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Abstract—One-dimensional lossy compression schemes, such as piecewise approximation with triggers
(PAT)(Walach and Karnin, { EEE Int. Conf. on Acoustics, Speech and Signal Processing, Vol. 1, pp. 529-532,
Tokyo, Japan, April 1986) have the advantage of being computationally simple. Several previous papers
have examined this algorithm and a variety of changes have been proposed. This paper adds new features
and also incorporates some ideas from previous papers to arrive at a modified version: MPAT. The
modifications vary parameters for the trigger function and the thresholds. Furthermore, they also introduce
new features such as context modelling, different interpolations, and early triggers. These changes add
flexibility, decrease the compressed image size, and improve the reconstruction quality, while maintaining
a complexity advantage over other algorithms. A complexity count is also performed to quantitatively
demonstrate the benefits of this algorithm over alternatives. € 1998 Pattern Recognition Society. Pub-

lished by Elsevier Science Ltd. All rights reserved.
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I. INTRODUCTION

Recently, digital images have been expanding in usage
and size. This has added pressure to improve image
compression algorithms so that they produce smaller
file sizes with a lower computational requirement.
Algorithms based on DCT or wavelet transforms‘!’
can reduce file size, but there is still a need for com-
putationally simple methods. This paper examines
modifications to a one-dimensional compression
scheme, piecewise approximation with triggers
{PAT)."® This is altered to create modified piecewise
approximation with triggers (MPAT) which retains
PAT’s advantage of being computationally simpler
than conventional two-dimensional methods. Al-
though neither algorithm will compress images as
well as two-dimensional methods, both can be imple-
mented on systems with little processing power, such
as video cameras, mobile wireless communication
systems, and handheld computers.

A one-dimensional image compression algorithm
has two parts—the image is scanned into a one-di-
mensional array and then the resulting array is com-
pressed. The scan employed is the Hilbert'” scan as
suggested previously,”’ which is known to maintain
interpixel correlation well."” Previous work'® has
shown that the Hilbert scan is beneficial and that it
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can be successfully generalized to work on images of
arbitrary dimensions. After the scan is performed, the
PAT algorithm compresses the resulting array by an
approximation technique. The compressed output is
entropy coded using an arithmetic coder'” with mul-
tiple models—a different model for each type of data.
The use of arithmetic coders does not significantly
increase the complexity.

The original idea has been examined and altered by
other papers; however, a comprehensive examination
of the entire algorithm has been lacking. This paper
attempts to fill the void by amalgamating and im-
proving previous ideas, and introducing new changes
where appropriate. The result is called MPAT, and it
builds on the basic PAT algorithm by adding options
and modifications to improve image quality and
operational flexibility. To justify further research in
this area, a thorough analysis and complexity count
are performed.

The paper is organized as follows. In Section 2, the
PAT algorithm is introduced. In Section 3 the modifi-
cations to create MPAT are described. In Section 4,
the performance of both algorithms is considered, and
they are compared to previous results. In Section 5,
the complexity of the algorithms is discussed. In
Section 6, the results are summarized.

2. PIECEWISE APPROXIMATION WITH TRIGGERS (PAT)

PAT is a lossy image compression scheme that
operates in the spatial domain. It offers good perfor-
mance at very low complexity levels. The concept was
originally given by Walach and Karnin.” It evolved
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from the idea of “laying a yardstick”™ down on a one-
dimensional signal and recording the horizontal
distance the yardstick traveled. Since a yardstick has
a fixed length, knowing the horizontal distance travel-
led implies a mimium vertical distance has been
covered. This is how the signal is compressed; instead
of transmitting the height of the signal at each point,
the signal is assumed to be lying on the yardstick.
Although the horizontal distance dictates a vertical
displacement, it does not indicate if the signal went up
or down; the sign of the height change must also be
transmitted. The decoder can perform a lossy recon-
struction using only the horizontal distances and the
signs of the heights. The decoder creates a piecewise
linear approximation to the original signal.

