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Abstract—Many important well-known constants such as π
and ζ(3) can be approximated by a truncated hypergeometric
series. A modular algorithm based on rational number recon-
struction was previously proposed to reduce space complexity of
the well-known binary splitting algorithm [1]. In this paper, we
examine some variations of this algorithm using Mersenne num-
ber moduli and Montgomery multiplication. Implementations of
these variations are compared to existing methods and evaluated
for their practicality.

I. INTRODUCTION

We consider the evaluation of the hypergeometric series
∞∑

n=0

a(n)
b(n)

n∏
i=0

p(i)
q(i)

(1)

to high precision, where a, b, p, and q are polynomials with
integer coefficients, and a(n), b(n), p(n), q(n) have bit length
O(log n). In most cases, b(n) = 1 and can be omitted and this
will be assumed throughout the paper.

These series are commonly used in the high precision eval-
uation of elementary functions and other constants, including
the exponential function, logarithms, trigonometric functions,
and constants such as π and the Apéry’s constant ζ(3) [2].
For example, we have the following approximation formulas
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and

ζ(3) ≈ 1
2
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)
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.

(3)
In the latter case, we have a(n) = 205n2 +250n+77, p(0) =
1, p(n) = −n5 for n > 0, and q(n) = 32(2n + 1)5.

We also assume that the series is linearly convergent, so
that the nth term of (1) is O(c−n) with c > 1. Thus, we may
instead evaluate the truncated hypergeometric series

S(N) =
N−1∑
n=0

a(n)
b(n)

n∏
i=0

p(i)
q(i)

. (4)

If d decimal digits of (1) is desired, the number of terms to
be computed in (4) is N = O(d).

“Binary splitting” is an approach that has been indepen-
dently discovered and used by many authors in the compu-
tation of (4) [2]–[7]. Binary splitting computes the numera-
tor and denominator of the rational number S(N), and the
decimal representation of S(N) is then computed by fixed-
point division of the numerator by the denominator. Typically,
the numerator and denominator computed by binary splitting
have large common factors. For example, in the computation
of 640,000 digits of ζ(3), as much as 86% of the size of
the computed numerator and denominator can be attributed to
their common factor [8].

It was first shown in [1] that the reduced fraction S(N)
has numerator and denominator whose sizes are O(N) instead
of the O(N log N) fraction computed by standard binary
splitting. Based on this result, a modular algorithm was given
to compute the reduced fraction with the same time complexity
as binary splitting but a reduced space complexity. However,
the algorithm as stated was not practical. This work was later
generalized to show that a wider class of constants including
π also has reduced fractions whose sizes are O(N) [9]. The
algorithm of [8] was extended to give a practical algorithm
with a space complexity of O(N).

In this paper, we examine some variations of the modular
algorithm given in [1] in order to make it more practical. In
particular, we will examine the use of Mersenne numbers as
the chosen modulus, as well as the use of Montgomery multi-
plication [10], in order to accelerate the modular algorithm. We
will show that these techniques make the modular algorithm
more practical, especially when the size of the reduced fraction
is significantly smaller than that computed by standard binary
splitting. However, the algorithm in [9] is still superior.

II. PREVIOUS WORKS

A number of authors have used an approach generally called
“binary splitting” to compute the numerator and denominator
of (4). The approach recursively computes the sum of the first
half and the second half, and combine the results using the



property of the denominators to avoid common denominator
computations. Let P = p(0)·p(n−1), Q = q(0)·q(n−1), and
T = S(N) ·Q. Binary splitting computes the triple (P,Q, T )
for (4) by dividing the sum into two halves and computing the
corresponding triples (Pl, Ql, Tl) and (Pr, Qr, Tr) for the left
and right halves, respectively. These results are then combined
as follows

(P,Q, T ) = (PlPr, QlQr, QrTl + PlTr). (5)

To compute d digits (O(N) terms) of (4), binary splitting has
a time complexity of O(M(d log d) log d) = O(M(d) log2 d),
where M(t) = O(t log t log log t) is the complexity of multi-
plication of two t-bit integers [11]. The space complexity is
O(d log d) because the computed numerator and denominator
have this size in general. No attempt is made to further reduce
the fraction as the terms are combined. We refer the reader
to [2] for a more detailed description of this approach and its
analysis.

