
CPSC 3710 Computer Graphics University of Lethbridge✬

✫

✩

✪

Lighting

• So far, we assumed that each surface has a solid colour (or a blend). The

colour is completely dependent on the surface.

• In reality, colour depends on both the properties of the surface and the

light source.

• A flat surface does not look uniform throughout generally.

• We now look at how to model lighting effects.

• Realistic modelling of lighting requires knowledge in physics: many

approximations and simplifications in computer graphics

Lighting 1 – 25 Howard Cheng



CPSC 3710 Computer Graphics University of Lethbridge✬

✫

✩

✪

Global Lighting

• In “real world”, there can be many light sources.

• Some objects can emit light.

• Other objects can absorb, scatter, and/or reflect light.

• What we see is how much light is scattered and reflected to the viewer

from a particular point.

• When light bounces off a surface, it can then interact with something

else.

• Need to trace light recursively.

• Computationally intensive.

Lighting 2 – 25 Howard Cheng



CPSC 3710 Computer Graphics University of Lethbridge✬

✫

✩

✪

Local Lighting

• To simplify calculations, we compute local lighting.

• For each position and for each light source, compute amount of light

arriving at the viewer.

• Consider only light directly from light sources.

Lighting 3 – 25 Howard Cheng



CPSC 3710 Computer Graphics University of Lethbridge✬

✫

✩

✪

Surfaces

There are three main types of surfaces (can be a mixture of these):

• Specular: most of the light is reflected or scattered in a narrow range of

angles. Appears shiny.

• Diffuse: scattered in all directions. Appears matte or flat.

• Translucent: some light can pass through the surface. Can also bend

light (refraction).

Lighting 4 – 25 Howard Cheng



CPSC 3710 Computer Graphics University of Lethbridge✬

✫

✩

✪

Light Sources

• Light is not simply an intensity. It is an intensity function depending on

wavelength (colour).

• We model a light source with a three component intensity

I = (Ir, Ig, Ib)

representing the intensity of the RGB components of the light.

• There may also be a direction.

• Four basic types: ambient, point, spotlights, distant light.

Lighting 5 – 25 Howard Cheng



CPSC 3710 Computer Graphics University of Lethbridge✬

✫

✩

✪

Ambient Light

• There is often “general” lighting (e.g. sun, overhead lights, etc.) that

provide somewhat uniform lighting in the whole scene.

• Modelling each such source can be computationally intensive.

• Instead, we define a general uniform lighting as the ambient light and

apply this uniformly everywhere:

Ia = (Iar, Iag, Iab)

• Each point in the scene receives the same ambient light.

Lighting 6 – 25 Howard Cheng



CPSC 3710 Computer Graphics University of Lethbridge✬

✫

✩

✪

Point Light Sources

• An ideal point source emits light equally in all direction.

• It is located at a point p0:

I(p0) = (Ir(p0), Ig(p0), Ib(p0))

• For any given point p, the amount of light received from p0 depends on

the distance (squared):

i(p, p0) =
1

‖p− p0‖2
I(p0)

• It is simple but may not be realistic.

• Often bright or dark, but not smooth. Larger light sources can smooth

out shadows, for example.

Lighting 7 – 25 Howard Cheng



CPSC 3710 Computer Graphics University of Lethbridge✬

✫

✩

✪

Spotlights

• Light is projected in a cone. The width of the cone is determined by an

angle.

• Usually light is more concentrated at the center of the cone, and

decreases moving away from center.

• If ~u is unit vector for the direction of the spotlight, and ~v is the unit

vector from spotlight to object, then θ = cos−1(~u · ~v) can be used to

determine intensity received.

Lighting 8 – 25 Howard Cheng



CPSC 3710 Computer Graphics University of Lethbridge✬

✫

✩

✪

Distant Light Sources

• We often need to compute a vector from light source to a point.

• If a light source is very far away, this vector can be considered constant

for all points.

• Direction is simply represented as a vector (same for all points).