Using the model of a yardstick, horizontal distance
and height would be related by the formula x* +
y? = r?. This was generalized to use a trigger function,
TF, which takes a horizontal distance and returns
a height. Then the transmitted distance becomes the
smallest distance at which the change in signal height
exceeds the trigger function, namely

min  [itls,y; — 1| > TF()} and
Ry ‘
if such an i exists,
'max otherwise,

where i, is the maximum length, s, is the signal
value at x, and the reconstruction at x is r,. The sign
of s,.; — r, is transmitted after each distance is sent
(called a trigger).

A diagram showing the behaviour of the algorithm
isin Fig. 1. The original discrete signal is indicated by
small black dots connected by a broken line. The
encoder and decoder are assumed to know the start-
ing point precisely. The encoder sends the distance at
which the signal first falls outside the envelope (dotted
line} provided by the trigger function. The encoder
then transmits a sign indicating whether the signal
went through the top envelope or the bottom. The
decoder uses the horizontal distance travelled, along
with the sign. to find the location where the signal
exceeded the trigger function. and creates a recon-
structed point there. The decoder can linearly interpo-
late between the orignal point and the reconstructed
point. At this time, both the encoder and decoder
agree on a common point and the process iterates.

A simple modification to the above procedure is
suggested by Karnin and Walach, which involves the
use of thresholds. When the distance to be transmitted
is one and |s,.; — r,| > Threshold, then it is likely
that the signal is near an edge. A zero distance is
transmitted followed by a three-bit {eight level) quan-
tized value. The value of Threshold is stored in TF(0).
In effect, TF(0) acts as a threshold to determine il
a different region of the image is being entered. Using
different models for distances, signs, and quantized
values, the output is compressed with an arithmetic
coder. The original paper suggests the use of vertical
line subsampling to increase performance, so that

J. MODAYIL et al.

only every second or third vertical line is included
during the scan. This introduces significant visual
distortion; hence it is not used in our experiments. For
the decompression phase, the signal is linearly inter-
polated between the reconstructed values. The encod-
ing algorithm for an array A of 8-bit integers is stated
below to facilitate complexity analysis. The encoder
and decoder maintain synchronization via start. This
is especially important after a threshold, as the de-
coder will normalize the three-bit value. Note that
start can never fall out of the range of the image, so
bound checking is not required when determining
start values.

PAT encoding algorithm

Assume that the image has been Hilbert scanned
into the array A.
Output the first element of the array 4 in A[lig,,. ]
Set start = Alisan]-
Let the last element to be processed be in iguy.
Seti=1.
repeat
d’ﬂ: IS[L”‘[ - A[islarl + l]
while (diff < TF(iy and | < inayx and igap 4+ i < ipng)
fe=i+ ]
diff = |start — Aligam + i}
if (i =1 and diff > TF(0))
Output the distance 0.
Output the three most
Aliyar + i
start = (A[iga] AND 11100000) OR 00010000
else
Output the distance i.
Output sign = the sign of Ali,,, + [] — start.
if {sign is positive)
start = start + TF(i)
else
start = start — TF(i)
Tstarr = lgare + 1
i=1
until (i.clart = iend)

significant bits of

3. MODIFIED PAT (MPAT)

Some changes can be made to the original PAT
algorithm to improve its results and to add flexibility.
Using a fixed trigger function yields a file size that
cannot be well predicted. However, file size is impor-
tant because PAT is not designed for progressive
transmission; a truncated file does not produce a good
approximation to the original. One area for improve-
ment is to vary parameters to allow the file size and
the distortion to be controlled. Another area for im-
provement is to introduce new features which can
improve the image quality by altering aspects of the
algorithm. We propose the following changes to PAT.
All graphs in this section show results from tests
performed on the Lena image (512 x 512).
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Original Signal
Reconstructed Signal
Trigger Function

e  Sample points

! Reconstructed points

The compressed output is 3+,3-,2-.

Fig. 1. PAT encoding of a sample signal.

3.1. Varving parameters

3.1.1. Trigger function. Earlier papers®* on PAT
generally used the trigger function originally sugges-
ted,’”’ namely

TF(x)=15151311975444444444.

In our experiments a wide variety of exponential
trigger functions,’>> were examined from the set of
functions

TF(x) = ae™ + ¢.

where a, b, and ¢ are parameters. These functions
performed well without the use of subsampling as
originally proposed, and their exponential structure
may be well adapted to the logarithmic response of
the human visual system. These functions also offered
a systematic way to generate trigger functions which
permitted the performance of the algorithm to be
tested at a variety of bit rates, a feature which pre-
viously had not been available.

