CPSC 3740 Programming Languages University of Lethbridge

4 N

Logic Programming I

e Based on symbolic logic
e Sometimes called declarative programming

e Concerned with specifying the properties of the results, rather than how

to compute them

e We will focus on Prolog

_ _/

Logic Programming 1—-25 Howard Cheng

CPSC 3740 Programming Languages University of Lethbridge

Predicate Calculus Review'

We will need the following concepts from predicate calculus.

e Predicates: a relation consisting of the name and an ordered list of
parameters. It is either true or false. e.g. parent(john, bill)

e Logical connectives: negation, conjunction, disjunction, equivalence,
implication

e (Quantifiers: universal and existential

e In Prolog, names of relations and individual objects are in lowercase,

variables (quantified) starts with uppercase or underscore.

_ _/

Logic Programming 2 —25 Howard Cheng

CPSC 3740 Programming Languages University of Lethbridge

4 N
Clauses |

e A proposition in clausal form looks like:

Al/\.../\An—>Bl\/...\/Bm

It means if Aq,..., A, are all true, then (at least) one of By,..., By, is

true.
e Variables in A; and B, are assumed to be universally quantified.

e All propositions in predicate logic can be converted to this form.

e Note: (A — B) = (—AV B)

_ _/

Logic Programming 3 — 25 Howard Cheng

CPSC 3740 Programming Languages University of Lethbridge

4 N

Theorem Proving I

e Given a set of facts and rules, as well as a goal, an automatic theorem
attempts to prove that the goal follows logically from the facts and rules.

e Inference rules are needed to derive conclusions from given facts.

_ _/

Logic Programming 4 — 25 Howard Cheng

CPSC 3740 Programming Languages University of Lethbridge

4 N

Inference Rules '

e Modus Ponens is one of the most basic inference rules.
e From P — () and P, we can derive ().
e There are other inference rules.

e How many different inference rules do we need? i.e. Can anything that
follows logically be proven with the given rules?

_ _/

Logic Programming 5— 25 Howard Cheng

CPSC 3740 Programming Languages University of Lethbridge

4 N

Resolution I

e Given PV (@ and =) V R, we can derive PV R.
e P (), and R can be arbitrarily complicated propositions.
e This is basically the rule that combines =P — () and () — R.

e Repeated literals are removed.

_ _/

Logic Programming 6 — 25 Howard Cheng

CPSC 3740 Programming Languages University of Lethbridge

/ Resolution Refutation Proof . \

e A set of propositions is inconsistent if there is no truth value that can be

assigned to make each proposition true at the same time.

e Resolution Refutation Proof:

1. Choose any two propositions from the set that has the same term but

in opposite form, apply resolution and simplify result.

2. If result is empty, we have a contradiction. The set of propositions is

Inconsistent.

3. If a term appears in both positive and negative form, ignore the

result.
4. Add result to the set of propositions.

5. Repeat until the empty proposition is obtained, or if we do not have

_ _/

Logic Programming 7 — 25 Howard Cheng

any new results generated from resolution.

CPSC 3740 Programming Languages University of Lethbridge

4 N

Resolution Refutation Proof '

e This process will terminate (finite number of possible results).
e Theorem: resolution is refutation complete.

e That is, if a set of propositions is inconsistent, this process will always
generate the empty proposition at some point.

_ _/

Logic Programming 8 — 25 Howard Cheng

CPSC 3740 Programming Languages University of Lethbridge

4 N

Unification '

e If there are variables in the terms, appropriate values of the variables
would have to be determined.

e The process of assigning values to variables is called unification.

e With unification, two propositions may resolve in different ways. All
possibilities need to be considered.

p(z) vV q(z),—p(a) V —q(b)

_ _/

Logic Programming 9 —-25 Howard Cheng

CPSC 3740 Programming Languages University of Lethbridge

4 N
Theorem Proving I

e Instead of proving that a certain goal statement is a theorem (i.e.

follows from given facts and rules)...

e We ask whether the facts and rules, together with the negation of the

goal, is inconsistent.

e If this set is consistent, then the truth assignment to the various

propositions is a counterexample.
e If this set is inconsistent, there is no counterexample.

e If there are variables, different values would have to be tried through
backtracking.

_ _/

Logic Programming 10 — 25 Howard Cheng

CPSC 3740 Programming Languages University of Lethbridge

4 N

Example I

{(<AV =BV -D,-BVD,~AV B, A}

_ _/

Logic Programming 11 — 25 Howard Cheng

CPSC 3740 Programming Languages University of Lethbridge

4 N

Horn Clauses '

e Horn Clauses are disjunction of terms, such that at most one atom is not

negated.
e The three possibilities correspond to rules, facts and goals.

e Slightly more restrictive than all propositions, but allows resolution to

be more efficient

_ _/

Logic Programming 12 — 25 Howard Cheng

CPSC 3740 Programming Languages University of Lethbridge

4 N

Logic Programming in Prolog'

e A term is a constant, variable, or a structure.
e Constants: an atom (symbolic name) or an integer
e Variables: name starts with uppercase letter or underscore

e Structure: predicate

_ _/

Logic Programming 13 — 25 Howard Cheng

CPSC 3740 Programming Languages University of Lethbridge

4 N

Facts, Rules, and Goals'

e Facts are simply listed as a predicate. They are true.
e Rules indicates: B :— A1, A2, ... An
e This means if A4,..., A, are true, then B is true.

e (Goal statements are similar to facts, but variables in goal statements
means that we are asking Prolog to perform unification to find values

that make the goal statement a theorem.

