
CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Subprograms

• Each subprogram has a single entry point

• Calling program is suspended

• Only one subprogram in execution at any given point

• Control returns to the caller when subprogram terminates

Subprograms 1 – 39 Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Definitions

• Subprogram definition: includes interface and the actions

• Subprogram call: explicit request to execute a subprogram

• Active: a subprogram has begun execution but has not yet completed

• Header: specifies name and parameters, used for calling the subprograms

• Procedures vs. functions

Subprograms 2 – 39 Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Parameters

• For subprograms to gain access to data it has to process:

– through direct access to non-local variables (can cause side effects)

– through parameter passing

• Functions communicate back to caller through return values

• Some languages allow computations/subprograms to be passed as

parameters

• Parameters in header are called formal parameters

• Parameters in subprogram call are actual parameters

Subprograms 3 – 39 Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Binding of Actual Parameters to Formal Parameters

• Most languages use positional parameters: first actual parameter is

bound to first formal parameters, etc.

• Some languages (e.g. Python) allow keyword parameters:

f(x = 5, y = 10)

• Keyword parameters is more readable, but user must know the name of

formal parameters

• Python allows positional and keyword parameters to be mixed

• Many languages allow default values.

• Some languages allow variable number of parameters. Common in

scripting languages, but also C/C++. e.g. va_list

Subprograms 4 – 39 Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Procedures vs. Functions

• Procedures are subprograms that have no return values. Their effects

may be observed from their parameters (e.g. sort) or through changes to

non-local states.

• Functions provide a mapping from input values to output values (similar

to a mathematical function). Why “similar”?

• Some languages allow function or operator overloading, usually by

number and type of parameters.

Subprograms 5 – 39 Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Design Issues

• Local variables: statically or dynamically allocated?

• Nested subprograms

• Parameter passing methods

• Type checking of parameters

• Side effects allowed?

• Return values: how many and what type?

• Generic subprograms?

Subprograms 6 – 39 Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Local Variables

• Stack dynamic variables are common in modern languages:

– allow space reuse

– supports recursion

– requires indirect access, allocation/deallocation at run time

Subprograms 7 – 39 Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Nested Subprograms

• Some languages allow subprograms to be defined inside another

subprogram

• Limit the scope of the subprogram and where it can be called

• If static scoping is used, also provides a structured way to access

non-local variables without parameter passing

Subprograms 8 – 39 Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Parameter Passing

• Typically we think of each parameter as an in-mode parameter, an

out-mode parameter or an inout-mode parameter

• These are implemented differently (and sometimes imperfectly) in

different languages

Subprograms 9 – 39 Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Pass-by-Value

• The value of the actual parameter is used to initialize the corresponding

formal parameter

• Usually implemented by copy

• Can also implement by a constant reference, assuming the subprogram

does not modify the formal parameter

• Copying can be costly for both space and time

Subprograms 10 – 39 Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Pass-by-Result

• Implement out-mode parameters (e.g. C#)

• No value is transmitted into the subprogram

• Actual variable must be a variable, and the caller receives the computed

value when the subprogram terminates

• If results are returned by copying, we have same disadvantages of

pass-by-value

• Need to ensure that the initial value of the parameter is not used in the

subprogram

• What about f(x,x) when both parameters are out-mode parameters?

Subprograms 11 – 39 Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Pass-by-Value-Result

• Implement inout-mode parameters

• Combine pass-by-value and pass-by-result

Subprograms 12 – 39 Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Pass-by-Reference

• Implement inout-mode parameters

• Instead of passing values by copying, pass the access path (e.g. address)

of the parameter

• Efficient in both time and space

• Accessing parameter in subprogram requires indirect addressing.

• If the parameter is only in or out, we may accidentally use it in the other

direction

• What about f(x,x), f(A[i],A[j]) (if i = j)

Subprograms 13 – 39 Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Pass-by-Name

• Actual parameter is textually substituted for the corresponding formal

parameter in all occurrences in subprogram

• Binding of value or address is delayed until the formal parameter is used

• Not widely used in modern languages

Subprograms 14 – 39 Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Parameter Passing Implementation

• A run-time stack is used to communicate between caller and subprogram.

• Pass-by-value: copy the value into the stack

• Pass-by-result: stack location used for parameter and copy result back

from the stack

• Pass-by-reference: copy the address into the stack

Subprograms 15 – 39 Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Some Common Languages

• C, Java: pass-by-value only

• C++: pass-by-value and pass-by-reference, also constant reference

• Ada: in parameters cannot be assigned to

• C#: pass-by-value, pass-by-reference, out parameters

Subprograms 16 – 39 Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Parameter Type Checking

• Most modern compiled languages check the types of the parameters

when subprograms are called

• The header/prototype is needed

• Coercion may be performed, but usually not for pass-by-reference. Why

not?

Subprograms 17 – 39 Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Multidimensional Array Parameters

• In Java and C#, arrays are one dimensional and maintain their lengths.

Can be passed as A[][]

• In C/C++, all but the first dimension must be specified. Why?

Subprograms 18 – 39 Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Subprograms as Parameters

• Some languages allow subprograms be passed as parameters

• e.g. C/C++ allows pointers to functions, as well as “lambda”

• Functional languages allow functions as parameters

• Some issues:

– how to type check parameters when these subprograms are called?

– if there are nested subprograms, what is the referencing environment?

Subprograms 19 – 39 Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Referencing Environment for Subprogram Parameters

• Shallow binding: environment of the call statement

• Deep binding: environment of the definition of the passed subprogram

• Ad hoc binding: environment of the call statement that passed the

subprogram as an actual parameter.

• Deep binding is used for static-scoped languages

Subprograms 20 – 39 Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Indirect Function Calls

• Sometimes we do not know exactly which function we wish to call until

runtime.

