
Questions in the Theory of Orthogonal Shimura Varieties

Andrew Fiori

Doctor of Philosophy

Department of Mathematics and Statistics

McGill University

Montreal, Quebec

April 9, 2014

A thesis submitted to McGill University
in partial fulfilment of the requirements for a Ph.D. degree

c© Andrew Fiori 2013



Abstract

We investigate a variety of questions in the theory of Shimura varieties of orthogonal type. Firstly we provide a

general introduction in the theory of these spaces. Secondly, motivated by the problem of understanding the special

points on Shimura varieties of orthogonal type we give a characterization of the maximal algebraic tori contained in

orthogonal groups over an arbitrary number field. Finally, motivated by the problem of computing dimension formulas

for spaces of modular forms, we compute local representation densities of lattices focusing specifically on those arising

from Hermitian forms by transfer.
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Resumé

Le but de cette thèse est l’exploration d’une variété de questions sur les variétés de Shimura de type orthogonal.

On commence par une introduction à la théorie de ces espaces. Àpres, dans le but de caractériser les points spéciaux

sur les variétés de Shimura de type orthogonal, on décrit les tores algébriques maximaux dans les groupes orthogonaux.

Finalement, dans le but d’obtenir des formules explicites pour la dimension des espaces de formes modulaires sur les

variétés de Shimura de type orthogonal, on trouve des formules pour les densités locales des réseaux. On se concentre

sur les réseaux qui proviennent de la restriction de formes Hermitiennes.
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CHAPTER 1
Introduction

The primary motivation for this thesis has been to understand various aspects of orthogonal Shimura varieties.
The study of these orthogonal symmetric spaces and their modular forms fits into the larger picture of automorphic
forms on Shimura varieties. This topic has connections to the study of Galois representations and the Langlands
conjectures. There are connections to explicit class field theory via the values of modular forms at special points.
Moreover, the Gross-Zagier theorem [GZ86], which allows for the construction of non-torsion points on elliptic curves,
has natural conjectural generalizations in this context, see for example the work of [BY06]. Understanding this
phenomenon remains an important open question.

Modular forms have been both a successful tool and object of study in number theory for some time. As a result
various generalizations also became objects of interest. An axiomatic treatment of many of these generalizations
was given by Deligne in [Del71]. In his article he defines the notions of Shimura varieties. These Shimura varieties
are highly related to Hermitian symmetric spaces, and are classified into families in much the same way. Although
many of these families have already been well studied, those we will investigate have received less attention. The
orthogonal Shimura varieties are precisely the generalizations that come from replacing the classical upper half plane
by an orthogonal symmetric spaces associated to a quadratic form of signature (2,n). Though these spaces have been
known for some time, many aspects of them have yet to be studied extensively and at present remain mysterious.
It is only recently that results coming out of the Fields Medal work of Borcherds, in particular his work in [Bor95],
have renewed interest in the structure of these spaces. Borcherds’ contribution to the theory was to define a lift of
classical modular forms on the upper half plane to modular forms on these orthogonal spaces. This lifting allows for
the construction of special divisors together with Green functions that are objects of great interest in Arakelov theory.
The work of various people, especially Brunier, Kudla, Rapoport and Yang (see [BKY12, Kud04, KR99]) have led to
strong conjectures about the intersection theory of divisors on these spaces.

The bulk of the original results contained in this thesis are contained in two papers:
1. The Characterization of Special Points on Orthogonal Symmetric Spaces and
2. Representation Densities for Hermitian Lattices.

These appear in this thesis as Chapters 3 and 4 respectively. The first paper was published, in a format similar to
what appears here, in [Fio12]. The second has not yet been submitted, and it may be restructured into shorter papers
before being submitted.

Though the results of both of these chapters have applications outside the realm of orthogonal Shimura varieties,
they are both motivated by the study of particular aspects of these spaces. The concrete relation of these chapters to
orthogonal Shimura varieties is discussed in more detail in Chapter 2.

The first of the two papers characterizes which number fields can be associated to the algebraic tori in orthogonal
groups. The application of this result in the study of orthogonal Shimura varieties is that it gives a characterization
of the fields that are associated to the special points of these Shimura varieties. The results of this paper motivate
our interest in a certain class of quadratic forms, that we call Hermitian and it is these Hermitian forms on lattices
that are the motivation for our second paper.

Our second paper focuses on computing the arithmetic volume of the orthogonal groups associated to Hermitian
lattices. These volumes, which are computed by way of representation densities, determine the lead term in a Riemann-
Roch formula for dimensions of spaces of modular forms, but are also of independent interest. Though the primary
motivation of the paper is the study of Hermitian lattices over the rational numbers, along the way we produce general
formulas for computing representation densities over arbitrary number fields, as well as proving several structure
theorems for the transfer of lattices. These latter results are of interest outside the study of Shimura varieties.

