Geometric Transformations

- Geometric transformations are used to convert from one coordinate system to another.
- From model coordinates to window coordinates
- Transformation are represented as matrices and can be combined by matrix multiplication.

Homogeneous Coordinates

- For a point in three-dimensions, we represent it as a vector:
$\left[\begin{array}{l}x \\ y \\ z \\ w\end{array}\right]$
- For now $w=1$ for any point.
- We can represent vectors (directions) with $w=0$.
- Homogeneous coordinates allow us to perform all transformations by matrix multiplication

Coordinate Systems and Frames

- A coordinate system is represented by three independent (usually orthogonal) vectors $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$. For example, $(1,0,0,0),(0,1,0,0)$ and $(0,0,1,0)$.
- A coordinate frame is a coordinate system together with a point P that is the origin of the system
- A point in a coordinate frame can be represented as a coordinate $\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, 1\right)$, which has "world coordinate" $\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, 1\right) \cdot\left(\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}, P\right)$

Change of Coordinate Frames

- Suppose Frame 1 is represented by $\left(\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}, P\right)$ and Frame 2 is represented by $\left(\vec{w}_{1}, \vec{w}_{2}, \vec{w}_{3}, Q\right)$.
- It is common to need to convert a point ($\alpha_{1}, \alpha_{2}, \alpha_{3}, 1$) in Frame 1 to a coordinate ($\beta_{1}, \beta_{2}, \beta_{3}, 1$) in Frame 2.
- First, represent each of the basis vectors in Frame 2 as a combination of the basis vectors in Frame 1:

$$
\vec{w}_{i}=\gamma_{i 1} \vec{v}_{1}+\gamma_{i 2} \vec{v}_{2}+\gamma_{i 3} \vec{v}_{3}
$$

- Represent Q in Frame 2 as a coordinate in Frame 1:

$$
Q=\gamma_{41} \vec{v}_{1}+\gamma_{42} \vec{v}_{2}+\gamma_{43} \vec{v}_{3}+1 \cdot P
$$

- Let M be the matrix of $\gamma_{i j}$. Then

$$
\left[\begin{array}{c}
\vec{w}_{1} \\
\vec{w}_{2} \\
\vec{w}_{3} \\
Q
\end{array}\right]=M\left[\begin{array}{c}
\vec{v}_{1} \\
\vec{v}_{2} \\
\vec{v}_{3} \\
P
\end{array}\right]
$$

Change of Coordinate Frames

- So if we have a coordinate/direction in Frame 2, we have

$$
\left(\beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}\right) \cdot\left(\vec{w}_{1}, \vec{w}_{2}, \vec{w}_{3}, Q\right)
$$

and hence

$$
\left(\beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}\right) \cdot M\left[\begin{array}{c}
\vec{v}_{1} \\
\vec{v}_{2} \\
\vec{v}_{3} \\
P
\end{array}\right]
$$

- Therefore, the coordinates in Frame 1 are

$$
\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right)=\left(\beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}\right) \cdot M
$$

- The book gives the same formula but in transposed form.
- Use M^{-1} to convert from Frame 1 to Frame 2.

Model-View-Projection

- Objects are first defined in model coordinates
- Then placed in object/world coordinates with model transformation
- Then placed in eye/camera coordinates with view transformation
- Then placed in clip coordinates with projection transformation
- Perspective division is done to get normalized device coordinates
- Finally window coordinates are computed
- Programmers work with the model frame, object frame, and eye frame

Affine Transformation

- An affine transformation preserves lines (i.e. lines remain lines after transformations)
- It is represented by a matrix

$$
M=\left[\begin{array}{cccc}
\alpha_{11} & \alpha_{12} & \alpha_{13} & \alpha_{14} \\
\alpha_{21} & \alpha_{22} & \alpha_{23} & \alpha_{24} \\
\alpha_{31} & \alpha_{32} & \alpha_{33} & \alpha_{34} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

- Column j of M is where the j-th standard basis gets transformed to. i.e. $(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1)$

Translation

- Translate a point by the vector $\left(\alpha_{x}, \alpha_{y}, \alpha_{z}, 0\right)$.
- Translation matrix is

$$
T\left(\alpha_{x}, \alpha_{y}, \alpha_{z}\right)=\left[\begin{array}{cccc}
1 & 0 & 0 & \alpha_{x} \\
0 & 1 & 0 & \alpha_{y} \\
0 & 0 & 1 & \alpha_{z} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

- Note: $T^{-1}\left(\alpha_{x}, \alpha_{y}, \alpha_{z}\right)=T\left(-\alpha_{x},-\alpha_{y},-\alpha_{z}\right)$.