_ _/

Logic Programming 14 — 25 Howard Cheng

CPSC 3740 Programming Languages University of Lethbridge

4 A
Making Inferences I

e Forward chaining: start from the facts and rules, and keep deriving new

propositions until the goal is reached.
e Backward chaining: start from the goal and work backwards

e Prolog uses backward chaining:
— start with the goal
— find a corresponding fact (possibly with unification)
— otherwise, find a rule and try to satisfy subgoals

e This process can be thought of as traversing a tree. Depth-first or
breadth-first? Prolog uses depth-first.

e Backtracking may be performed, especially with unification.

_ _/

Logic Programming 15 — 25 Howard Cheng

CPSC 3740 Programming Languages University of Lethbridge

4 N
Arithmetic '

e Recall that there are no “functions” in Prolog, only predicates.

e To say f(a,b) = ¢, we should make a predicate f (a,b,c).

e You can write something like A is B + C. The LHS cannot yet be
instantiated yet.

e If we have speed(abc, 10). and time(abc, 5)., we can compute the
distance as:

distance(X, Y) :- speed(X, Speed), time(X, Time),

Y is Speed * Time.

_ _/

Logic Programming 16 — 25 Howard Cheng

CPSC 3740 Programming Languages University of Lethbridge

4 N
Lists in Prolog'

e Lists are similar to those in Lisp, but uses square brackets.

e Lists can be nested.
e Empty list: []

e A nonempty list can be dismantled into first element and the rest:
[HIT].

This can also be used to build lists.

e There are built-in predicates for lists.

_ _/

Logic Programming 17 — 25 Howard Cheng

CPSC 3740 Programming Languages University of Lethbridge

4 N
Lists in Prolog'

e Example: distinct (L) that is true if L contains no duplicate elements.

distinct ([]).
distinct([H|T]) :- distinct(T), \+ member(H, T).

member is a built-in predicate, \+ means “not”.

e Example: append (L1, L2, L3) means L3 is the result of appending L2
to L1.

append([], L, L).
append ([H|L1], L2, [H|L3]) :- append(L1l, L2, L3).

_ _/

Logic Programming 18 — 25 Howard Cheng

CPSC 3740 Programming Languages University of Lethbridge

4 N
Ordering I

e Order of facts and rules are irrelevant for correctness.

e But order is important in Prolog for efficiency.
e Prolog applies the facts and rules from top to bottom.
e Within a rule, the subgoals and examined from left to right.

e Putting more restrictive rules/subgoals first makes it easier to prune the
recursive backtracking search (especially for unification).

e Cuts (!) can be used to control pruning: a cut is a goal that is always
satisfied immediately the first time, but subsequent backtracking

attempts cannot satisty the goal again.

e There is no point to try other ways to satisfy goals to the left of a cut.

_ _/

Logic Programming 19 — 25 Howard Cheng

CPSC 3740 Programming Languages University of Lethbridge

- D

e Consider the max function:

max(X,Y,X) :- X >= Y.
max(X,Y,Y) :- Y > X.

e If this is a subgoal of some rule:

f(X,Y) :- max(X,Y,Z), test(Z).
e If we try to prove £(3,4), then at some point we will unify Z to 4.
o If test(4) fails, it will then attempt to try other values of Z.

e But there are no other values of Z. So this is inefficient.

_ _/

Logic Programming 20 — 25 Howard Cheng

CPSC 3740 Programming Languages

University of Lethbridge

-

e Another way
max(X,Y,Z) (=X >=Y, !, X = Z.
max (X,Y,Y).

e An incorrect attempt

max(X,Y,X) :-=- X >=Y, I,
max(X,Y,Y).

Why?

_

~

_/

Logic Programming 21 — 25

Howard Cheng

CPSC 3740 Programming Languages University of Lethbridge

4 N

Closed-World Assumption'

e Prolog has no knowledge of what is not included in the database.
e Prolog returning false means that it cannot prove the goal to be true.
e c.g. not enough evidence?

e The goal may in fact be true. Additional facts/rules may have to be
added.

_ _/

Logic Programming 22 — 25 Howard Cheng

CPSC 3740 Programming Languages University of Lethbridge

-

_

Negation I

In Prolog, negation is indicated by \+
However, negation does not have the “usual” meaning.

In Prolog, a goal is true if there is a proof.

But a goal may be true but not provable because of the given facts and

rules.

Negation in Prolog means “not provable”.

e.g. if male(john) . will return “no” because this is not provable in the

database, so \+ male(john) . will return “yes”.

~

_/

Logic Programming 23 — 25

Howard Cheng

CPSC 3740 Programming Languages University of Lethbridge

4 N
Negation I

e Double negation does not have the usual property:
\+ \+ member (X, [a,b,c]).

e Consider:

prime (7).
even(2) .

even_composite(X) :- \+ prime(X), even(X).
e Asking for even_composite on 2 and 7 gives correct results
e What if you ask for even_composite(X)?

e The fact that there is at least one value that is prime means the first
part cannot fail.

_ _/

Logic Programming 24 — 25 Howard Cheng

CPSC 3740 Programming Languages University of Lethbridge

4 N

Other Uses '

e Declarative programming is commonly used in databases. e.g.
Structured Query Language (SQL)

e Declares the properties of the answer instead of how to compute it.

_ _/

Logic Programming 25 — 25 Howard Cheng