In [8], it was observed experimentally that formula (3) for
ζ(3) computed by binary splitting indeed contains a very
large common factor. At the same time, this large common
factor is a product of many small primes. To help remove
common factors during the binary splitting process, the par-
tially factored representation of integers was introduced. The
computed values at the base cases of the recursion were
factored by trial division, and the factorizations were preserved
as much as possible as the integers are combined by addition
and multiplication. A large common factor can be removed
simply by examining the partial prime factorization. The
use of partially factored representation reduced the run time
significantly, although time and space complexities did not
improve.

It was later shown that the reduced fraction S(N) has
numerator and denominator whose sizes are O(d) instead
of O(d log d) for a large class of hypergeometric series
including (2) and (3) [1], [9]. The proofs were based on
analyzing the number of times each prime divides into the
numerator and denominator, and is in fact related to the
partially factored representation introduced in [8]. Two O(d)
space algorithms were introduced by [1], [9]. First, a modular
algorithm was given in [1] to compute the image of the fraction
S(N) ≡ TQ−1 mod M for an appropriately chosen M with
O(d) digits, and the reduced fraction T/Q was recovered
using rational number reconstruction [12]–[15]. While the
algorithm has the same time complexity as binary splitting,
it is only interesting in theory because of the additional
overhead in modular computations. Later, the algorithm in [8]
using partially factored representation was extended so that
the factorization of the values at the base cases where handled
efficiently by a sieve rather than by trial division [9]. Although
the time complexity of this algorithm is still the same as that
of binary splitting, in practice it is significantly faster.

We remark that there are approaches that compute an O(d)
size approximation of T and Q using binary splitting, so that
S(N) can be approximated to d digits using only O(d) space.
However, the results computed by such a process cannot be

reused if one wishes to compute more digits by extending the
truncated series (i.e. increasing N ).

III. MODULAR ALGORITHMS

In this section, we first describe the modular algorithm given
in [1] in more detail. We will also describe two new variations
to improve the performance of the modular algorithm using
special moduli and Montgomery multiplication.

A. Basic Algorithm

Given positive integers r and m, the rational number recon-
struction problem is to find a and b such that r ≡ ab−1 mod
m, gcd(b, m) = 1, |a| <

√
m/2, and 0 < b ≤

√
m [12]. The

recovered fraction is also reduced. Numerous algorithms exist
to solve this problem with a time complexity of O(M(d) log d)
if the bit length of m is O(d) [14], [15].

The modular algorithm is based on rational number re-
construction. It chooses a modulus m such that 2T̂ Q̂ < m,
where T̂ and Q̂ are the reduced numerator and denominator.
The constraint that gcd(Q,m) = 1 can be enforced by
ensuring that smallest prime factor of m exceeds qmax =
maxi=0..N−1 |q(i)|. The integer image S(N) mod m is com-
puted, and rational number reconstruction is then applied to
recover the reduced fraction T̂ /Q̂.

The bounds for T̂ and Q̂ were derived for ζ(3) in [1]
and they have size O(d). Therefore, the modulus m has
size O(d). Since m is large, computations modulo m may
be slow due to repeated divisions by m. In order to avoid
unnecessary divisions, the terms in the summation are grouped
into groups of G terms, such that the resulting numerator and
denominator computed using the binary splitting approach do
not exceed m. The grouping factor G can easily be computed
by examining the polynomials a(n), p(n), and q(n), and
has G = O(N/ log N) [1]. The algorithm for computing
S(N) ≡ TQ−1 ≡ T̂ Q̂−1 (mod m) is given below.