• C/C++ allows us to specify this using pointers to functions

• C# allows “delegates” to be set up.

Subprograms 21 – 39 Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Miscellaneous

• Side effects: most imperative languages do not prevent side-effects, but

pure functional languages cannot have side effects in functions

• Return types: some languages allow subprograms to be returned. Most

do not.

• Number of return values: some languages allow only a single return

value, others allow multiple.

Subprograms 22 – 39 Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Overloading

• An overloaded subprogram is one that has the same name as another in

the same referencing environment

• Distinguished by number and types of parameters, and possibly return

type

• Type coercion and default values may make distinction more difficult

• Some languages have predefined overloaded subprograms

• Some languages allow operators to be overloaded

Subprograms 23 – 39 Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Generic Subprograms

• Subprograms that takes parameters of different types on different

activation’s

• This is a form of parametric polymorphism

• C++: templates

• Java: Generic methods

Subprograms 24 – 39 Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Closures

• The closure is a subprogram and the referencing environment where it

was defined

• Static-scoped languages without nested subprograms: no need for

closures

• If a subprogram can be passed to and called at another location than the

defining location, closure is needed to access the appropriate variables

(which may no longer exist)

• Supported by almost all functional languages, scripting languages, and

also C++ and C#.

Subprograms 25 – 39 Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Semantics of Calls and Returns

• Subprogram linkage: call and return operations together

• Includes:

– saving and restoring caller environment

– parameter and return value passing

– local variable allocation and deallocation

– transfer control

• If nested subprograms are allowed, need way to access non-local variables

Subprograms 26 – 39 Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Simple Subprograms

• Assume no nested subprograms.

• Calling:

1. Save execution status of current program unit

2. Compute and pass parameters

3. Pass the return address to the called subprogram

4. Transfer control

Subprograms 27 – 39 Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Simple Subprograms

• Returning:

1. Copy/move pass-by-value-result and out-mode parameters

2. Move return value to a place accessible to caller (if needed)

3. Restore execution status of current program unit

4. Transfer control back to caller

Subprograms 28 – 39 Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Simple Subprograms

• Some tasks are done by caller, some done by called

• Prologue and epilogue of subprogram linkage: linkage actions of the

called subprogram that occur at the beginning or the end of its execution

• An activation record is used to store data relevant:

– caller status

– parameters

– return address

– return value

– local variables

• The activation records for all active subprograms are stored in a runtime

stack

Subprograms 29 – 39 Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Simple Subprograms

• Each invocation of a subprogram pushes an activation record to the stack

• Termination pops the activation record

• Top of the stack corresponds to currently running subprogram (

identified by environment pointer EP)

• Support recursion

• Size and format of activation record is usually known at compile time

(e.g. C/C++)

• Dynamic link: points to the activation record of the caller

• Static scoping: allows traceback for debugging

• Dynamic scoping: allows access to non-local variables

Subprograms 30 – 39 Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Simple Subprograms

• Caller actions:

1. Create activation record for called subprogram

2. Save status of caller

3. Compute and pass the parameters

4. Pass return address

5. Transfer control

Subprograms 31 – 39 Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Simple Subprograms

• Called Prologue:

1. Save old EP as dynamic link, create new EP value

2. Allocate local variables

• Called Epilogue:

1. Copy/move pass-by-value-result or out-mode parameters

2. Move return value to a place accessible to caller (if needed)

3. Restore EP to point to old dynamic link, set stack pointer to pop the

activation record

4. Restore execution status of current program unit

5. Transfer control back to caller

Subprograms 32 – 39 Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Nested Subprogram: Static Scope

• All accessible non-static variables are in existing activation records on

run-time stack

• To find the correct location:

– find the correct activation record in the enclosing scope

– find the offset within that activation record

Subprograms 33 – 39 Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Static Chain

• Each activation record includes also a static link

• Pointer to the activation record of the static parent

• A static chain is the chain of the static links connecting certain

activation records on the stack

• Static depth: an integer associated with the static scope. 0 is the main

program, and each nested subprogram has a static depth 1 higher than

its surrounding scope

• Nesting depth/chain offset: the difference of static depth between

subprogram referencing a name and subprogram declaring the name.

• Each reference is specified by two integers (chain offset, local offset)

• See example in text

Subprograms 34 – 39 Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Static Chain

• When a subprogram completes execution, its AR is popped off the

run-time stack. There is nothing else to do.

• When a subprogram is called, the static link in its AR needs to be set to

the AR of the parent scope

• This can be done with a search following the dynamic links

• But the difference is static depth can also be determined at compile

time, so it can be found the same way as any other variables

Subprograms 35 – 39 Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Static Chain

• As long as there are no closures (e.g. subprograms as parameters), static

chain works in all cases

• Access to non-local variables requires links to be followed, possibly slow

• In practice the number of levels is small, but access time is difficult to

predict

Subprograms 36 – 39 Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Dynamic Scoping

• There are two ways (and others) to implement dynamic scoping:

– Deep access

– Shallow access

Subprograms 37 – 39 Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Deep Access

• Search the ARs for the correct variable by following the dynamic links

• “deep”: access may require searching deep into the stack

• there is no way to determine the depth of the search at compile time

• AR must store the names of the variables as well

Subprograms 38 – 39 Howard Cheng



CPSC 3740 Programming Languages University of Lethbridge✬

✫

✩

✪

Shallow Access

• Maintain separately a stack for each variable name

• Instances of local variables are pushed onto the stack when the

subprogram declaring them are called

• Popped when the subprogram declaring them terminates

• Deep access: faster subprogram linkage, slower variable access

• Shallow access: slower subprogram linkage, faster variable access

Subprograms 39 – 39 Howard Cheng


