
CPSC 3710 Computer Graphics University of Lethbridge✬

✫

✩

✪

Viewing

• Now that objects are positioned in the world, we need a way to view a

scene

• We break this process into two steps:

– placing the camera/viewer

– “taking a picture”: projection

Viewing 1 – 24 Howard Cheng

CPSC 3710 Computer Graphics University of Lethbridge✬

✫

✩

✪

Pinhole Camera

• We start with understanding how a “real” pinhole camera works

• Light rays travel from objects through the pinhole into the back of the

camera (sensors/film)

• Parameters:

– dimensions of sensor array

– distance between pinhole and sensors

• Image formed is upside down and backwards

Viewing 2 – 24 Howard Cheng

CPSC 3710 Computer Graphics University of Lethbridge✬

✫

✩

✪

Orthogonal Viewing

• Instead of a pinhole camera, each sensor in the array just looks

“forward” and record what it sees.

• i.e. Light rays travel from objects to the sensor array at 90 degrees

• It is not realistic but it has many useful applications

• Distances and angles parallel to the sensor array are preserved

• Often used in technical drawings

Viewing 3 – 24 Howard Cheng

CPSC 3710 Computer Graphics University of Lethbridge✬

✫

✩

✪

Perspective Viewing

• For realistic viewing: objects farther away are smaller, objects closer are

larger

• Use pinhole camera model

• Trick: pretend the sensor array is in front of the pinhole so the image is

not upside down and backwards

• Calculations of projection make use of similar triangles

• As objects move further, perspective viewing becomes closer to

orthogonal viewing

Viewing 4 – 24 Howard Cheng

CPSC 3710 Computer Graphics University of Lethbridge✬

✫

✩

✪

Model-View-Projection

• Place objects: done by transformation matrices (rotation, scale,

translation). This is called a Model matrix.

• Position the camera: a View matrix that transforms object coordinates

into camera coordinates.

• A Projection matrix is then used to transform objects from camera

coordinates to clip coordinates. Only coordinates within [−1, 1] are

displayed.

• This is the model-view-projection approach. In practice, model and view

matrices are often premultiplied to obtain a model-view matrix.

Viewing 5 – 24 Howard Cheng

CPSC 3710 Computer Graphics University of Lethbridge✬

✫

✩

✪

Camera Positioning

• First we define the camera coordinate system:

– the camera is positioned at the origin (0, 0, 0)

– it looks towards the negative z-axis

– the positive y-axis is “up”

• By default, all coordinates in [−1, 1] are visibile.

• It is possible to see objects “behind” the camera by default.

Viewing 6 – 24 Howard Cheng

CPSC 3710 Computer Graphics University of Lethbridge✬

✫

✩

✪

Camera Positioning

• If we want to put the camera in some other position and orientation, the

scene has to be transformed to get them into camera coordinates.

• e.g. If we want to move the camera to position p, translate the scene by

−p).

• So the camera is not moved, but the scene is—the view matrix is applied

to vertices of objects.

• If we want to view in direction specified by a vector ~v (instead of

(0, 0,−1)), a rotation is needed to rotate ~v to (0, 0,−1).

• If we want the up direction to be ~u, we need to rotate ~u to (0, 1, 0).

• The view matrix would be a multiplication of the translation matrix by

the required rotation matrices (on the right).

• Notice that the transformation appears backward because we move the

scene, not the camera.

Viewing 7 – 24 Howard Cheng

CPSC 3710 Computer Graphics University of Lethbridge✬

✫

✩

✪

LookAt Transformation

• The LookAt transformation is a convenient way to specify camera

position. It is defined by:

– eye/camera position: eye

– a point to look at: at

– an up vector ~vup (does not have to be parallel to viewing plane)

• The viewing direction is defined by ~vn = eye− at. This is normalized to

~n = ~vn
|~vn|

. This is normal to the viewing plane.