From the set of functions classified by TF(x) =
ae® + ¢, the members from the subset TF(x)=
ae 795 £ 2 were found to be near optimal on rate-
distortion graphs. The dependence on these particular
values is not critical, but a negative » value with small
magnitude performed much better than those with
large magnitudes. The results obtained for this paper
were all generated by this subset of trigger functions.
To create a fair comparison between the PAT and
MPAT algorithms, the same trigger functions were
used in each bank of tests.

Another change was to set i,,,, to 64, as opposed to
16 which was used in other papers. The advantage of
a large i,,, value is that the algorithm can handle
large smooth regions with fewer triggers, and it per-
mits compression at low bit rates. Although a large
imax Value requires more bits per trigger, the use of an

arithmetic coder reduces this penalty. The results
from varying the i, values is given in Fig. 2. Setting
imax 10 32 seems to yield almost identical results to
PAT for Lena, but on other images this is not true.
Benefits of using a smaller iy, value include fewer
models and symbols for the arithmetic coder, and
smaller tables for interpolation (see Interpolation
Methods).

3.1.2. Threshold. Thresholds are required to avoid
degradation of sharp edges in a signal. A few iter-
ations may be required to transmit a large signal
change when using a small trigger function. This
smooths out edges and wastes many bits on a poor
approximation. The use of thresholds permits rapid
changes without high overhead.

Previous papers did not examine changes to the
thresholds. Two aspects of thresholds must be con-
sidered. The first is deciding when it should occur. The
Threshold value was varied linearly with TF(0) and
the results are shown in Fig. 3. The results show that
the Threshold value provided by the trigger function,
namely TF(0), performs adequately.

The second aspect is the number of bits to allocate
for a thresholded value. A minimum for this is implied
by Threshold. Since |r, — sc4q| > TF(0), at least
256/(2 x TF(0)) states are required to ensure that the
use of the threshold is beneficial. Then for a particular
choice of TF(0), the minimum number of bits required
to hold the thresholded value must be at least

[ 256
1()g2<§—,”f(07)) .

\&

Allocating less than the above number of bits makes
a threshold less accurate than required to guarantee
that it 1s beneficial. Using more bits is a waste, since
the human eye is less sensitive to variations at edges.
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Fig. 3. Varying the threshoki. PAT corresponds to Threshold = TF(0), and xThresh corresponds to
Threshold = x x TF{0).

Hsu and Pai'® suggest using all eight bits, but this is
extremely costly when using small Threshold values
which cause many thresholds to be transmitted. The
original choice of three bits caused thresholds to
degrade the image at high bit rates, so PAT was
implemented with the modified bit allocation for
thresholds.

3.2. New features

3.2.1. Context modeling. Context modeling was
introduced so that the model used to encode the

current distance is based on the last transmitted dis-
tance. Previous papers had not examined this poten-
tial area of compression. The additional information
permits the arithmetic coder to better model the in-
coming data. This choice of model can be made by
a table lookup, which incurs negligible computational
overhead; complicated methods of selecting a model
were avoided due to computational cost. To choose
a model, the last distance transmitted is placed on
a logarithmic map. Namely, for a fixed parameter K,
two distances d, and d, will select the same model if
and only if there exists n € N such that K" <d, < K"
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Fig. 4. Effects of entropy coding on Lena. Results with PAT (no context modeling), full context modeling,
and no entropy coding are shown.

and K" < d, < K"*!. The choices for K were varied
from 1 to 8, but the performance was only marginally
altered. The best performance was observed in the
region about K = 2.

Context modeling can be further increased by
coding the current sign with a model based on the
previous sign. The thresholds can also be coded using
different models based on the most significant bits of
the most recent start value. The number of models for
thresholds was chosen to be the number of possible
threshold values—-the function for choosing a thre-
shold value to be transmitted is used on the last start
value to choose the model. This yields good perfor-
mance at high bit rates. Without the use of arithmetic
coders this advantage is entirely lost. The results of
using the added models, and the results without arith-
metic coding are displayed in Fig. 4. Clearly, arithme-
tic coding greatly enhances performance, but the poor
performance without arithmetic coding is exaggerated
by the large i,., value chosen for PAT.