Aside from Chapters 3 and 4 which contain these papers, Chapter 2 is also fairly substantial. It can be viewed as
either the background material necessary to understand the relation of the aforementioned chapters to the appropriate
problem in the theory of orthogonal Shimura varieties, or a survey of the general theory of modular forms on Hermitian
symmetric domains with an emphasis on the orthogonal case. Though most of the content of this background chapter
is not new, the details of at least some aspects of the discussion are not known to appear in the literature.

A discussion of some further avenues of research are discussed in our conclusion (Chapter 5).
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CHAPTER 2
Background And Motivation

The main purpose of this chapter is to explain the connection between the later chapters of this thesis and
questions concerning orthogonal Shimura varieties. The connection for the content of Chapter 3 is made apparent
in Section 2.7.3, whereas the connection for the content of Chapter 4 is made apparent in Section 2.5.4. The main
purpose of the other sections in this chapter is to provide sufficient background on orthogonal Shimura varieties to
properly explain these connections. Strictly speaking we provide far more background than is needed.

The primary object of interest in this document are Shimura varieties of orthogonal type. In order to give a
satisfactory definition of these one needs the terminology and notation of the theory of Hermitian symmetric spaces
[Hel01], quadratic spaces and orthogonal groups [O’M00, Lam05, Ser73]. Note that Chapter 4 contains information
about lattices, while Chapter 3 gives a basic overview of Clifford algebras. To put it in the right context one should
perhaps also have access to the basic notions of Shimura varieties [Mil05, Del71].

It is our intent in this chapter to give a survey of the basic theory of orthogonal symmetric spaces. Other references
include [Fio09, Bru08]. The sections of this chapter are organized as follows.
(2.1) Introduces key notations and results for orthogonal groups.
(2.2) Covers the key notions of Hermitian symmetric domains.
(2.3) Provides a basic definition of modular forms.
(2.4) Surveys the construction of toroidal compactifications explaining the relevant structures for the orthogonal group.

We do not however give any explicit compactifications for this case.
(2.5) Surveys the problem of computing dimension formulas for spaces of modular forms via the Hirzebruch-Mumford

proportionality theorem (see [Mum77]).
(2.6) Discusses the ramification structures between different levels introducing two interesting classes of cycles on

orthogonal Shimura varieties.
(2.7) Introduces the notions of Shimura varieties, special points and special fields.
One can view Sections (2.1) - (2.4) as an overview of the construction of toroidal compactifications (see [AMRT10]).
Whereas sections (2.1)-(2.6) can be put together to form a survey article on an approach to the problem of finding
dimension formulas for spaces of modular forms.
2.1 Basics of Orthogonal Groups

It is natural to assume that the reader has a basic understanding of quadratic spaces. Thus, the main purpose of
this section is to introduce our notation.
Definition 2.1.1. Let R be an integral domain, and K be its field of fractions. Given a finitely generated R-module
V , a quadratic form on V is a mapping q : V → K such that:

1. q(r~x) = r2q(~x) for all r ∈ K and ~x ∈ V , and
2. B(~x, ~y) := q(~x+ ~y)− q(~x)− q(~y) is a bilinear form.

Given such a pair (V, q), we call V a quadratic module over R. The quadratic module V is said to be regular or
non-degenerate if for all ~x ∈ V there exists ~y ∈ V such that B(~x, ~y) 6= 0.
Remark. Given an R module V and a bilinear form b : V × V → K we have an associated quadratic form q(~x) =
b(~x, ~x). Note that B(~x, ~y) = 2b(~x, ~y).
Definition 2.1.2. We define the Clifford algebra and the even Clifford algebra to be respectively:

Cq := ⊕
k
V ⊗k/(~v ⊗ ~v − q(~v)) and C0

q := ⊕
k
V ⊗2k/(~v ⊗ ~v − q(~v)).

They are isomorphic to matrix algebras over quaternion algebras. We denote the standard involution ~v1⊗ · · · ⊗~vm 7→
~vm ⊗ · · · ⊗ ~v1 by v 7→ v∗. To a quadratic form q we will associate the following algebraic groups:

Oq(R
′) = {g ∈ GL(V ⊗R R′) | q(~x) = q(g(~x)) for all x ∈ V ⊗R R′}

SOq(R
′) = {g ∈ Oq(R

′) | det(g) = 1}
GSpinq(R

′) = {g ∈ (C0
q ⊗RR′)× | gV g−1 ⊂ V }

Spinq(R
′) = {g ∈ GSpinq(R

′) | g · g∗ = 1}.
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Proposition 2.1.3. Given a quadratic form q we have a short exact sequence of algebraic groups:

0→ Z/2Z→ Spinq → SOq → 0.

Over a number field k, with Γ = Gal(k/k), this becomes the long exact sequence:

0→ Z/2Z→ Spinq(k)→ SOq(k)
θ→ H1(Γ,Z/2Z)→ . . . .

