
CPSC 3710 Computer Graphics University of Lethbridge✬

✫

✩

✪

Texture

• Instead of having each surface as a solid colour, we can attach “texture”

to the surface.

• Texture mapping refers to putting an image onto a surface.

• e.g. putting brick or wood grain patterns onto a surface

• There are also other application as well.

Texture 1 – 15 Howard Cheng



CPSC 3710 Computer Graphics University of Lethbridge✬

✫

✩

✪

Digital Images

• Textures are often specified by digital images.

• A digital image is a rectangular array (N ×M) of pixel values.

• For grayscale (also called monochromatic or luminance) images, each

pixel is a value in [0, 255] (8-bit images). Black is 0, white is 255.

• For colour images, each pixel is typically specified by a vector of

(R,G,B) values in [0, 255] (24-bit images).

• Images may be stored in different formats (e.g. GIF, TIFF, PNG, PDF,

JPEG).

• Most formats perform some data compression, some are lossy (e.g.

JPEG).

• OpenGL: need external libraries to load image data.

Texture 2 – 15 Howard Cheng



CPSC 3710 Computer Graphics University of Lethbridge✬

✫

✩

✪

Texture Mapping

• For realistic rendering of objects, texture needs to be applied to surfaces.

• Texture mapping: uses an image to influence the colour of a fragment.

• Done inside the fragment shader.

Texture 3 – 15 Howard Cheng



CPSC 3710 Computer Graphics University of Lethbridge✬

✫

✩

✪

Texture Mapping

• Textures are patterns that may repeat periodically.

• Textures can be specified in one, two, three, or four dimensions.

• We will only look at 2D texture mapping.

Texture 4 – 15 Howard Cheng



CPSC 3710 Computer Graphics University of Lethbridge✬

✫

✩

✪

2D Texture Mapping

• Texture is a 2D image (can be loaded or generated by code).

• It is an array of texture elements (texels).

• The texture can be thought of as an array T (s, t) where s and t are

texture coordinates. We assume all texture coordinates are real numbers

in [0, 1].

• A texture map is a set of functions that map coordinates on the surface

to texture coordinates:

(s, t) = (s(x, y, z, w), t(x, y, z, w))

• Conceptually: for each fragment on the object, the texture map tells us

which texel should be used.

Texture 5 – 15 Howard Cheng



CPSC 3710 Computer Graphics University of Lethbridge✬

✫

✩

✪

2D Texture Mapping

• One particular issue: it may be that (s, t) is “in between” texels. Which

texel should we use?

• Simplest: point sampling (GL_NEAREST)—use the nearest one. Can lead

to visible aliasing effects.

• More complicated: linear filtering (GL_LINEAR)—interpolates between

close texels.

Texture 6 – 15 Howard Cheng



CPSC 3710 Computer Graphics University of Lethbridge✬

✫

✩

✪

2D Texture Mapping

• If the texture coordinates are outside of [0, 1], we can

– GL_REPEAT: repeat the pattern periodically

– GL_MIRRORED_REPEAT: repeat the pattern periodically but reflect each

time

– GL_CLAMP_TO_EDGE: coordinates clamped to 0 and 1.

– GL_CLAMP_TO_BORDER: coordinates outside are given a “border”

colour.

• These can be specified independently for s and t.

• Specified with glTexParameteri.

Texture 7 – 15 Howard Cheng



CPSC 3710 Computer Graphics University of Lethbridge✬

✫

✩

✪

Mipmapping

• Depending on the distance of the object to the viewer, the size of a

fragment may be much larger or smaller than a texel.

• If a texel is larger than one pixel, minification is needed.

• If a texel is smaller than one pixel, magnification is needed.

• This can be controlled using GL_TEXTURE_MIN_FILTER and

GL_TEXTURE_MAG_FILTER using point sampling or linear filtering, but

there is a different way.

• Mipmapping: generates a set of texture arrays from the original, at

different resolutions (glGenerateMipmap).

• Use GL_LINEAR_MIPMAP_LINEAR for minification to automatically use the

“right size”. Second parameter is to interpolate amongst the different

resolutions.

Texture 8 – 15 Howard Cheng



CPSC 3710 Computer Graphics University of Lethbridge✬

✫

✩

✪

OpenGL Texture Mapping Setup

• Call glGenTextures and glBindTexture.

• Set up wrapping, minification and magnification parameters.

• Load image and set texture with glTexImage2D.

• Call glGenerateMipmap to generate mipmaps.

• Provide a 2 dimensional input atrribute in the vertex shader for the

texture coordinates.

• Load the texture coordinates of each vertex using a VertexAttribArray.

Texture 9 – 15 Howard Cheng



CPSC 3710 Computer Graphics University of Lethbridge✬

✫

✩

✪

OpenGL Texture Mapping Setup

• In vertex shader, accepts texture coordinates and perform needed

calculations (usually none) and pass the texture coordinates to fragment

shader (interpolated for each fragment).

• In fragment shader, there is automatically a uniform sampler2D

parameter.

• In fragment shader, the function texture(uTextureMap, vTexCoord)

will return the texel value using the appropriate sampling selected.

• The colour returned can be used to determine the colour of the fragment

(possibly together with lighting information).

Texture 10 – 15 Howard Cheng



CPSC 3710 Computer Graphics University of Lethbridge✬

✫

✩

✪

3D Texture Mapping

• Sometimes attaching 2D textures to each surface can look unrealistic

(e.g. edge between surfaces)

• Instead, we can define 3D textures for entire object (e.g. wood grain,

stone, etc.).

• There will be three texture coordinates (s, t, r).

• The effect will be similar to “carving” an object out of a textured

material.

Texture 11 – 15 Howard Cheng



CPSC 3710 Computer Graphics University of Lethbridge✬

✫

✩

✪

Environment/Reflection Map

• How do we render a scene when there is a highly reflective surface (e.g.

mirror)?

• We cannot render the mirror without knowing the rest of the scene.

• Texture mapping can be used to make a good approximation.

Texture 12 – 15 Howard Cheng



CPSC 3710 Computer Graphics University of Lethbridge✬

✫

✩

✪

Environment/Reflection Map

• Looking at a mirror: the angle of reflection is known given the viewer

position.

• We can first pretend to render the scene without the mirror.

• Place the camera at the centre of the mirror, looking towards the normal

vector of the mirror.

• Render the scene. This is what the mirror “sees”.

• Use the scene as a texture to map onto the surface of the camera.

• Problems:

– rendering first pass without the mirror may be unrealistic

– what should be the projection plane in the first rendering?

• More advanced techniques are needed to solve these problems.

Texture 13 – 15 Howard Cheng



CPSC 3710 Computer Graphics University of Lethbridge✬

✫

✩

✪

Bump Mapping

• Sometimes we want a surface to appear non-smooth with little “bumps”.

e.g. the peel of an orange is not flat.

• The small variations are hard to model geometrically.

• However, lighting variation can be used to “fool” the viewer: if the

normal vectors are perturbed, it will appear that surface is “bumpy”.

• This is applied in the fragment shader.

Texture 14 – 15 Howard Cheng



CPSC 3710 Computer Graphics University of Lethbridge✬

✫

✩

✪

Bump Mapping

• We will omit the mathematics to compute.

• The perturbations to the normal vectors can be stored as a texture

called a normal map.

• The normal map is used to modify the normal vectors before lighting

calculations.

Texture 15 – 15 Howard Cheng