3.2.2. Interpolation method. A variety of interpola-
tion methods were examined. Previous papers had
used either linear or flat interpolation. The most obvi-
ous method is to use Linear interpolation, and that is
the method used in PAT. Other methods include Flat,
Quadratic, Flat + Linear, and Flat + Quadratic. The
formulas below give the interpolations for n values
between A[ig,, + 1] and Alig,, + #n] inclusive. The
performance of the various modifications is shown in
Fig. 5.

Flat interpolation:

Al + istar] = Alisar], 1 <0 <0 m,
ALn + lyard = Alisare] + sign x TF(n).

A Flat interpolation will copy the last reconstructed
value over the distance of interpolation and place
the new reconstructed value in the last position. This
has the advantage of being very fast as only one
addition is required per interpolation. However,
blocking artifacts appear at low bit rates with this
method.
Linear interpolation:
Al + lgar] = Aliga] + (i} (signx TF()n) 1 <i<n
With Linear interpolation, the blocking effects are not
as significant. Indeed, only at very low bit rates are
blocks visible with this method. The values that are
added to A[i,,.], namely (i) (sign x TF{n)/n), can be
generated at run time, or can be pre-computed.
Having smaller iy, values will reduce the memory
overhead of having pre-computed tables. The Linear
interpolation method is simple but requires an addi-
tion for each interpolated pixel which is the most
significant cost. This is the method used in the PAT
algorithm.
Quadratic interpolation:

A [' + i.\'larl] = A[isrart]

+ (%) (sign x TF(n)/n?), 1 <i<n.

In the tests, this method performed marginally better
than any of the other methods. Like Linear interpola-
tion the values that must be added to A[ig,,] can be
computed at run time or can be pre-computed. If it
is pre-computed it is no more expensive at run time
than Linear interpolation-—-its superior performance
comes at no extra cost.
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Fig. 5. Varying the interpolation method for Lena.

Flat + Linear:
A [i + ismrr] = A[ismrl]a
AL+ gare + 131

= Aliga] + () (sign x TF(n)/m),

l<i<|i].

Since Flat reduces the run-time computation and Lin-
ear performs well, a successful attempt was made to
merge the two methods. The first-half of the interpola-
tion was performed as Flat, and the latter half was
linearly interpolated. This interpolation outperforms
both Linear and Flat methods on the rate-distortion
graph, while maintaining computational simplicity.
This is evident in Fig. 5. An added bonus is that
pre-computed interpolation tables can be halved, re-
ducing memory overhead.
Flat + Quadratic:

A [1 + ivmr!] =A [ismrl]s
A[I + iwurt + L% J]

= Aligan] + (%) (sign x TF(n)jm?),

l<i<|5.,

m=n—|%],1<i<m

Given the success of the Flat + Linear approach it is
logical to consider combining Flat and Quadratic in
a similar manner. Unfortunately, it does not result in
a dramatic rise in performance. In fact, it does not
perform better than Quadratic, which suggests that
a leve] of diminishing results has been reached. Still, if
values are to be pre-computed, it offers slightly better
performance over the Flat + Linear approach at no
extra cost.

3.2.3. Early Trigger. Another modification to im-
prove edge handling is to have an early trigger.'® If
i > 1 and diff > Thresholdg,,, when a trigger is ready
to be sent, then the distance i is decremented by one.
The value for Thresholdg,,;, can be determined experi-
mentally as a proportion of TF(0) . It was found that
setting Thresholdp,, = 2x TF(0) performed well at
bit rates around 1, as is shown in Fig. 6. This modifi-
cation allows the reconstruction to stop before
large differences are encountered, permitting sharper
edges. It also permits the reconstruction to adapt
better to the signal. In the PAT algorithm, it takes at
least one pixel before the algorithm can recognize an
edge, and this was visibly noticeable in the PAT
method.

