CPSC 3740 Programming Languages University of Lethbridge

-

Object-Oriented Programming I

e Major components and issues:

\

Inheritance

Instance variables/methods vs. class variables/methods
Single vs. multiple inheritance

Dynamic binding/dynamic dispatch/polymorphism

Abstract classes

~

_/

Object-Oriented Programming 1—-12

Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge

4 N

Some Terminologies I

e Messages: call to methods
e Message protocol/interface: collection of methods

e Message passing: calling a method

\ _/

Object-Oriented Programming 2-12 Howard Cheng




CPSC 3740 Programming Languages University of Lethbridge

4 N

Exclusivity of Ob jects'

e Are all types objects? Are there primitive types?
e Advantage: Uniformity in language and its use

e Disadvantage: even simple operations must be done through
message-passing process (e.g. adding two integers), can be less efficient

e Common: retain primitive types from imperative languages, add

object-oriented support

\ _/

Object-Oriented Programming 3—12 Howard Cheng




CPSC 3740 Programming Languages University of Lethbridge

-

~

Subclasses vs. Subtypes'

Principle of Substitution: A variable of a class can be substituted for a
variable of one of its ancestor classes in any situation, without causing

type errors and without changing the behaviour of the program

If class B is a subclass of class A, and the behaviour of the object of
class B is identical to that of object of class A when used as an object of
class A, then B is a subtype of A.

e.g. In Ada: subtype Small_Int is Integer range -100..100;
For subtypes to work, inheritance must be public.
Not all subclasses are subtypes, and not all subtypes are subclasses

Subclasses are by default subtypes in many languages (C++, Java)

unless methods are overriden.

_/

Object-Oriented Programming 4 —12 Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge

Single vs Multiple Inheritance'

e Multiple inheritance: allows inheritance from more than one class

e Can be useful
e Can be ambiguous, especially with diamond inheritance

e Languages that support multiple inheritance often have ways to specify
diamond inheritance (virtual inheritance in C++)

e Java: multiple inheritance only on interfaces

\ _/

Object-Oriented Programming 5—-12 Howard Cheng




CPSC 3740 Programming Languages University of Lethbridge

Allocation and Deallocation of Ob jects'

e Can they be allocated on the stack? Or must they be a reference/pointer

to objects on the heap?

e Stack dynamic: what if an object of class B is assigned to an object of
class A?

e In C++, this results in object slicing and lose data. Need to use pointers

explicitly to avoid this.

e In Java, there is no issue with losing data

\ _/

Object-Oriented Programming 6 — 12 Howard Cheng




CPSC 3740 Programming Languages University of Lethbridge

-

\

Dynamic vs. Static Binding'

Dynamic binding: if a variable can hold an object of class A or objects

of any subclass of A, then the version of the method called on the object

should depend on the real class of that object.

Static binding: the method called is based on the (static) type of the

variable referring to the object.
In some languages, dynamic binding is done (e.g. Java)

Some languages allow users to choose. Why? (e.g. C++)

~

_/

Object-Oriented Programming 7T—12

Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge

4 N

Nested Classes '

e Many languages allow classes to be defined inside other classes

e Visibility is limited, different languages have different rules

\ _/

Object-Oriented Programming 8 — 12 Howard Cheng




CPSC 3740 Programming Languages University of Lethbridge

4 N
Smalltalk I

e Perhaps the first object-oriented language

e Lverything is an object, even integer constants
e No nested classes or multiple inheritance

e Fven adding two numbers is implemented as sending a “4” message to

one of the operands

e All objects are allocated from heap and referenced through reference

variables

e Only dynamic binding supported, dynamic type binding

\ _/

Object-Oriented Programming 9—-12 Howard Cheng




CPSC 3740 Programming Languages University of Lethbridge

-

C++

Objects on top of primitive types

Both imperative and object-oriented

Objects can be static, stack dynamic or heap dynamic
Multiple inheritence, nested classes supported

Static binding by default, dynamic binding can be specified
public, private and protected members and inheritance

pure virtual functions and abstract classes

~

_/

Object-Oriented Programming 10 — 12

Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge

4 N

Data Storage I

e Class instance record (CIR): storage structure of instance variables of an

object. Similar to a record
e Every class has its own CIR, known at compile time

e Subclasses have CIRs that are copies of those of parent class, with extra

“fields” for additional instance variables

\ _/

Object-Oriented Programming 11 — 12 Howard Cheng




CPSC 3740 Programming Languages University of Lethbridge

-

Dynamic Binding I

When dynamic binding is used, the CIR for each class needs to have

information about the methods it defines

Typically address/pointer to the code for the methods

A virtual method table (vtable) is used to hold the address to each

method defined in the class

A pointer to the vtable is stored in the CIR

When a method is called, code is generated to look at the vtable entry

and call the appropriate version of the method

~

_/

e Multiple inheritance: possibly needs multiple pointers to multiple
vtables.
Object-Oriented Programming 12 — 12 Howard Cheng