Lighting 9 – 25 Howard Cheng



CPSC 3710 Computer Graphics University of Lethbridge✬

✫

✩

✪

Phong Lighting Model

• Four vectors are needed to compute the colour of each point p:

– ~n: normal vector to the surface at point p

– ~v: vector from point p to the viewer (center of projection for

perspective viewing)

–
~l: vector from point p to the light source (assuming point light source)

– ~r: direction of a perfectly reflected light from ~l (computed from ~n and
~l)

• All vectors are normalized to have length 1.

• Each light source has three components: ambient, diffuse, and specular,

each with RGB components.

Lighting 10 – 25 Howard Cheng



CPSC 3710 Computer Graphics University of Lethbridge✬

✫

✩

✪

• For each light source, this can be specified as a matrix:

L =









Lra Lga Lba

Lrd Lgd Lbd

Lrs Lgs Lbs









• We can use matrices or three different vectors (ambient, diffuse,

specular) in implementation.

• We can also use 4-component RGBA colours.

Lighting 11 – 25 Howard Cheng



CPSC 3710 Computer Graphics University of Lethbridge✬

✫

✩

✪

Phong Lighting Model

• Each point also has a reflective value (in [0, 1]) for each type of light and

colour to determine the proportion of light that is reflected:

R =









Rra Rga Rba

Rrd Rgd Rbd

Rrs Rgs Rbs









• We can also use 4-component RGBA colours.

• The light seen for each component is simply the corresponding light

source multiplied by the reflection value.

• The amount of light seen is the combination of the three components.

For example, for the red component:

Ir = Rra · Lra +Rrd · Lrd +Rrs · Lrs + Iar

Iar is an optional global ambient term

Lighting 12 – 25 Howard Cheng



CPSC 3710 Computer Graphics University of Lethbridge✬

✫

✩

✪

• If there are multiple light sources, need to add the contribution from

each light source.

• To simplify presentation, we will remove the r, g, b subscripts

Lighting 13 – 25 Howard Cheng



CPSC 3710 Computer Graphics University of Lethbridge✬

✫

✩

✪

Ambient Reflection

• Each point in the surface has the same reflection coefficient ka ∈ [0, 1].

• Ia = ka · La.

• La can be any individual light sources, or global ambient term.

• The RGB components of ka can describe the colour of the surface

(assuming white light)

Lighting 14 – 25 Howard Cheng



CPSC 3710 Computer Graphics University of Lethbridge✬

✫

✩

✪

Diffuse Reflection

• Ideally, diffuse reflector scatters light equally in all directions.

• Also called Lambertian surfaces.

• How much light is scattered depends on the angle between the surface

and light source: brightest if it is perpendicular, darkest if it is parallel:

Rd = kd · cos θ = kd(~l · ~n)

where θ is the angle between ~l and ~n, and kd is some constant (property

of surface)

• The intensity from diffuse term is:

Id = kd(~l · ~n) · Ld

• If we wish to incorporate the distance to the light: divide by a+ bd+ cd2

for some constants a, b, c and distance d.

Lighting 15 – 25 Howard Cheng



CPSC 3710 Computer Graphics University of Lethbridge✬

✫

✩

✪

• If the light source is below the surface, this can be negative (set to 0

instead).

Lighting 16 – 25 Howard Cheng



CPSC 3710 Computer Graphics University of Lethbridge✬

✫

✩

✪

Specular Reflection

• Allows for “shininess”

• Amount of light reflected depends on how close we are to the reflected

angle.

• Drops off quickly as we move further.

Is = ks · Ls cos
α φ

• ks is property of the material

• α controls how quickly it drops off (shininess). A value of 100–500

correspond to most metallic surfaces.

• φ: angle between ~r and ~v, so

cosφ = ~r · ~v

• Note: if the dot product is negative, Is = 0 because the light is on the

other side of the surface

Lighting 17 – 25 Howard Cheng



CPSC 3710 Computer Graphics University of Lethbridge✬

✫

✩

✪

Blinn-Phong Model

•

Is = ks · Ls(~r · ~v)
α

• φ: angle between ~r and ~v.

