
CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Data Types

• A data type defines a collection of data values and a set of predefined

operations on those values

• Some languages allow user to define additional types

• Useful for error detection through type checking

• Also useful as a documentation tool

• An implementation (compiler or interpreter, plus run-time environment)

needs descriptors for data types for type checking, access, allocation,

deallocation, etc.

Data Types 1 – 26 Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Primitive Data Types

• Primitive Data Types: not defined in terms of other types

• Numeric Types

• Boolean Types

• Character Types

Data Types 2 – 26 Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Numeric Types

• Integer: signed vs unsigned, range/size, arbitrary length support

• Floating-point: Most use IEEE Floating-Point Standard 754 format:

double is 1 sign bit, 11-bit exponent, 53-bit mantissa

• Floating-point values have both range and precision

• Binary Coded Decimals (each digit may take one byte or a half byte)

• Boolean: some languages have an Boolean type, others allow other

numeric values (0 is false, nonzero true)

• Character types: numeric but value indicates character based on some

mapping. Most common is 8-bit using ASCII, but “wide” unicode

characters are becoming more common.

Data Types 3 – 26 Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Character Strings

• Abstraction of sequence of characters

• Issues:

– Primitive type or a character array, or supported through external

libraries?

– Static vs. dynamic length?

• Common operations:

– assignment

– individual character access

– concatenation

– substring reference

– comparison

– pattern matching

Data Types 4 – 26 Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Character Strings

• C and C++ use character arrays (null-terminated) to store strings:

unsafe because there are no bound checks

• C++ also have a string class

• Java supports String and StringBuffer (why?). C# and Ruby are similar.

• Python strings are immutable

• Pattern matching are often specified by regular expressions

Data Types 5 – 26 Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Character Strings

Three different options for length:

• Static length: length is static and set when the string is created.

Suitable for immutable strings, but least flexible.

• Limited dynamic length: allow dynamic length up to some fixed

maximum (e.g. C). Somewhat more flexible.

• Dynamic length: C++ string class, etc. Maximum flexibility, requires

overhead.

Data Types 6 – 26 Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Character Strings

Implementation of descriptor:

• Static: type name, length, and address (compile-time)

• Limited Dynamic: type name, maximum length, current length, address

(run-time)

• Dynamic: type name, current length, address (run-time)

Common dynamic length string implementations:

• Dynamic arrays

• Ropes

Data Types 7 – 26 Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Enumeration Types

• Allows a related set of constants to be grouped into a type

• e.g. enum in C/C++/C#

• Allows for type checking

• Issues:

– Is it a separate type, or are conversions to/from integers implicit?

– Can a constant appear in more than one type?

– Value and type checking

– Any other types that can be coerced to an enumeration type?

– Operations (e.g. arithmetic, bitwise?)

Data Types 8 – 26 Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Arrays

• Homogeneous aggregate of data elements, individually identified by

position.

• Most languages require elements to be of the same type, but can get

around with pointers, inheritance, etc.

• Issues:

– Subscript types

– Reference range checking

– When are subscript ranges bound

– Allocation time

– Ragged or rectangular multi-dimensional arrays

– Initialization?

– Slices?

Data Types 9 – 26 Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Array Indices/Subscripts

• A list of subscripts is used to identify a particular elements.

• Some languages use [], others use (). Possible overlap with function

calls (e.g. Ada)

• Element type and subscript type are separate

• Some languages allow lower and upper bounds on array subscripts

• Some languages (e.g. Perl) allow negative subscripts—reference from end

of array

Data Types 10 – 26 Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Subscript Ranges and Storage Binding

The range of subscript values and storage may be determined at compile

time or run time.

• Static: subscript ranges and storage are both bound at compile time.

Most efficient, but least flexible.

• Fixed stack-dynamic: subscript range is statically bound, allocation

done at declaration elaboration time (e.g. local fixed-size arrays). Space

efficient (can be reused), require some allocation/deallocation time.

• Fixed heap-dynamic: both are bound at run time, but once the storage

is bound the size is fixed. More flexible, but also more overhead

• Heap-dynamic: both are bound at run time, but they can change. Most

flexible but also most overhead.

Data Types 11 – 26 Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Array Operations

• Some languages allow operations on arrays as a whole (e.g. assignment,

concatenation, comparison, etc.)

• Comparison can be based on object or equivalence

• Some languages allow “slices” of arrays which are subsections of the

arrays. (e.g. subarray, column, row, every second element of a row).

May or may not allocate extra storage.

Data Types 12 – 26 Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Multidimensional Arrays

• Rectangular: each row must have the same number of columns

• Jagged: length of each row may be different

• Jagged arrays are usually implemented as arrays of arrays

Data Types 13 – 26 Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Implementation

• Descriptor contains type name, element type, index type, lower and

upper bounds for indices, and address.

