Viewing

- Now that objects are positioned in the world, we need a way to view a scene
- We break this process into two steps:
- placing the camera/viewer
- "taking a picture": projection

Pinhole Camera

- We start with understanding how a "real" pinhole camera works
- Light rays travel from objects through the pinhole into the back of the camera (sensors/film)
- Parameters:
- dimensions of sensor array
- distance between pinhole and sensors
- Image formed is upside down and backwards

Orthogonal Viewing

- Instead of a pinhole camera, each sensor in the array just looks "forward" and record what it sees.
- i.e. Light rays travel from objects to the sensor array at 90 degrees
- It is not realistic but it has many useful applications
- Distances and angles parallel to the sensor array are preserved
- Often used in technical drawings

Perspective Viewing

- For realistic viewing: objects farther away are smaller, objects closer are larger
- Use pinhole camera model
- Trick: pretend the sensor array is in front of the pinhole so the image is not upside down and backwards
- Calculations of projection make use of similar triangles
- As objects move further, perspective viewing becomes closer to orthogonal viewing

Model-View-Projection

- Place objects: done by transformation matrices (rotation, scale, translation). This is called a Model matrix.
- Position the camera: a View matrix that transforms object coordinates into camera coordinates.
- A Projection matrix is then used to transform objects from camera coordinates to clip coordinates. Only coordinates within $[-1,1]$ are displayed.
- This is the model-view-projection approach. In practice, model and view matrices are often premultiplied to obtain a model-view matrix.

Camera Positioning

- First we define the camera coordinate system:
- the camera is positioned at the origin $(0,0,0)$
- it looks towards the negative z-axis
- the positive y-axis is "up"
- By default, all coordinates in $[-1,1]$ are visibile.
- It is possible to see objects "behind" the camera by default.

Camera Positioning

- If we want to put the camera in some other position and orientation, the scene has to be transformed to get them into camera coordinates.
- e.g. If we want to move the camera to position p, translate the scene by $-p)$.
- So the camera is not moved, but the scene is-the view matrix is applied to vertices of objects.
- If we want to view in direction specified by a vector \vec{v} (instead of $(0,0,-1)$), a rotation is needed to rotate \vec{v} to $(0,0,-1)$.
- If we want the up direction to be \vec{u}, we need to rotate \vec{u} to $(0,1,0)$.
- The view matrix would be a multiplication of the translation matrix by the required rotation matrices (on the right).
- Notice that the transformation appears backward because we move the scene, not the camera.

LookAt Transformation

- The LookAt transformation is a convenient way to specify camera position. It is defined by:
- eye/camera position: eye
- a point to look at: at
- an up vector $\vec{v}_{u p}$ (does not have to be parallel to viewing plane)
- The viewing direction is defined by $\vec{v}_{n}=e y e-a t$. This is normalized to $\vec{n}=\frac{\vec{v}_{n}}{\left|\vec{v}_{n}\right|}$. This is normal to the viewing plane.
- Compute

$$
\vec{u}=\frac{\vec{v}_{u p} \times \vec{n}}{\left|\vec{v}_{u p} \times \vec{n}\right|}
$$

\vec{u} is orthogonal to both \vec{n} and $\vec{v}_{u p}$

- Compute the "up" vector orthogonal to both \vec{n} and \vec{u} :

$$
\vec{v}=\frac{\vec{n} \times \vec{u}}{|\vec{n} \times \vec{u}|}
$$

- Now we have a coordinate system defined by three axes \vec{u}, \vec{v} and \vec{n}.

LookAt Transformation

- Assume for now that the camera is located at the origin.
- The change of coordinate matrix from uvn to $x y z$ is:

$$
A=\left[\begin{array}{cccc}
u_{x} & v_{x} & n_{x} & 0 \\
u_{y} & v_{y} & n_{y} & 0 \\
u_{z} & v_{z} & n_{z} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

- If the camera is positioned at (x, y, z), then the transformation from camera coordinates to object coordinates is:

$$
T(x, y, z) A
$$

LookAt Transformation

- To convert from object coordinates to camera coordinates, the final LookAt Transformation is

$$
\begin{aligned}
V & =(T(x, y, z) A)^{-1} \\
& =A^{-1} T(-x,-y,-z) \\
& =A^{T} T(-x,-y,-z) \\
& =\left[\begin{array}{cccc}
u_{x} & u_{y} & u_{z} & -x u_{x}-y u_{y}-z u_{z} \\
v_{x} & v_{y} & v_{z} & -x v_{x}-y v_{y}-z v_{z} \\
n_{x} & n_{y} & n_{z} & -x n_{x}-y n_{y}-z n_{z} \\
0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Orthographic Projection

- When towards the negative z-axis, orthographic projection simply means removing the z coordinate:

$$
M=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

- However, we need to also determine what can be viewed and what will be clipped out.