Algorithm 1 Computation of S(N) ≡ TQ−1 (mod m)
1: Determine the largest grouping factor G such that the

values T , P , and Q for the partial sum in the range
[n1, n1 + G) satisfy T, P,Q < m for any n1.

2: Divide the range [0, N) into bN/Gc groups of size G and
possibly one additional group of size N mod G.

3: For each group, compute the values of T , P , and Q using
binary splitting.

4: Combine the values computed above modulo m using the
same calculations as in binary splitting in (5).

5: Compute S(N) ≡ TQ−1 (mod m).

Steps 3 and 4 can be interleaved by using three variables to
accumulate the current values of T , P , and Q as we process
each group, so we do not need to store the computed values
for each group separately.

In the complexity analysis (see [1]), it can be seen that Step
3 has the same time complexity as standard binary splitting
although the hidden proportionality constant is smaller. Steps
4 and 5 have a lower complexity as standard binary splitting



but may have high hidden proportionality constants. This is
particularly true for Step 5 as it requires a modular inverse
computation in addition to multiplication and modular reduc-
tion. The same is true for the rational number reconstruction
step. Some approaches to reduce the hidden constant in Step
4 are described next.

B. Mersenne Number Modulus

Although Algorithm 1 avoids divisions by m until the
results are larger than m, Step 4 of the algorithm still has
to combine the values of T , P , and Q from each of the
dN/Ge groups modulo m. Since m has size O(d), divisions
by m can cause a significant overhead as each division
requires O(M(d)) operations. Since there are approximately
N/G = O(N/(N/ log N)) = O(log N) groups, it follows
that Step 4 of the algorithm has a time complexity of
O(M(N) log N) = O(M(d) log d), and requires both cross
multiplications and modular reductions.

One way to reduce the run time of this step is to choose
moduli of the form m = 2k ± 1, so that modular reduc-
tions can be performed by bit shifts and additions (note that
we cannot use m = 2k since gcd(Q,m) > 1) [16]. If
0 ≤ a, b < m, then the modular reduction of ab mod m
(ignoring the multiplication) can be done in O(d) operations
instead of O(M(d)) operations. We can write the product
ab = c12k + c0 where c0, c1 < 2k. Since 2k ≡ 1
(mod 2k−1) and 2k ≡ −1 (mod 2k+1), we can perform the
modular reduction ab mod 2k − 1 = c1 + c0 mod 2k − 1 and
ab mod 2k + 1 = −c1 + c0 mod 2k + 1 in O(d) operations.

We choose to use only Mersenne numbers of the form m =
2k − 1, because the constraint that gcd(Q,m) = 1 can be
enforced using the following property [17, Theorem 6.12]:

Theorem 1: If p is an odd prime, then any divisor of the
Mersenne number Mp = 2p− 1 is of the form 2kp + 1 where
k is a positive integer.
Thus, if we take p to be a prime such that p ≥ qmax/2, we
can ensure that the smallest prime divisor of the modulus m =
2p − 1 exceeds qmax and hence gcd(Q,m) = 1. In practice,
satisfying the constraint that 2T̂ Q̂ < m already implies that
p ≥ qmax, so that we only have to ensure that p is prime.

We also note that we do not need to store the modulus
m = 2k−1 itself, as it is sufficient to know only its bit length
k in order to perform computations modulo m. Therefore,
using a Mersenne number as the modulus also reduces the
space usage in Steps 1–4 of Algorithm 1.

C. Montgomery Multiplication

To further reduce the run time of the modular reductions
required in Algorithm 1, we try to replace reductions modulo
m by reductions modulo r = 2k which can be done simply
in O(1) operations by truncation of the binary representation
using a procedure known as Montgomery multiplication [10].

