CPSC 3710 Computer Graphics University of Lethbridge

4 N

Viewing I

e Now that objects are positioned in the world, we need a way to view a
scene

e We break this process into two steps:
— placing the camera/viewer

— “taking a picture”: projection

\ _/

Viewing 1-24 Howard Cheng

CPSC 3710 Computer Graphics University of Lethbridge

4 N
Pinhole Camera '

e We start with understanding how a “real” pinhole camera works

e Light rays travel from objects through the pinhole into the back of the
camera (sensors/film)

e Parameters:
— dimensions of sensor array

— distance between pinhole and sensors

e Image formed is upside down and backwards

\ _/

Viewing 2-24 Howard Cheng

CPSC 3710 Computer Graphics University of Lethbridge

4 A
Orthogonal Viewing I

e Instead of a pinhole camera, each sensor in the array just looks

“forward” and record what it sees.
e i.e. Light rays travel from objects to the sensor array at 90 degrees
e It is not realistic but it has many useful applications
e Distances and angles parallel to the sensor array are preserved

e Often used in technical drawings

\ _/

Viewing 3—-24 Howard Cheng

CPSC 3710 Computer Graphics University of Lethbridge

Perspective Viewing I

e For realistic viewing: objects farther away are smaller, objects closer are

larger
e Use pinhole camera model

e Trick: pretend the sensor array is in front of the pinhole so the image is
not upside down and backwards

e Calculations of projection make use of similar triangles

e As objects move further, perspective viewing becomes closer to

orthogonal viewing

\ _/

Viewing 4 — 24 Howard Cheng

CPSC 3710 Computer Graphics University of Lethbridge

Model-View-Projection I

e Place objects: done by transformation matrices (rotation, scale,

translation). This is called a Model matrix.

e Position the camera: a View matrix that transforms object coordinates

into camera coordinates.

e A Projection matrix is then used to transform objects from camera
coordinates to clip coordinates. Only coordinates within [—1, 1] are
displayed.

e This is the model-view-projection approach. In practice, model and view

matrices are often premultiplied to obtain a model-view matrix.

\ _/

Viewing 5—24 Howard Cheng

CPSC 3710 Computer Graphics University of Lethbridge

4 N

Camera Positioning I

e First we define the camera coordinate system:
— the camera is positioned at the origin (0,0, 0)
— it looks towards the negative z-axis

— the positive y-axis is “up”
e By default, all coordinates in [—1, 1] are visibile.

e It is possible to see objects “behind” the camera by default.

\ _/

Viewing 6 — 24 Howard Cheng

CPSC 3710 Computer Graphics University of Lethbridge

-

Camera Positioning' \

If we want to put the camera in some other position and orientation, the
scene has to be transformed to get them into camera coordinates.

e.g. If we want to move the camera to position p, translate the scene by
—p).

So the camera is not moved, but the scene is—the view matrix is applied
to vertices of objects.

If we want to view in direction specified by a vector ¢ (instead of
(0,0,—1)), a rotation is needed to rotate ¢ to (0,0, —1).

If we want the up direction to be @, we need to rotate « to (0, 1,0).

The view matrix would be a multiplication of the translation matrix by
the required rotation matrices (on the right).

Notice that the transformation appears backward because we move the

scene, not the camera. /

Viewing 7T—24 Howard Cheng

CPSC 3710 Computer Graphics University of Lethbridge

Look At Transformation '

e The LookAt transformation is a convenient way to specify camera

position. It is defined by:
— eye/camera position: eye
— a point to look at: at

— an up vector ¥, (does not have to be parallel to viewing plane)

e The viewing direction is defined by v,, = eye — at. This is normalized to

<l

—

n —

n.. This is normal to the viewing plane.

nl

1

<

e Compute
Vyup X 1

U= — —
| Tup X T

@ is orthogonal to both 71 and v,

\ _/

Viewing 8 — 24 Howard Cheng

CPSC 3710 Computer Graphics University of Lethbridge

4 N

e Compute the “up” vector orthogonal to both 7 and u:

U=

S S

X
X

S| Sy

e Now we have a coordinate system defined by three axes u, ¥ and n.

\ _/

9-24 Howard Cheng

Viewing

CPSC 3710 Computer Graphics University of Lethbridge

Look At Transformation '

e Assume for now that the camera is located at the origin.

e The change of coordinate matrix from uvn to zyz is:

Uy Ug Ny

0_
Uy Uy Ny 0
0
1_

e If the camera is positioned at (x,y, z), then the transformation from
camera coordinates to object coordinates is:

T(z,y,2)A

\ _/

Viewing 10 — 24 Howard Cheng

CPSC 3710 Computer Graphics

University of Lethbridge

-

Look At Transformation '

~

e To convert from object coordinates to camera coordinates, the final

\

LookAt Transformation is
V= (T(x,y,2)A)"
= AT (—x, —y, —2)
= ATT(—2, -y, —2)

_ux Uy Uy —TUg — YUy —

Vg Uy Uy —TVp — YUy —
B Ng Ny Ny —ITNg — YNy

I O 0 O 1

ZU,

2V,

_/

Viewing 11 — 24

Howard Cheng

CPSC 3710

Computer Graphics

University of Lethbridge

-

Orthographic Pro jection'

~

e When towards the negative z-axis, orthographic projection simply means

removing the z coordinate:

1
0
0

0

0
1
0
0

0
0
0
0

:
0
0
1_

e However, we need to also determine what can be viewed and what will

\

be clipped out.