Orthographic Projection

- The clipping volume is a rectangular prism aligned with the axes:
- left $\leq x \leq$ right
- bottom $\leq y \leq$ top
- -far $\leq z \leq$-near (note the negative sign)
- A transformation is needed to normalize this prism into the standard viewing prism $(x, y, z \in[-1,1])$

Orthogonal Projection

- First, translate centre of prism to origin:

$$
T=T(-(\text { right }+l e f t) / 2,-(t o p+\text { bottom }) / 2,(f a r+\text { near }) / 2)
$$

- Then scale it to the right size:

$$
S=S(2 /(\text { right }-l e f t), 2 /(\text { top }- \text { bottom }), 2 /(\text { near }- \text { far }))
$$

- Final matrix is

$$
N=S T=\left[\begin{array}{cccc}
\frac{2}{\text { right-left }} & 0 & 0 & -\frac{\text { left }+ \text { right }}{\text { right-left }} \\
0 & \frac{2}{\text { top-bottom }} & 0 & -\frac{\text { top }+ \text { bottom }}{\text { top-oottom }} \\
0 & 0 & -\frac{2}{\text { far-near }} & -\frac{\text { far }+ \text { near }}{\text { far-near }} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Perspective Projection

- In perspective projection, we model a pinhole camera.
- The viewing plane is in front of the camera.
- Suppose the center of the camera (the pinhole) is located at the origin.
- The viewing plane is defined by $z_{p}=d<0$. The distance to the viewing plane from the origin is $-d$.
- Using similar triangles, we see that a point at (x, y, z) will project to $\left(x_{p}, y_{p}, z_{p}\right)=\left(\frac{x}{z / d}, \frac{y}{z / d}, d\right)$.
- But this operation is nonlinear (divide by z) and cannot be represented as a matrix...
- Notice that as z increases (further away), the projected coordinates get smaller.
- Aside: what happens if a point has $z=0$?

Perspective Projection

- To perform perspective projection as a matrix, we need to reconsider our representation of points as homogeneous coordinates.
- Instead of $w=1$, we allow w to have any value, so the point (x, y, z) can be represented as $(w x, w y, w z, w)$ provided $w \emptyset$.
- This can be interpreted as a line in 4-dimensional space representing each point in 3-dimensional space.
- The "true" point can be obtained by a perspective division of w.

Perspective Projection

- Back to

$$
\left(x_{p}, y_{p}, z_{p}\right)=\left(\frac{x}{z / d}, \frac{y}{z / d}, d\right)
$$

- We can write in matrix form:

$$
\left[\begin{array}{l}
x \\
y \\
z \\
\frac{z}{d}
\end{array}\right]=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1 / d & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]
$$

- So after perspective division by $w=\frac{z}{d}$ we obtain the desired projection.

Perspective Projection

- So the required procedure for perspective projection is:
- multiply coordinates by

$$
M=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1 / d & 0
\end{array}\right]
$$

- divide by the w component
- An added advantage is that the z coordinate is not lost until perspective division is done.

Perspective Projection

- So far we have not considered clipping.
- There are two ways to specify a clipping volume:
- Frustum: left, right, top, bottom, near, far
- Field of view: angle, aspect ratio, near, far

Perspective Projection (by Frustum)

- left, right, top, and bottom are defined in terms of near clipping plane.
- Transformation needed to transform the frustum into a cubic clipping volume $[-1,1]$.
- Final matrix (see textbook for derivations)

$$
M=\left[\begin{array}{cccc}
\frac{2 \cdot \text { near }}{\text { right-left }} & 0 & \frac{\text { right }+ \text { left }}{\text { right-left }} & 0 \\
0 & \frac{2 \cdot \text { near }}{\text { top-bottom }} & \frac{\text { top }+ \text { ottom }}{\text { top }- \text { bottom }} & 0 \\
0 & 0 & -\frac{\text { far }+ \text { near }}{\text { far-near }} & \frac{-2 \cdot \text { far } \cdot \text { near }}{\text { far-near }} \\
0 & 0 & -1 & 0
\end{array}\right]
$$

Perspective Projection (by Field of View)

- Use frustum:
- left $=-$ right
- bottom = -top
- top $=$ near $\cdot \tan ($ fovy $)$
- right $=$ top \cdot aspect

Hidden Surface Removal

- One can use object-space algorithm to determine which objects are in front and ignore objects that are not visible.
- But it is easier to work in image space and simply render all objects.
- If the z coordinates are kept, they can be used to determine which objects are in front and visible.
- Some calculations may be wastsed, but much easier to implement (e.g. partially visible objects).

Depth Buffer

- Also called z-buffer.
- A framebuffer is used to store the z value of what is visible for each pixel.
- Initialize to negative "infinity" (remember z is usually negative)
- When a pixel in an object is rendered, its z coordinate is compared to the value in the z-buffer. The pixel is only rendered (and z-buffer updated) if it is closer to the viewer.
- Turn on depth buffer with GLUT_DEPTH in glutInitDisplayMode.
- Also glEnable(GL_DEPTH_TEST) and remember to clear. the depth buffer at each step with glClear and glClearDepth.
- You may also want to look at glDepthFunc if you want to change depth testing (which ones are visible).

Face Culling

- Culling means removing objects before rasterizer to save computations.
- When we define triangles, we can define the vertices in clockwise or counterclockwise order.
- By default, CCW is "front", CW is "back".
- Using glEnable(GL_CULL_FACE) and glCullFace allows certain orientations to be removed from the pipeline.
- Use glFrontFace if you want to change the default orientation for front and back.