Suppose that gcd(m, r) = 1 which is satisfied in Algo-
rithm 1, and that r > m. Let m′ ≡ −m−1 (mod r), which
can be computed once in advance. The following algorithm
computes the Montgomery reduction of x, REDC(x) =

xr−1 mod m, provided that 0 ≤ x ≤ rm. Notice that
divisions by r can be computed easily with bit operations.

Algorithm 2 Computation of xr−1 mod m

1: n← (x mod r)m′ mod r
2: t← (x + nm)/r
3: If t ≤ m return t−m else return t

To make use of Montgomery multiplication, each integer
x is converted into its Montgomery representation x̂ =
xr mod n = REDC((x mod n)(r2 mod n)). Additions can
be performed directly in this representation. The Montgomery
representation of the product z = xy given x̂ and ŷ can be
computed by

ẑ ≡ (xy)r ≡ ((xr)(yr))r−1 ≡ REDC(x̂ŷ) (mod n). (6)

To convert x̂ back to the standard representation, one can
simply use x = REDC(x̂).

Montgomery multiplication is most helpful in situations
where the number of conversions between Montgomery and
standard representations is small compared to the number of
reductions.

IV. EXPERIMENTAL RESULTS

We implemented each of the modular algorithms described
above, as well as standard binary splitting. All experiments
were done on a dual-core Intel Xeon 2.4 GHz processor with
4GB of RAM, under the Linux operating system. Multipreci-
sion arithmetic was supported by the GMP library version
5.0.2 [18]. Rational reconstruction was done by the Half-GCD
algorithm of Lichtblau [15] implemented in GMP.

We first give the results on the computation of π using
(2) in Table I. The “Basic Modular” algorithm refers to the
algorithm as described in Section III-A without using any
special modulus, while “Mersenne + Montgomery” refers to
using Montgomery multiplication with m being a Mersenne
number. For the computation of π, we see that in fact the mod-
ular algorithm is not very competitive compared to standard
binary splitting. In fact, the standard binary splitting algorithm
can compute more digits than the modular algorithms despite
having a higher space complexity. This is due to the fact that
the difference between the unreduced fractions computed by
binary splitting and the reduced fractions are relatively small II
(less than 50%), and the gain in size of the fractions does not
overcome to hidden proportionality constants in both the time
and space complexity bounds.

The results on the computation of ζ(3) using (3) are given
in Table III. Here the results are reversed—standard binary
splitting runs out of memory computing 64 million digits,
but the modular algorithms completed the computations. This
time, the reduced fractions are significantly smaller (less than
20%) of the unreduced fractions, so that the gain easily
outweighs the hidden proportionality constants.



TABLE I
COMPUTATION TIMES FOR π. AN ENTRY OF “?” INDICATES THAT THE COMPUTATION DID NOT COMPLETE DUE TO A LACK OF MEMORY.

Digits Binary Splitting (s) Basic Modular (s) Mersenne (s) Mersenne + Montgomery (s)
1,000,000 6 30 30 30
2,000,000 15 71 69 72
4,000,000 36 174 168 168
8,000,000 86 427 390 407
16,000,000 201 983 940 976
32,000,000 476 2,278 2,114 2,257
64,000,000 1,034 ? ? ?
128,000,000 2,434 ? ? ?

TABLE III
COMPUTATION TIMES FOR ζ(3). AN ENTRY OF “?” INDICATES THAT THE COMPUTATION DID NOT COMPLETE DUE TO A LACK OF MEMORY.

Digits Binary Splitting (s) Basic Modular (s) Mersenne (s) Mersenne + Montgomery (s)
1,000,000 14 43 39 48
2,000,000 34 102 92 113
4,000,000 83 245 218 271
8,000,000 199 584 507 636

16,000,000 470 1,356 1,194 1530
32,000,000 1138 3,092 2,710 3403
64,000,000 ? 6,998 6,159 7054

TABLE IV
BREAKDOWN OF COMPUTATION TIMES FOR ζ(3) USING THE “BASIC MODULAR” ALGORITHM.