Scaling

- Scale a point by factors of β_{x}, β_{y} and β_{z} in the x, y, and z directions (i.e. $(1,0,0,0)$ becomes $\left(\beta_{x}, 0,0,0\right)$
- Assume $\beta_{x}, \beta_{y}, \beta_{z} \neq 0$
- Scaling matrix is

$$
S\left(\beta_{x}, \beta_{y}, \beta_{z}\right)=\left[\begin{array}{cccc}
\beta_{x} & 0 & 0 & 0 \\
0 & \beta_{y} & 0 & 0 \\
0 & 0 & \beta_{z} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

- Note: $S^{-1}\left(\beta_{x}, \beta_{y}, \beta_{z}\right)=S\left(1 / \beta_{x}, 1 / \beta_{y}, 1 / \beta_{z}\right)$.

Concatenation of Transformations

- You can combine transformations with matrix multiplication.
- e.g. To scale an object and then translate it, you can use

$$
T\left(\alpha_{x}, \alpha_{y}, \alpha_{z}\right) \cdot S\left(\beta_{x}, \beta_{y}, \beta_{z}\right)
$$

- Important: matrix multiplication is not commutative. Order of operands matters!
- If we have a sequence of transformation matrices A, B, C, do we compute $(A B C) \cdot p$ or $A \cdot(B \cdot(C \cdot p))$?
- The latter is more efficient for a single point...
- But if we compute $A B C$ first (more work) and then multiply each point in parallel, it is more efficient for many points. The matrix $A B C$ can be passed to the shader.

Rotation

- To define rotation, we need:
- An axis of rotation: an entire line that is unchanged by the rotation (commonly the x, y, or z-axis)
- An angle of rotation: typically counterclockwise when looking from the positive axis toward the origin
- Can be generalized to any axis of rotation

Rotation

For rotation about the z-axis, the matrix is

$$
R_{z}(\theta)=\left[\begin{array}{cccc}
\cos \theta & -\sin \theta & 0 & 0 \\
\sin \theta & \cos \theta & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Note that $R_{z}^{-1}(\theta)=R_{z}(-\theta)$.
You can define similarly $R_{x}(\theta)$ and $R_{y}(\theta)$ (see textbook).

Rotation About a Fixed Point

If one wants to perform rotation about a fixed point P other than origin (let's say rotation about z-axis):

1. translate P to origin
2. rotate
3. translate origin back to P

The transformation matrix is $T(P) \cdot R_{z}(\theta) \cdot T(-P)$.

General Rotation about Origin

- Arbitrary rotations can be specified by three successive rotations about the axes in some (non-unique) order.
- We can rotate first about z-axis, then y, then x.
- $R=R_{x}\left(\theta_{x}\right) R_{y}\left(\theta_{y}\right) R_{z}\left(\theta_{z}\right)$.
- It may be difficult to find these angles.

Rotation about Arbitrary Axis

- Specified by counterclockwise rotation along an axis defined by the vector from P_{1} to P_{2}. Assume center of rotation is origin (translate otherwise).
- Normalize vector $\vec{u}=P_{2}-P_{1}$ to get \vec{v}.
- Rotate \vec{v} to positive z-axis through rotations about x and y axes, perform rotation, and then rotate back:

$$
R=R_{x}\left(-\theta_{x}\right) R_{y}\left(-\theta_{y}\right) R_{z}(\theta) R_{y}\left(\theta_{y}\right) R_{x}\left(\theta_{x}\right)
$$

Rotation about Arbitrary Axis

- If $\vec{v}=\left(\alpha_{x}, \alpha_{y}, \alpha_{z}\right)$, then

$$
R_{x}\left(\theta_{x}\right)=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \alpha_{z} / d & -\alpha_{y} / d & 0 \\
0 & \alpha_{y} / d & \alpha_{z} / d & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

and

$$
R_{y}\left(\theta_{y}\right)=\left[\begin{array}{cccc}
d & 0 & -\alpha_{x} & 0 \\
0 & 1 & 0 & 0 \\
\alpha_{x} & 0 & d & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

where $d=\sqrt{\alpha_{y}^{2}+\alpha_{z}^{2}}$.

Instance Transformation

- It may be useful to define a model of an object type (e.g. box) only once even if there are many boxes of different sizes, orientations, and positions.
- Different instance transformations can be used on the model for different instances.
- Typically scaling is done first to resize object
- Rotation is done next for correct orientation
- Translation is done last to position it
- $M=T R S$ is the transformation from model to object coordinates

Current Transformation Matrix

- Often we like to maintain a current transformation matrix C that is applied to all vertices.
- We can set C to be a particular matrix.
- Most often we modify the CTM by multiplying another matrix on the right.
- e.g.

$$
\begin{aligned}
& C \leftarrow T \\
& C \leftarrow C R \\
& C \leftarrow C S
\end{aligned}
$$

- Note the order of multiplication is reverse of the order of operations on the vertices.

Pipeline Programming

When do we perform transformation:

- perform transformation in application, send transformed vertices through vertex buffer: does not take advantage of modern hardware
- Compute transformation matrix in application and pass to shaders to transform vertices: GPU performs transformation, matrix computed once in application
- Compute transformation matrix and apply to vertices in shader: GPU performs all computations

