LOWER BOUNDS FOR THE LEAST PRIME IN CHEBOTAREV

ANDREW FIORI

ABSTRACT. In this paper we show there exists an infinite family of number fields L, Galois over Q,
for which the smallest prime p of Q which splits completely in L has size at least (10g(|DL|))2+0<1).
This gives a converse to various upper bounds, which shows that they are best possible.

1. INTRODUCTION
The purpose of this note is to prove the following result.

Theorem 1. There exists an infinite family of number fields L, Galois over Q, for which the smallest
prime p of Q which splits completely in L has size at least

3¢7\* (log(|Dy ) log(2loglog(|D])) \*
(1+0(1)) (zﬂ> ( “loglogDi) )

as the absolute discriminant Dy, of L over Q, tends to infinity.

The result is independent of the Generalized Riemann Hypothesis. Moreover, certain conditions
which would tend to violate GRH would actually imply stronger results (see Propositions 9 and 10).
In the formula above, and throughout the paper, « is the Euler-Macheroni constant.

The result complements the existing literature on what is essentially a converse problem, stated
generally as

Problem. Let K be a number field, and L be a Galois extension of K, for any conjugacy class C in
I'(L/K), the Galois group of L/K, show that the smallest (in norm) unramified degree one prime p of
K for which the conjugacy class Frob,, is C is small relative to | Dy |, the absolute discriminant of L/K.

Solutions to this problem have important applications in the explicit computation of class groups
(see [3]) where smaller is better. Some of the history of just how small we can get is summarized below:

e Lagarias and Odlyzko showed Nk /q(p) < (log(\DL|))2+o(1) conditionally on GRH (see [7]).
e Bach and Sorenson gave an explicit constant C' so that Ng g(p) < C (log(|Dy|))? conditionally
on GRH (see [2]).
e Lagarias, Montgomery, and Odlyzko showed there is a constant A such that Nk q(p) < [D L|A
(see [6]).
e Zaman showed Ng /q(p) < |D|* for Dy, sufficiently large (see [10]).
e Kadiri, Ng and Wong improved this to N ,q(p) < |Dy|"® for Dy, sufficiently large (see [5]).
e Ahn and Kwon showed Ng/q(p) < |DL " for all L (see [1]).
In light of the above, Theorem 1 and the GRH bound above are best possible up to the exact o(1)
term.

Remark. The family under consideration will be a subfamily of the Hilbert class fields of quadratic
imaginary extensions of Q. All of the Galois groups will be generalized dihedral groups, and in the
family the degree of the extensions goes to infinity.
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2. PROOFS
We first recall a few basic facts from algebraic number theory and class field theory.

Lemma 2. Let K = Q(v/—d) where d = |disc(K)|, then the smallest prime p of Q which is a norm
from Ok is at least d/4.

Proof. We first note that for x4+ yv/—d € O the expression N g(x +yv—d) = 2 + dy? cannot be

prime if y = 0. Now, because Oy C %Z + @Z we conclude that if the norm is a prime, then y > %,
from which the result follows. O

Lemma 3. Let K = Q(v/—d) where d = |disc(K)|, let p be a principal prime ideal of K. If we have
Nk o(p) = (p) then p is a norm of Ok and hence p > d/4.

Proof. Assuming p is principally generated by x, then Ng /q(p) is principally generated by Nk /q(x).
As norms from K are positive, this gives that p must be a norm. 0

Lemma 4. Let K = Q(v/—d) where d = |disc(K)|, suppose that H is the Hilbert class field of K. If
p is a prime of Z which splits completely in H, then p splits in K as (p) = p1p1 where both p1 and ps
are principal. In particular, by the previous lemma p > d/4.

Proof. The first claim is clear because ramification degrees, inertia degrees and hence splitting degrees
are multiplicative in towers. That p; must be principal is a consequence of class field theory. Principal
ideals for Ok map to the trivial Galois element for the Galois group of the Hilbert class field. However,
for unramified prime ideals this map gives Frobenius. As the Frobenius element is trivial precisely when
the inertial degree is 1, equivalently for Galois fields when the prime splits completely, we conclude
the result. g

Lemma 5. Let K = Q(v/—d) where d = |disc(K)|, suppose that H is the Hilbert class field of K.
Then

log(|Dp|) = hk log(d)
where hy is the class number of K and Dy is the discriminant of H.
This is follows immediately from the multiplicativity of the discriminant in towers.

We now remind the reader of key analytic results, both of which follow from the analytic class
number formula
Vd

hk = 7L(17 Xd)
and bounds on L(1, x4). We shall only need the unconditional result.

Theorem 6 (GRH-conditional). Let K = Q(v/—d) where d = |disc(K)|. The class number of K
satisfies:
mVd

hic > (1+0(1) 12¢e7loglogd’

This was proven by Littlewood (see [8]).