• Compute

~u =
~vup × ~n

|~vup × ~n|

~u is orthogonal to both ~n and ~vup

Viewing 8 – 24 Howard Cheng

CPSC 3710 Computer Graphics University of Lethbridge✬

✫

✩

✪

• Compute the “up” vector orthogonal to both ~n and ~u:

~v =
~n× ~u

|~n× ~u|

• Now we have a coordinate system defined by three axes ~u, ~v and ~n.

Viewing 9 – 24 Howard Cheng

CPSC 3710 Computer Graphics University of Lethbridge✬

✫

✩

✪

LookAt Transformation

• Assume for now that the camera is located at the origin.

• The change of coordinate matrix from uvn to xyz is:

A =















ux vx nx 0

uy vy ny 0

uz vz nz 0

0 0 0 1















• If the camera is positioned at (x, y, z), then the transformation from

camera coordinates to object coordinates is:

T (x, y, z)A

Viewing 10 – 24 Howard Cheng

CPSC 3710 Computer Graphics University of Lethbridge✬

✫

✩

✪

LookAt Transformation

• To convert from object coordinates to camera coordinates, the final

LookAt Transformation is

V = (T (x, y, z)A)−1

= A−1T (−x,−y,−z)

= ATT (−x,−y,−z)

=















ux uy uz −xux − yuy − zuz

vx vy vz −xvx − yvy − zvz

nx ny nz −xnx − yny − znz

0 0 0 1















Viewing 11 – 24 Howard Cheng

CPSC 3710 Computer Graphics University of Lethbridge✬

✫

✩

✪

Orthographic Projection

• When towards the negative z-axis, orthographic projection simply means

removing the z coordinate:

M =















1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 1















• However, we need to also determine what can be viewed and what will

be clipped out.

Viewing 12 – 24 Howard Cheng

CPSC 3710 Computer Graphics University of Lethbridge✬

✫

✩

✪

Orthographic Projection

• The clipping volume is a rectangular prism aligned with the axes:

– left ≤ x ≤ right

– bottom ≤ y ≤ top

– -far ≤ z ≤ -near (note the negative sign)

• A transformation is needed to normalize this prism into the standard

viewing prism (x, y, z ∈ [−1, 1])

Viewing 13 – 24 Howard Cheng

CPSC 3710 Computer Graphics University of Lethbridge✬

✫

✩

✪

Orthogonal Projection

• First, translate centre of prism to origin:

T = T (−(right+ left)/2,−(top+ bottom)/2, (far + near)/2).

• Then scale it to the right size:

S = S(2/(right− left), 2/(top− bottom), 2/(near − far)).

• Final matrix is

N = ST =















2

right−left 0 0 − left+right
right−left

0 2

top−bottom 0 − top+bottom
top−bottom

0 0 − 2

far−near − far+near
far−near

0 0 0 1















Viewing 14 – 24 Howard Cheng

CPSC 3710 Computer Graphics University of Lethbridge✬

✫

✩

✪

Perspective Projection

• In perspective projection, we model a pinhole camera.

• The viewing plane is in front of the camera.

• Suppose the center of the camera (the pinhole) is located at the origin.

• The viewing plane is defined by zp = d < 0. The distance to the viewing

plane from the origin is −d.

• Using similar triangles, we see that a point at (x, y, z) will project to

(xp, yp, zp) =
(

x
z/d ,

y
z/d , d

)

.

• But this operation is nonlinear (divide by z) and cannot be represented

as a matrix. . .

• Notice that as z increases (further away), the projected coordinates get

smaller.

• Aside: what happens if a point has z = 0?

Viewing 15 – 24 Howard Cheng

CPSC 3710 Computer Graphics University of Lethbridge✬

✫

✩

✪

Perspective Projection

• To perform perspective projection as a matrix, we need to reconsider our

representation of points as homogeneous coordinates.

• Instead of w = 1, we allow w to have any value, so the point (x, y, z) can

be represented as (wx,wy,wz, w) provided w 6 0.

• This can be interpreted as a line in 4-dimensional space representing

each point in 3-dimensional space.