The use of early triggers also permits guarantees to
be made about the approximation. The original signal
is guaranteed to be within the corresponding trigger
function value up to the trigger distance, and within
Thresholdg,,, at the trigger distance. A threshold will
occur only if the new start value is further than Thre-
shold from the signal. This does well in detecting
actual edges while ignoring noise. Since the recon-
struction on a threshold is guaranteed to be within
Threshold of the original signal, any point on the
reconstruction can be no further than Thresholdy,,,
from the original.

A similar method was proposed in reference (8).
However, it always uses an early trigger, and does not
perform as well with the chosen trigger functions.
Although an early trigger requires a higher bit rate for
a given trigger function, the rate-distortion graph
shows the corresponding increase in quality is worth
the cost. The advantage of using an early trigger
selectively compared to using an early trigger always
1s shown in Fig. 7.
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Fig. 7. Comparing usage of early triggers on Lena. Early corresponds to Thresholdg,,, = TF(0), PAT
represents using no early trigger, and AlwaysEarly reresents using early triggers everywhere.

Although this modification is almost transparent to
the decoder, it does introduce a slight complication.
With the addition of this change, the reconstructed
values can fall outside the range of the original image.
To avert this, the decoder must perform bound check-
ing on each trigger. The coder needs only to check for
this event when an early trigger is performed. If it falls
out of range, the reconstruction must be altered so
that it is bounded. This complicates the interpolation
as a pre-computed table cannot be used for these
triggers. Fortunately, this event does not occur
frequently in most images.

4. PERFORMANCE EVALUATION

Here we examine the performance of MPAT, which
is formed from PAT and modifications discussed
in the previous section. MPAT consists of PAT
combined with TF(x)=ae "% 42, .. =64,
Thresholdy,., = 2 x TF(0), Threshold = TF(0), Flat
+ Linear interpolation, and context modeling with
K = 2. The version of PAT used in these tests consists
of the original PAT combined with the use of arithme-
tic coding, modified bit allocation for thresholds, the
choice of 1, = 64. and the use of Hilbert scanning.
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Table 1. Results of PAT on Lena (512 x 512)
Parameter a 10 20 30
Bpp 0.971 0.607 0.462
PSNR 3292 30.87 29,53
Thresholds 17,126 6059 2463
Triggers 31.040 21,818 16,993

Table 2. Results of MPAT on Lena (512 x 312)

Parameter a 10 20 30
Bpp 0.962 (1.579 0.433
PSNR 35.51 3210 30.40
Thresholds 20,395 6457 2754
Normal triggers 26,584 20,355 16412
Early triggers 5097 1649 669
Flat pixels 113,039 127.460 125,597

These adjustments to PAT were included to better de-
monstrate the effects of the modifications in MPAT.

The counts of various events in the algorithms in
Tables 1 and 2 are included to demonstrate typical
results. In these tables thresholds are not counted as
triggers, and a normal trigger is one that is not early.
Clearly, the number of triggers and thresholds that
have to be coded by the arithmetic coders is small;
hence, arithmetic coding is not a significant penalty,
The same trigger functions produce files of compara-
ble sizes in the two algorithms. but the MPAT algo-
rithm has much higher PSNR values. The ratio of
thresholds to triggers is seen to rise with increasing bit
rates. This would suggest that for trigger functions
with small ¢, a special symbol for the distance 0 would
improve results if arithmetic coding is not employed.
The total number of early triggers remains relatively
small compared to the number of normal triggers in
MPAT., but they are likely responsible for the rise in
the number of thresholds between PAT and MPAT.
The number of triggers in PAT and MPAT are very
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close- -this shows that early triggers do not generate
excessive triggers. From the table, the average dis-
tance traveled by a trigger in MPAT at 0.579 bpp is
5122420355 4+ 1649) =~ 11.9 which justifies a large
imax vValue. The number of Flat pixels in Table 2
represents the number of pixels which were handled
by the Flat portion of the Flat + Linear interpolation.
It is close to half of the number of pixels in the
image-—the difference arises from the floor operation
in Flat + Linear interpolation and thresholds. For all
three trigger functions, the reconstructions never fell
out of the {0-255) range of the image.

The results given compare favourably with those re-
ported previously. The results of Sorek and Zeevi'™ did
not match our expectation as their SNR and bpp ratio
(30.5 SNR at 0.375 bpp) placed higher than MPAT.
When implemented by the authors, their algorithm
yielded a PSNR of 2809 at 0455 bpp, and so the
discrepancy is likely due to a different choice of measure.