_/

Viewing

12 — 24

Howard Cheng

CPSC 3710 Computer Graphics University of Lethbridge

4 N

Orthographic Pro jection'

e The clipping volume is a rectangular prism aligned with the axes:
— left < a < right
— bottom < y < top
— -far < z < -near (note the negative sign)

e A transformation is needed to normalize this prism into the standard

viewing prism (z,y, z € [—1,1])

\ _/

Viewing 13 — 24 Howard Cheng

CPSC 3710 Computer Graphics University of Lethbridge

Orthogonal Projection I

e First, translate centre of prism to origin:
T =T(—(right + left)/2, —(top + bottom) /2, (far + near)/2).

e Then scale it to the right size:
S = 85(2/(right — left),2/(top — bottom), 2/ (near — far)).

e [Final matrix is

2 0 0 __left+right i
right—left right—left
0 2 0 __top+bottom
N = ST = top—bottom top—bottom
2 far+near
0 0 - -
far—near far—near
0 0 0 1

\ _/

Viewing 14 — 24 Howard Cheng

CPSC 3710 Computer Graphics University of Lethbridge

-

Perspective Projection I \

In perspective projection, we model a pinhole camera.
The viewing plane is in front of the camera.
Suppose the center of the camera (the pinhole) is located at the origin.

The viewing plane is defined by z, = d < 0. The distance to the viewing
plane from the origin is —d.

e Using similar triangles, we see that a point at (z,y, z) will project to
(> Yp, 2p) = (ﬁ? ,zg;—d’d)'
e But this operation is nonlinear (divide by z) and cannot be represented
as a matrix. ..
e Notice that as z increases (further away), the projected coordinates get
smaller.
K. Aside: what happens if a point has z = 07 /

Viewing 15 - 24 Howard Cheng

CPSC 3710 Computer Graphics University of Lethbridge

Perspective Pro jection'

e To perform perspective projection as a matrix, we need to reconsider our

representation of points as homogeneous coordinates.

e Instead of w = 1, we allow w to have any value, so the point (z,y, z) can

be represented as (wx,wy,wz,w) provided w p.

e This can be interpreted as a line in 4-dimensional space representing

each point in 3-dimensional space.

e The “true” point can be obtained by a perspective division of w.

\ _/

Viewing 16 — 24 Howard Cheng

CPSC 3710 Computer Graphics University of Lethbridge

Perspective Pro jection'

e Back to

|
N\
N
\&g
Q.
N
\@
QL
[
N—

(Tps Ups 2p)

e We can write in matrix form:

z 10 0 0| [z
yl 0O 1 0 0] |y
z 0O O 1 0 z
% _O 0 l/d O_ _1_

e S0 after perspective division by w = £ we obtain the desired projection.

\ _/

Viewing 17 - 24 Howard Cheng

CPSC 3710 Computer Graphics University of Lethbridge

Perspective Pro jection'

e So the required procedure for perspective projection is:

— multiply coordinates by

1 0 0 O

01 0 0
M =

00 1 0

0 0 1/d 0

— divide by the w component

e An added advantage is that the z coordinate is not lost until perspective

division is done.

\ _/

Viewing 18 — 24 Howard Cheng

CPSC 3710 Computer Graphics University of Lethbridge

4 N

Perspective Pro jection'

e So far we have not considered clipping.

e There are two ways to specify a clipping volume:
— Frustum: left, right, top, bottom, near, far

— Field of view: angle, aspect ratio, near, far

\ _/

Viewing 19 — 24 Howard Cheng

CPSC 3710 Computer Graphics

University of Lethbridge

-

~

Perspective Projection (by Frustum) I

e left, right, top, and bottom are defined in terms of near clipping plane.

e Transformation needed to transform the frustum into a cubic clipping

volume [—1, 1].

e Final matrix (see textbook for derivations)

2-near 0 right+left 0]
right—left right—left
0 2-near top+bottom 0
M = top—bottom top—bottom
0 0 __ far+near —2-far-near
far—mnear far—near
0 0 1 0
Viewing 20 — 24

Howard Cheng

CPSC 3710 Computer Graphics University of Lethbridge

-

\

Perspective Projection (by Field of View) I

Use frustum:

— left = —right

— bottom = —top

— top = near - tan(fovy)

— right = top - aspect

~

_/

Viewing 21 — 24 Howard Cheng

CPSC 3710 Computer Graphics University of Lethbridge

Hidden Surface Removal.

e One can use object-space algorithm to determine which objects are in

front and ignore objects that are not visible.
e But it is easier to work in image space and simply render all objects.

e If the z coordinates are kept, they can be used to determine which

objects are in front and visible.

e Some calculations may be wastsed, but much easier to implement (e.g.

partially visible objects).

\ _/

Viewing 22 — 24 Howard Cheng

CPSC 3710 Computer Graphics University of Lethbridge

-

\

Depth Buffer I \

Also called z-buffer.
A framebuffer is used to store the z value of what is visible for each pixel.
Initialize to negative “infinity” (remember z is usually negative)

When a pixel in an object is rendered, its z coordinate is compared to
the value in the z-buffer. The pixel is only rendered (and z-buffer

updated) if it is closer to the viewer.
Turn on depth buffer with GLUT_DEPTH in glutInitDisplayMode.

Also glEnable (GL_DEPTH_TEST) and remember to clear. the depth
buffer at each step with glClear and glClearDepth.

You may also want to look at glDepthFunc if you want to change depth

testing (which ones are visible). /

Viewing 23 — 24 Howard Cheng

CPSC 3710 Computer Graphics University of Lethbridge

4 A
Face Culling I

e Culling means removing objects before rasterizer to save computations.

e When we define triangles, we can define the vertices in clockwise or

counterclockwise order.

e By default, CCW is “front”, CW is “back”.

e Using glEnable (GL_CULL_FACE) and glCullFace allows certain

orientations to be removed from the pipeline.

e Use glFrontFace if you want to change the default orientation for front
and back.

\ _/

Viewing 24 — 24 Howard Cheng

