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Modelling

• To specify an object to display, we need to specify the primitives making

up the object.

• Typically we use model coordinate space.

• If we wish to create many different objects of a particular model, we

simply create instances of the model.

• Use transformations to scale, orient, and place the instance—each

instance has its own transformation matrices M = TRS.

• Optional: object-oriented techniques can be used to create instances.
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Hierarchical Models

• Sometimes objects are placed in relation to other objects to form larger

objects.

• e.g. a car has a body, wheels, windows, etc.

• e.g. a robot has a body, a head, arms, and legs.

• It would be more convenient to define objects parts relative to another.

For example, if the body moves then anything attached to the body also

moves by the same amount.
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Hierarchical Models

• Each object has a main part (e.g. body of a robot). The object has

certain coordinates in the model coordinate space.

• We can define each part in its own model space, and use a

transformation matrix M = TRS to attach it to the main part.

• Parts can be attached to other parts as well (e.g. upper arm to body,

forearm to upper arm, hand to upper arm, etc.)

• The hierarchy can be represented as a rooted tree (root = main part).

• Each node contains the part’s vertices in its own model space, together

with transformation matrix to place it relative to its parent.

• The transformation matrix at the root places the entire object (all its

parts) at the correct location.
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Hierarchical Models

• To place a particular part in world coordinates, we must multiply the

part’s vertices by all transformation matrices from the root of the tree to

the node.

• If M1, . . . ,Mp are the transformation matrices from root to node p, then

the final coordinates of part p is multiplied by the matrix M1 · · ·Mp.
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Rendering Hierarchical Models

• We can use pre-order traversal of a tree.

• We maintain a current transformation matrix C that is used to multiply

the vertices in the current node.

• When we enter a node in pre-order traversal, we multiply C by the

node’s transformation matrix (on the right).

• The matrix C is used to transform the vertices in current node.

• Before we recurse to subtrees, we must save current transformation

matrix—when that subtree finishes we have to restore the current

transformation matrix for other subtrees.

• We can handle this explicitly with our own stack, or we can make use of

local variables in recursion.
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Drawing Hierarchical Models

Pseudocode:

void render(Matrix C, Node *root)

{

if (empty tree) return;

C *= root->M;

vertices in node root are transformed by C

for each child of root

render(C, child)

}
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Robotic Arm

• Example: a 3-segment robotic arm in 2-dimension

• Each segment is a simple rectangle of unit length

• First segment is attached to origin.

• Other segments are attached to previous segment.

• Each segment is defined by length (scale), angle with previous segment

(rotation) and position (translation).

• Arm configuration defined by angles at each joint: affects rotation in

each node.

• To render each segment, multiply matrices from first segment to that

segment.
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