The tables do not accurately represent the visual
quality of MPAT. With the MPAT algorithm on
Lena at approximately 0.5 bpp. the reconstruction
errors introduce noise. This is detectable but does not
detract visually from the image, as can be seen in
Figs 8 and 9. In fact, this noise is often not noticeable
in photographic images. The reconstructed images
tend to be “sharp™ instead of “blurry™ as can be
observed in the reconstructions of some transform-
based techniques” If a small two-dimensional
smoothing filter is applied to the reconstruction, the
results are subjectively better as the sharpness in ho-
mogeneous regions is decreased, but filters can be
computationally expensive and so were not used.
When trigger functions with lurge ¢ values are used,
the noise becomes visually distracting and blocking
effects occur. This is because large regions are appro-
ximated by a single interpolation, which causes details
to be missed. The choice of the trigger function to
minimize the bit rate without causing visual degrada-
tion 15 only determinable visually. Although the

Fig. 8. Lena (512 x 512). (a) original; (b) MPAT reconstruction at 0.499 bpp (PSNR = 31.24).
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Fig. 9. Baboon (512 x 512). (a) original; (b) MPAT reconstruction at 0.680 bpp (PSNR = 23.10).
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Fig. 10. Zoom on left of mouth of Baboon (512 x 512). (a} original; (b} PAT reconstruction at 0.709 bpp
(PSNR = 22.23); (¢c) MPAT reconstruction at 0.680 bpp (PSNR = 23.10); (d) rate-distortion graph.
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PSNR values for a set of images can be extremely low,
the images may still be visually acceptable, as shown
in Fig. 9.

One cause for the discrepancy between visual and
numerical results is that the reconstruction can simu-
late details such as hair without a good match to the
original image. As can be seen in Fig, 10, when regions
with hair are being compressed, the reconstructed
signal will oscillate, but it may not do so at the same
location or to the same extent as the original. The
visual results of the PAT are poorer than that of
MPAT because it does not react as quickly to
edges-—much of the baboon’s hair is lost. The rate-
distortion graph for the baboon image shows that the
modifications are extremely effective at higher bit
rates.

The fact that both PAT and MPAT can operate on
the baboon image speaks of the robustness of the

J. MODAYIL et «l.

algorithms. This is due in part to the removal of noise.
In the original version of the baboon, some noise can
be seen intermingled with the hair. In the reconstruc-
tion for PAT and MPAT, the noise is removed or
diminished. The cost is the removal of fine details,
which is seen in Fig. 11 where the eyelashes do not
exist in either reconstruction.

With MPAT, the guarantee of performance allows
the same trigger functions on two vastly different
images to yield similar PSNR values at high bit rates.
The PAT version makes no such guarantees as the
graphs shown in Figs 10d and 11d. PAT makes clearly
defined edges jagged, whereas MPAT preserves them.
as shown in Fig. 11.

Previous work'® has shown that while PAT does
not compress images as well as wavelet methods, the
file sizes are comparable at low bit rates. With the
added modifications, MPAT performs approximately
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Fig. 11. Zoom on right eye of Lena {512x512). (a} original; (b} PAT reconstruction at 0.530 bpp
(PSNR = 30.21); (c) MPAT reconstruction at 0.499 bpp (PSNR = 31.24); (d} rate-distortion graph.
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Table 3. PAT operation counts

Category Additions Comparisons  Shifts
Compression

Per pixel 1 2 0
Per threshold 0 3 1
Per trigger 2 3 0
Decompression

Per threshold 0 2 1
Per trigger of N+2 N +3 0

distance N >0

Table 4. MPAT operation counts

Category Additions Comparisons Shifts
Compression

Per pixel 1 2 0
Per threshold 0 3 |
Per regular trigger 2 4 0
Per early trigger 2 S 0
Decompression

Per threshold 0 2 1
Per trigger of N— 3]+t N+ 4 I

distance N = 0

as well as a wavelet based algorithm on Lena at
1 bit per pixel. which is shown in Fig. 11d. The wave-
let algorithm is a multi-resolution one-dimensional
algorithm '’ For the wavelet results, the picture was
read into an array using the Hilbert scan. and then
compressed using multi-resolution unalysts on the
array. While one-dimensional wavelet compression
does not perform as well as its two-dimensional
counterparts, it provides a benchmark {or one-dimen-
sional compression. Essentially, MPAT matched the
performance of multiresolution analvsis: an impres-
sive feat given the simplicity of the MPAT. This shows
that MPAT is a strong compression method. even in
comparison 1o some better known algorithms.