Theorem 7 (Unconditional). There exists a family of quadratic imaginary fields K = Q(v/—d) where
d = |disc(K)| such that for each we have that class number of K satisfies:

m™d

huc < (1+ 0(1))667 loglogd’

A result of this sort was originally proven by Littlewood conditional on the generalized Riemann
hypothesis (see [8]), his result was proven unconditionally by Paley (see [9]) the version stated here
follows from the work of Chowla (see [4]).
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Proposition 8. Suppose 0 < € < 1 and d > 100. Let K = Q(v/—d) where d = |disc(K)|, if the class
number of K satisfies

(1—e) m/d < he < m/d
) v

12¢7 loglog d K™ 6ev loglogd
then the smallest prime p, which splits completely in H, the Hilbert class field of K satisfies

5 (3¢7\? (log(|Dg|) log(2loglog(|Du|)) | *
1+ (%) ( log log(| D)) ) <P

Proof. We have by Lemma 4 that the smallest prime p which splits completely in H satisfies d < 4p
and by Lemma 5 that log(|Dg|) = hk log(d). We conclude by using our assumed upper bound on hg

that
2 log d 2
) 2_(q 2( T )
ox(1Dul))* < 1+ () (i)

We also have, using the assumed lower bound on hg, that

loglog(|Dg|) = log(hk) + loglog(d)

(I1+¢)

1 us
> 3 log(d) + log (@) —logloglog d + log(1 — €) + log log(d)

and thus conclude by the bound on € and d that
2loglog(|Dpr|) > log(d)
and consequently by the monotonicity of x/log(x) we have that
2loglog(|Dp|) _ log(d)
log(2loglog(|Dul)) = loglog(d)
Combining these inequalities gives

5 (3¢7\? (log(|Dy|) log(2loglog(|Du)) | *
(L) (2w> ( log log(| D)) )

Remark. We note before proceeding that by Theorem 7 the hypotheses of the next two propositions
being satisfied infinitely often would imply the failure of GRH. Moreover, both results tend to give
stronger lower bounds than the previous proposition.

<p. O

Proposition 9. Let K = Q(v/—d) where d = |disc(K)|, if the class number of K satisfies
m/d

h _ove
K< 6e7 logd

then the smallest prime p which splits completely in H, the Hilbert class field of K satisfies

(%) vostioun <»

Proof. Proceeding as in Proposition 8 we have that

m/d
4 = Ve
d < 4p, log(|Dr|) = hi log(d), hg < 6 logd
and so may quickly conclude that
m/d
log(|Dil) < T2

so that
3e7\ 2
(%) tosiDub <». =
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Proposition 10. Suppose d > 100 then Let K = Q(v/—d) where d = |disc(K)|, if the class number of
K satisfies
m™/d

- 6e7 (log d)*(loglog d)1 ==
for 0 < a < 1 then the smallest prime p which splits completely in H, the Hilbert class field of K
satisfies

hi

14 log(m/6e7) \ >~ 3e7 * (log(2loglog(|Dy|
loglog(Dp) ™ 2loglog(|Dul)

Proof. Proceeding as in Proposition 8 we have that

o (o)

- " (log(1D))? < p.

log(|Dul) =

but then

1 7r
loglog(|Du|) = 3 log(d) + log (@) + (1 — a)(loglog(d) — logloglog(d))

which gives, by the choice of d > 100, both that
1 log(m/6e)
log log(|D — 1+ —=L—2]1log(d
ogtog(|Dal) > 5 (1+ 2 Y tog(a
and that
log(d) > loglog(|Dg|).

As log(m/6€e7) is negative, by combining the above we conclude that
log(m/6e)
loglog(|Dml)

Proceeding as in the previous two propositions we obtain

1+10g(77/6e”) 22 3e” ? (log(2loglog(|Dy|
loglog(Dy) ™ 2loglog(|Dgl)

2loglog(|Dul) (1 + >_ > log(d).

2—2«
”) (log(1D))? < . o

Proof of Theorem 1. It follows from Theorem 7 that there are infinitely many fields which satisfy the
conditions of at least one of Propositions 8, 9, or 10 and hence we obtain infinitely many satisfying
the weakest conclusion. When considering Proposition 8 we note that Theorem 7 allows € to be taken
to be a function which is o(1) as d, and hence Dy, go to infinity, as such we obtain the bound

3e7\ 2 log(|Dyr|) log(2loglog(| D)) 2
(1+o0(1)) (QW> ( Lloglog(lDLl) . >

for d which satisfy Proposition 8. The worst case bound from Proposition 10 is in the case a = 0 in
which case we obtain a bound

3¢7\? [ log(|Dy) log(2loglog(1Dz ) )
““’“”(%) ( loglog(| Dz ) )

agreeing with the bound from Proposition 8. The bound from Proposition 9 is strictly stronger. O