• Some parts are needed at compile time, some at run time

• Bounds are needed only for range checks

• Multidimensional rectangular arrays: usually row major order (notable

exception Fortran)

• Address calculations for multidimensional arrays

Data Types 14 – 26 Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Associative Arrays

• Unordered collection of data elements indexed by keys

• In some languages associative arrays are native in the language (e.g.

Python, Perl, Ruby)

• In some languages it is supported by standard libraries (map and

unordered map in C++)

• Implemented by hash tables, binary trees, . . .

Data Types 15 – 26 Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Record Types

• An aggregate of data elements, identified by field names

• Each element is accessed through offsets from the beginning of structure.

• Issues:

– how to refer to fields

– elliptical references?

Data Types 16 – 26 Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Record Types

• References to individual fields usually require the name of the record and

the name of the fields (. notation in C++, OF in COBOL)

• Nested records usually require a fully qualified reference: a.b.c.d

• Some languages (e.g. COBOL) allows elliptical references d OF a as long

as it is unambiguous. Difficult to read

• Many of the modern languages are block-structured and allows for new

local scopes to be created

• Descriptor contains type name, starting address, as well as the name,

type, and offset for each field (compile time)

• Memory layout is straightforward

Data Types 17 – 26 Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

List Types

• Functional programming languages often have native support for lists

• Lists can typically be nested

• Common list operations: car, cdr, cons, list

Data Types 18 – 26 Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Union Types

• A variable that may store different type values at different times during

run time

• Allows for same memory location to be reused

• Free unions: no type checking performed

• Discriminated union: a tag is added internally to perform type checking

(e.g. Ada)

• Space has to be allocated for the largest variant

Data Types 19 – 26 Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Pointer Types

• Pointers store memory addresses, with a special nil value which is

invalid

• Allow for indirect addressing and dynamic storage

• Can be used to access anonymous variables (e.g. those obtained from the

heap)

• Issues:

– scope and lifetime

– lifetime of heap-dynamic variable

– restrictions on what type of value they can point to

– for dynamic storage, indirect addressing, or both?

– support pointers at all?

Data Types 20 – 26 Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Pointer

• Common operations: assignment, dereferencing, allocate/deallocate

• C/C++: pointer arithmetic, array-pointer equivalence, void *

• Problems:

– Dangling pointers

– Lost heap-dynamic variables (memory leak)

Removing explicit deallocation may help

Data Types 21 – 26 Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Reference Types

• Like a pointer, but a reference type refers to an object or a value in

memory

• No need to dereference, no possibility to change address

• One use: pass by reference

• Java does not have pointers, but have references. Need to remember that

assignments do not necessarily make a new copy of an object (aliasing)

• Can be implemented by a pointer

• Safer than pointers

Data Types 22 – 26 Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Pointer Implementation

• Represented by whatever the machine uses to address memory

• To solve dangling pointer problem:

– Tombstones: each heap-dynamic variable is itself a pointer to the

“real” heap-dynamic variable.

– Locks-and-keys: each pointer has an address and a key value that is

given at time of allocation and copied by assignment operators. Each

heap-dynamic variable also has a lock value matching the key.

Access checks to see if lock and key match.

Data Types 23 – 26 Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Heap Management

• If all objects are of the same size, it is easier. Different sizes: may lead

to fragmentation

• When to deallocate (implicit):

– Reference count: small cost for each access/allocation/deallocation,

reclaim immediately. Circular structures?

– Garbage collection: at certain times, an algorithm marks all

accessible memory locations. Inaccessible memory locations are

deallocated. Run time can be unpredictable and possibly costly.

Data Types 24 – 26 Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Type Checking

• Ensures that the operands of an operator/function are of compatible

types

• Compatible: either legal, or can be implicitly converted according to the

language specification

• Automatic conversion: coercion

• Coercion: convenience vs. error checking?

• Type error: application of an operator/function to an operand of an

incompatible type

• Dynamic type checking is needed if type binding is done dynamically

• Difficult in some cases (e.g. union in C/C++)

Data Types 25 – 26 Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Type Equivalence

• Type equivalence: one type can be substituted for another, without

coercion

• Name type equivalence: only for the same declaration or same type

name. Easy to check, more restrictive

• Structure type equivalence: if two variables have identical structures.

Harder to check (e.g. circular references), more flexible (too flexible?)

• Some languages use a combination, including support for “subtypes”

• In C++, struct, enum and union use name type equivalence, but arrays

use structural type equivalence (sort of)

Data Types 26 – 26 Howard Cheng