5. COMPLEXITY ANALYSIS

The complexity of PAT-based algorithms is ex-
tremely low, as stated by previous papers, and demon-
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strated here. The operation counts were performed on
versions of PAT and MPAT which had been signifi-
cantly optimized for speed. For these counts, in-
crement operations and simple array references were
ignored. Operations required to perform the scan, and
those used by the arithmetic coders were also ignored.
For simplicity, subtractions were counted as addi-
tions, and divisions as multiplications. All compari-
sons in the algorithms were counted, including those
in loop structures. Table lookups were assumed for all
interpolations (though the boundaries comparisons
were still performed) as the reconstruction rarely falls
out of the range of the image.

In Tables 3 and 4, the operations used during com-
pression and decompression are given. Since table
lookups are used for interpolation, only integer opera-
tions are required throughout the algorithm. The only
modifications which are reflected in the complexity
analysis are early triggers and interpolation method.
Context modeling is handled by table lookup, while
thresholds and trigger functions are predetermined.

Table 5 shows the operations required by the algo-
rithms at approximately 0.8 bpp. The results for both
PAT and MPAT were obtained using the trigger
function

TF(x)=l4¢ V0% w2,

Also included in the comparisons are the counts for
a computationally simple two-dimensional quadtree
algorithm at 0.8 bpp.''” From Table 5, it is evident
that PAT-based algorithms are significantly simpler
than quadtree in terms of computation. It is worth
noting that the quadtree counts were taken from an
implementation that was aiming for computational
simplicity. The number of comparisons in the quad-
tree algorithm is not given,'® but it is logical to
assume that it is significantly more complex than
PAT-based algorithms. The low comparison counts
are included to demonstrate that the control logic is
also very simple. These tables show the benefits of
PAT-based algorithms, as quadtree algorithms are
already among the most computationally efficient of
two-dimensional methods.'V From Table 5, we can
say that MPAT and PAT are an order of magnitude
simpler than two-dimensional analogues. In decom-
position, it can also be seen that MPAT is simpler
than PAT in that it has far fewer additions to perform.

Table 3. Operations per pixel for Lena (512 x 512)

Category Additions Multiplications Comparisons Shifts
Compression

PAT (0.80 bpp) 1.203 0 2428 0.041
MPAT (0.78 bpp) 1.203 0 2.570 0.048
Quadtree (0.80 bpp) 213 0.16 Not given 0.50
Decompression

PAT {0.80 bpp) 1.161 0 1.345 0.041
MPAT (0.78 bpp) 0.603 0 1.461 0.152
Quadtree (0.80 bpp) 6.82 3.00 Not given 0.16
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6. CONCLUSIONS

The MPAT algorithm consistently outperforms
PAT in image quality. The family of trigger functions
considered in this paper performed well in compari-
son to other reported results. Also introduced was the
set of trigger functions TF(x) = «e ™ "°* 4 2 which

performs near optimally within its class. This set of

functions reduces a previous inadequacy of the PAT
algorithm which did not give a systematic method for
attaining variable compression ratios. The threshold
paramaters were varied to improve performance.
Context modeling was introduced to improve com-
pression ratios and performance. Early triggering was
introduced which allows edges to be more accurately
reconstructed. The interpolation model was changed
to Flat + Linear to yield a result which outperforms
Linear interpolation in quality and complexity.
A great benefit of PAT-based algorithms is an ex-
tremely low computational requirement. The only
real drawback is the lack of a precise control on file
size. This may not be too important, however, as the
PSNR vyielded by a trigger function can be fairly
accurately predicted. Despite its low complexity.
MPAT managed to match a one-dimensional wavelet
algorithm at high bit rates. MPAT has promise for
applications in portable units with little processing
power and which require moderate compression.
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