• ~r has to be computed for each point

• One approximation: use the “halfway vector”:

~H =
~v +~l

‖~v +~l‖

• Replace ~r · ~v by ~n · ~H and increase α (heuristically 4×):

Is = ks · Ls(~n · ~H)4α

• If ~n · ~H < 0, set Is = 0.

• Why can this be faster? If we assume camera and light are “far away”,

Lighting 18 – 25 Howard Cheng



CPSC 3710 Computer Graphics University of Lethbridge✬

✫

✩

✪

then ~v and ~l can be assumed to be constant on entire surface.

Lighting 19 – 25 Howard Cheng



CPSC 3710 Computer Graphics University of Lethbridge✬

✫

✩

✪

Normal Vectors Computations

• Sometimes we can just specify the normals by hand.

• If we have a triangle specified by p1, p2, p3 in counterclockwise order,

then

~n′ = (p2 − p1)× (p3 − p1)

and

~n =
~n′

‖~n′‖

• How does ~n gets transformed by model-view matrix? If M is the

model-view matrix (only the top-left 3× 3 portion), then transform ~n by

M · ~n does not work (e.g. scaling)!

• Need to transform ~n by the Normal matrix:

N = (M−1)T

(see textbook for the math behind this)

Lighting 20 – 25 Howard Cheng



CPSC 3710 Computer Graphics University of Lethbridge✬

✫

✩

✪

Gourad vs Phong Shading

• Gourand Shading: determine the colours at each vertex. The fragments

inside the primitive are interpolated from the vertices.

• Can be done in vertex shader.

• Phong Shading: determine the normal vectors at each vertex. The

fragments interpolate the normal vectors and compute colours.

• Can be done in fragment shader.

• If a surface is flat and all vertices have same normal vector, these two

approaches are similar (not exactly the same)

• Otherwise, Phong shading produces more realistic results.

Lighting 21 – 25 Howard Cheng



CPSC 3710 Computer Graphics University of Lethbridge✬

✫

✩

✪

OpenGL Implementation

• Represent all properties of light and surfaces (Ia, Id, Is, ka, kd, ks as a

vector of RGB components (can also add alpha).

• Specify light position as a 4-diemsnional vector.

• Many libraries will allow componentwise vector multiplication:

Ia ∗ ka = (Iarkar, Iagkag, Iabkab)

• In our matrix/vector library:

– normalize scales a vector to unit length

– dot computes dot product

– cross computes cross product

– Normal computes the normal matrix

• Pass them as uniform variables to vertex shader.

Lighting 22 – 25 Howard Cheng



CPSC 3710 Computer Graphics University of Lethbridge✬

✫

✩

✪

OpenGL Implementation

In vertex shader:

position = view * model * vPosition;

gl_position = projection * position;

N = Normal * aNormal;

// aNormal passed in as normal in model space

Make the normal vector and position part of the output variable to the

fragment shader (interpolated).

Lighting 23 – 25 Howard Cheng



CPSC 3710 Computer Graphics University of Lethbridge✬

✫

✩

✪

OpenGL Implementation

In fragment shader:

L = normalize(lightPosition - position)

V = normalize(-position);

// viewer is at origin

H = normalize(V + L);

Light and surface properties can be passed to fragment shader as uniform

variables from application.

Compute ambient, diffuse and specular terms separately and add them.

Lighting 24 – 25 Howard Cheng



CPSC 3710 Computer Graphics University of Lethbridge✬

✫

✩

✪

Ray Tracing

• Ray tracing is a technique to perform global shading computation.

• For each pixel, shoot a ray towards the centre of projection and see what

is the first object it hits. Then bounce it towards a light source (stength

adjusted by angles)

• If the object is reflective, recursively trace the reflected ray (up to some

limit)

• More realistic scenes, can handle shadows and reflections.

• Computationally more intensive.

Lighting 25 – 25 Howard Cheng


