 20 Howard Cheng



CPSC 3710 Computer Graphics University of Lethbridge✬

✫

✩

✪

Rotation about Arbitrary Axis

• Specified by counterclockwise rotation along an axis defined by the

vector from P1 to P2. Assume center of rotation is origin (translate

otherwise).

• Normalize vector ~u = P2 − P1 to get ~v.

• Rotate ~v to positive z-axis through rotations about x and y axes,

perform rotation, and then rotate back:

R = Rx(−θx)Ry(−θy)Rz(θ)Ry(θy)Rx(θx)

Geometric Transformations 16 – 20 Howard Cheng



CPSC 3710 Computer Graphics University of Lethbridge✬

✫

✩

✪

Rotation about Arbitrary Axis

• If ~v = (αx, αy, αz), then

Rx(θx) =















1 0 0 0

0 αz/d −αy/d 0

0 αy/d αz/d 0

0 0 0 1















and

Ry(θy) =















d 0 −αx 0

0 1 0 0

αx 0 d 0

0 0 0 1















where d =
√

α2
y + α2

z.

Geometric Transformations 17 – 20 Howard Cheng



CPSC 3710 Computer Graphics University of Lethbridge✬

✫

✩

✪

Instance Transformation

• It may be useful to define a model of an object type (e.g. box) only once

even if there are many boxes of different sizes, orientations, and

positions.

• Different instance transformations can be used on the model for different

instances.

• Typically scaling is done first to resize object

• Rotation is done next for correct orientation

• Translation is done last to position it

• M = TRS is the transformation from model to object coordinates

Geometric Transformations 18 – 20 Howard Cheng



CPSC 3710 Computer Graphics University of Lethbridge✬

✫

✩

✪

Current Transformation Matrix

• Often we like to maintain a current transformation matrix C that is

applied to all vertices.

• We can set C to be a particular matrix.

• Most often we modify the CTM by multiplying another matrix on the

right.

• e.g.

C ← T

C ← CR

C ← CS

• Note the order of multiplication is reverse of the order of operations on

the vertices.

Geometric Transformations 19 – 20 Howard Cheng



CPSC 3710 Computer Graphics University of Lethbridge✬

✫

✩

✪

Pipeline Programming

When do we perform transformation:

• perform transformation in application, send transformed vertices

through vertex buffer: does not take advantage of modern hardware

• Compute transformation matrix in application and pass to shaders to

transform vertices: GPU performs transformation, matrix computed

once in application

• Compute transformation matrix and apply to vertices in shader: GPU

performs all computations

Geometric Transformations 20 – 20 Howard Cheng