3. NUMERICS

Table 1 illustrates the phenomenon by giving the ratio
7\? (log(|Dy|)log(2loglog(|Dr]) >
Ratio = p/ [ 2 og(|Dy|) log(2loglog(| D))
27 loglog(|DL))

for an example of a the Hilbert class field of a quadratic imaginary field of each class number less than
100 with large discriminant.
Note that in Table 1 we have K = v/—d and |Dp| = d"x.
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TABLE 1. Examples of smallest split primes in Hilbert class fields of Q(+/—D)

hi D D Ratio hi D P Ratio hx D D Ratio
1 163 41 4.1557 34 | 189883 | 47491 | 2.2528 67 | 652723 | 163181 | 1.9030
2 427 107 | 2.4287 35 | 210907 | 52727 | 2.3373 68 | 819163 | 204791 | 2.2546
3 907 227 | 2.1188 36 | 217627 | 54409 | 2.2819 69 | 888427 | 222107 | 2.3556
4 1555 389 | 1.9476 37 | 158923 | 39733 | 1.6620 70 | 811507 | 202877 | 2.1215
5 2683 673 | 2.0276 38 | 289963 | 72493 | 2.6454 71 | 909547 | 227387 | 2.2823
6 3763 941 | 1.9222 39 | 253507 | 63377 | 2.2500 72 | 947923 | 236981 | 2.3061
7 5923 1481 | 2.1071 40 | 260947 | 65239 | 2.2034 73 | 886867 | 221717 | 2.1227
8 6307 1579 | 1.7569 41 | 296587 | 74149 | 2.3513 74 | 951043 | 237763 | 2.2001
9 10627 | 2657 | 2.1729 42 | 280267 | 70067 | 2.1445 75 | 916507 | 229127 | 2.0792
10 | 13843 | 3461 | 2.2386 43 | 300787 | 75209 | 2.1838 76 | 1086187 | 271549 | 2.3521
11 | 15667 | 3917 | 2.0939 44 | 319867 | 79967 | 2.2079 77 | 1242763 | 310693 | 2.5821
12 | 17803 | 4451 | 1.9938 45 | 308323 | 77081 | 2.0542 78 | 1004347 | 251087 | 2.0958
13 | 20563 5147 | 1.9503 46 | 462883 | 115727 | 2.7990 79 | 1333963 | 333491 | 2.6208
14 | 30067 | 7517 | 2.3373 47 | 375523 | 93887 | 2.2489 80 | 1165483 | 291371 | 2.2775
15 | 34483 | 8623 | 2.3173 48 | 335203 | 83813 | 1.9638 81 | 1030723 | 257687 | 2.0011
16 | 31243 | 7817 | 1.9050 49 | 393187 | 98297 | 2.1693 82 | 1446547 | 361637 | 2.6277
17 | 37123 | 9281 | 1.9719 50 | 389467 | 97367 | 2.0743 83 | 1074907 | 268729 | 1.9851
18 | 48427 | 12107 | 2.2225 51 | 546067 | 136519 | 2.6772 84 | 1225387 | 306347 | 2.1765
19 | 38707 | 9677 | 1.6747 52 | 439147 | 109789 | 2.1422 85 | 1285747 | 321443 | 2.2210
20 | 58507 | 14627 | 2.1572 53 | 425107 | 106277 | 2.0124 86 | 1534723 | 383681 | 2.5366
21 | 61483 | 15373 | 2.0614 54 | 532123 | 133033 | 2.3604 87 | 1261747 | 315437 | 2.0941
22 | 85507 | 21377 | 2.5024 55 | 452083 | 113021 | 1.9839 88 | 1265587 | 316403 | 2.0564
23 | 90787 | 22697 | 2.4308 56 | 494323 | 123581 | 2.0737 89 | 1429387 | 357347 | 2.2395
24 | 111763 | 27941 | 2.6847 57 | 615883 | 153991 | 2.4279 90 | 1548523 | 387137 | 2.3529
25 | 93307 | 23327 | 2.1425 58 | 586987 | 146749 | 2.2565 91 | 1391083 | 347771 | 2.1002
26 | 103027 | 25759 | 2.1714 59 | 474307 | 118583 | 1.8204 92 | 1452067 | 363017 | 2.1371
27 | 103387 | 25847 | 2.0351 60 | 662803 | 165701 | 2.3566 93 | 1475203 | 368801 | 2.1244
28 | 126043 | 31511 | 2.2543 61 | 606643 | 151667 | 2.1185 94 | 1587763 | 396943 | 2.2212
29 | 166147 | 41539 | 2.6760 62 | 647707 | 161947 | 2.1768 95 | 1659067 | 414767 | 2.2638
30 | 134467 | 33617 | 2.1037 63 | 991027 | 247759 | 3.0559 96 | 1684027 | 421009 | 2.2501
31 | 133387 | 33347 | 1.9698 64 | 693067 | 173267 | 2.1783 97 | 1842523 | 460633 | 2.3882
32 | 164803 | 41201 | 2.2263 65 | 703123 | 175781 | 2.1443 98 | 2383747 | 595939 | 2.9359
33 | 222643 | 55661 | 2.7216 66 | 958483 | 239623 | 2.7278 99 | 1480627 | 370159 | 1.9012
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