Digits Steps 1–4 (s) Step 5 (s) Rational Reconstruction (s)
1,000,000 16 18 8
2,000,000 39 42 19
4,000,000 94 100 47
8,000,000 231 237 109
16,000,000 542 550 250
32,000,000 1,248 1,252 560
64,000,000 2,870 2,797 1,265

TABLE V
BREAKDOWN OF COMPUTATION TIMES FOR ζ(3) USING THE “MERSENNE” ALGORITHM.

Digits Steps 1–4 (s) Step 5 (s) Rational Reconstruction (s)
1,000,000 12 18 9
2,000,000 30 42 20
4,000,000 71 98 46
8,000,000 172 228 103
16,000,000 413 531 240
32,000,000 958 1,198 532
64,000,000 2,208 2,710 1,194

TABLE II
SIZE (IN 103 BITS) OF COMPUTED RESULTS BY BINARY SPLITTING AND

MODULAR ALGORITHM.

π ζ(3)

Digits T T̂ T T̂

1,000,000 7,511 4,451 31,507 4,218
2,000,000 15,484 8,902 66,347 8,437
4,000,000 31,891 17,805 139,360 16,875
8,000,000 65,629 35,609 292,053 33,752

16,000,000 134,949 71,219 610,772 67,495
32,000,000 277,282 142,438 1,274,876 134,994

For both computations of π and ζ(3), the cost of Algo-
rithm 1 is dominated by Step 5 and rational reconstruction—
more than half the time is spent in these two steps. Breakdowns

of the run times for the computation of ζ(3) by the basic
modular algorithm and Mersenne algorithm are shown in Ta-
ble IV and Table V. As expected, the use of Mersenne numbers
as moduli reduces the run time of Steps 1–4 significantly.
While the remaining steps are the same in the two variations,
we see minor improvements in the last two steps of the
“Mersenne” algorithm when d is large. This is due to the
reduced memory requirement of Steps 1–4 when Mersenne
numbers are used as moduli, so that less work is done in the
remaining steps for memory management. Also, Steps 1–4
can be considered as the computation of an approximation of
the binary splitting results modulo m. We see that in the basic
modular algorithm, this computation is already worse than that
of standard binary splitting. By using Mersenne numbers as
moduli, this computation is now faster than standard binary



splitting. Of course, the remaining steps introduces additional
penalty compared to standard binary splitting, even if the
complexities of these steps are better than the binary splitting.

For the computation of ζ(3) one can see that the penalty
for using Mersenne numbers in a modular algorithm instead
of binary splitting decreases as the number of digits increase.
It is conceivable that for large enough number of digits, the
modular algorithm can be superior compared to the basic
binary splitting algorithm. However, the same cannot be said
about π.

In both cases, the use of Mersenne numbers as moduli is
clearly an improvement over the basic modular algorithm.
However, the reduction in division times with Montgomery
multiplication is overcome by the cost of conversions in the
input and output, especially when compared to the modular
algorithm using Mersenne numbers as moduli.

These results show that modular algorithms can be made
more competitive against standard binary splitting with the
use of Mersenne numbers as moduli, especially when the size
of the reduced fraction is significantly smaller than that of the
unreduced fraction normally computed by binary splitting.

We should also remark that the algorithm given in [9] is
generally superior to standard binary splitting in both running
time and memory usage as it has much lower proportionality
constants in both the time and space complexity estimates than
the modular algorithms. As a result, it should still be used in
favour of the modular algorithm.

V. CONCLUSIONS

In this paper, we examine the modular algorithm for evalu-
ating (4) and studied two variations in an attempt to improve
its running time. When the size of the reduced fraction
is significantly smaller than that of the unreduced fraction
computed by binary splitting, the use of Mersenne numbers in
the modular algorithms improves the basic modular algorithm
and make it more feasible. Although the modular algorithms
are interesting theoretically, it is still advisable to use the linear

space algorithm based on binary splitting and factored integer
representation given in [9].
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