• The “true” point can be obtained by a perspective division of w.

Viewing 16 – 24 Howard Cheng

CPSC 3710 Computer Graphics University of Lethbridge✬

✫

✩

✪

Perspective Projection

• Back to

(xp, yp, zp) =

(

x

z/d
,

y

z/d
, d

)

.

• We can write in matrix form:














x

y

z

z
d















=















1 0 0 0

0 1 0 0

0 0 1 0

0 0 1/d 0





























x

y

z

1















• So after perspective division by w = z
d we obtain the desired projection.

Viewing 17 – 24 Howard Cheng

CPSC 3710 Computer Graphics University of Lethbridge✬

✫

✩

✪

Perspective Projection

• So the required procedure for perspective projection is:

– multiply coordinates by

M =















1 0 0 0

0 1 0 0

0 0 1 0

0 0 1/d 0















– divide by the w component

• An added advantage is that the z coordinate is not lost until perspective

division is done.

Viewing 18 – 24 Howard Cheng

CPSC 3710 Computer Graphics University of Lethbridge✬

✫

✩

✪

Perspective Projection

• So far we have not considered clipping.

• There are two ways to specify a clipping volume:

– Frustum: left, right, top, bottom, near, far

– Field of view: angle, aspect ratio, near, far

Viewing 19 – 24 Howard Cheng

CPSC 3710 Computer Graphics University of Lethbridge✬

✫

✩

✪

Perspective Projection (by Frustum)

• left, right, top, and bottom are defined in terms of near clipping plane.

• Transformation needed to transform the frustum into a cubic clipping

volume [−1, 1].

• Final matrix (see textbook for derivations)

M =















2·near
right−left 0 right+left

right−left 0

0 2·near
top−bottom

top+bottom
top−bottom 0

0 0 − far+near
far−near

−2·far·near
far−near

0 0 −1 0















Viewing 20 – 24 Howard Cheng

CPSC 3710 Computer Graphics University of Lethbridge✬

✫

✩

✪

Perspective Projection (by Field of View)

• Use frustum:

– left = −right

– bottom = −top

– top = near · tan(fovy)

– right = top · aspect

Viewing 21 – 24 Howard Cheng

CPSC 3710 Computer Graphics University of Lethbridge✬

✫

✩

✪

Hidden Surface Removal

• One can use object-space algorithm to determine which objects are in

front and ignore objects that are not visible.

• But it is easier to work in image space and simply render all objects.

• If the z coordinates are kept, they can be used to determine which

objects are in front and visible.

• Some calculations may be wastsed, but much easier to implement (e.g.

partially visible objects).

Viewing 22 – 24 Howard Cheng

CPSC 3710 Computer Graphics University of Lethbridge✬

✫

✩

✪

Depth Buffer

• Also called z-buffer.

• A framebuffer is used to store the z value of what is visible for each pixel.

• Initialize to negative “infinity” (remember z is usually negative)

• When a pixel in an object is rendered, its z coordinate is compared to

the value in the z-buffer. The pixel is only rendered (and z-buffer

updated) if it is closer to the viewer.

• Turn on depth buffer with GLUT_DEPTH in glutInitDisplayMode.

• Also glEnable(GL_DEPTH_TEST) and remember to clear. the depth

buffer at each step with glClear and glClearDepth.

• You may also want to look at glDepthFunc if you want to change depth

testing (which ones are visible).

Viewing 23 – 24 Howard Cheng

CPSC 3710 Computer Graphics University of Lethbridge✬

✫

✩

✪

Face Culling

• Culling means removing objects before rasterizer to save computations.

• When we define triangles, we can define the vertices in clockwise or

counterclockwise order.

• By default, CCW is “front”, CW is “back”.

• Using glEnable(GL_CULL_FACE) and glCullFace allows certain

orientations to be removed from the pipeline.

• Use glFrontFace if you want to change the default orientation for front

and back.

Viewing 24 – 24 Howard Cheng