The map θ is called the spinor norm.
Notation 2.1.4. We have the following standard invariants of (V, q):
• Whenever V is free over R we shall denote by D(q) the discriminant of q, that is, D(q) = det(b(~vi, ~vj)i,j) for

some choice of basis {~v1, . . . , ~vn}.
• We shall denote by H(q) (or HR(q), Hp(q)) the Hasse invariant of q, that is, if over the field of fractions K

of R we may express q(~x) =
∑
i aix

2
i then H(q) =

∏
i<j(ai, aj)K . Here (a, b)K denotes the Hilbert symbol (see

[Ser73, Ch. III] and [Ser79, Ch. XIV]).
• We shall denote by W (q) the Witt invariant of q, that is, the class in Br(K) of Cq when dim(V ) is odd or of

C0
q when dim(V ) is even.

• For a real place, ρ : R→ R, we shall denote by (rρ, sρ)ρ the signature of q at ρ. Here rρ denotes the dimension of
the maximal positive-definite subspace of V ⊗ρR and sρ denotes the dimension of the maximal negative-definite
subspace of V ⊗ρ R.

2.2 Hermitian Symmetric Spaces
In this section we briefly recall some key results about Hermitian symmetric spaces. A good reference on this

topic is [Hel01]. Most of what we will use can also be found in [BJ06, Sec I.5], or [AMRT10, Sec. 3.2].
Definition 2.2.1. A symmetric space is a Riemannian manifold D such that for each x ∈ D there exists an isometric
involution sx of D for which x is locally the unique fixed point. We say that D is Hermitian if D has a complex
structure making D Hermitian.
Example. The standard example of this is the upper half plane:

H = {x+ iy ∈ C | y > 0}.

It is a consequence of the definition that we have:
Theorem 2.2.2. Fix x ∈ D, G = Isom(D)0, K = StabG(x) and let sx act on G by conjugation then D ' G/K and
(Gsx)0 ⊂ K ⊂ Gsx . Moreover, given any real Lie group G, an inner automorphism s : G→ G of order 2, and K such
that (Gs)0 ⊂ K ⊂ Gs, then the manifold D = G/K is a symmetric space.

See [Hel01, Thm. IV.3.3].
Theorem 2.2.3. A symmetric space D = G/K is Hermitian if and only if the centre Z(K) of K has positive
dimension. Moreover, if D is irreducible then Z(K)0 = SO2(R).

See [Hel01, Thm. VIII.6.1].
There are three main types of symmetric spaces:

1. Compact Type: In general these come from compact Lie groups G.
2. Non-Compact Type: In general these arise when K0 is the maximal compact connected Lie subgroup of G, or

equivalently when sx is a Cartan involution.
3. Euclidean Type: These generally arise as quotients of Euclidean space by discrete subgroups.

The definitions of these types can be made precise by looking at the associated Lie algebras.
Claim. Every symmetric space decomposes into a product of the three types listed above.

See [Hel01, Ch. V Thm. 1.1].
For D a Hermitian symmetric space of the non-compact type, one often considers the following objects (see [Hel01]

for details):
• The Lie algebra g of G.
• The Lie sub-algebra k ⊂ g of K.
• The Killing form B(X,Y ) = Tr(Ad(X) ◦Ad(Y )) on g.
• The orthogonal complement p of k under B is identified with the tangent space of D.
• The centre Z(K) of K and its Lie algebra u.
• A map h0 : SO2 → Z(K) ⊂ K ⊂ G such that K is the centralizer of h0.
• The element s = Ad(h0(eiπ/2)) induces the Cartan involution whereas the element J = Ad(h0(eiπ/4)) induces

the complex structure.
Through these one can construct:
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• A G-invariant metric on D (via B and the identification of the tangent space of D with p).
• The dual Lie algebra g∗ = k⊕ ip. This is the Lie algebra of Ğ the compact real form of G.
• The ideals p+, p− ⊂ pC which are the eigenspaces of u.
• The parabolic subgroups P± associated respectively to p±.
• The embeddings D = G/K ↪→ GC/KCP− ' Ğ/K ' D̆.
There exists a duality between the compact and non-compact types, that is, if D is of the compact type, there

exists a dual symmetric space D̆ such that D ↪→ D̆. The following theorem makes this more precise.
Theorem 2.2.4. The subgroups P± and K defined above satisfy the following:
• The natural map P+ ×KC × P− → GC is injective, and the image contains G.
• There exists holomorphic mappings

D � � // p+
exp

// P+

G/K // P+ ×KC × P−/(KCP−) // // P+

����

P+
// // P+ ×KC × P−/(KCP−) // // GC/(KCP−)

• These embed D into the complex projective variety D̆ ' GC/(KCP−). Moreover, the inclusion D in p+ realizes
the space as a bounded domain.

See [AMRT10, Thm. 1 Sec. 3.2] or [Hel01, Sec. VIII.7].
We wish to describe the image of D in p+. To this end we have the following result.

Theorem 2.2.5. With the notation as above, where r is the R-rank of G, there exists a morphism ϕ : SU2×SLr2 → G
such that:

1. ϕ(u, hSL0 (u)r) = h0(u), and
2. ϕ induces a map Hr → D.

Moreover, every symmetric space map H→ D factors through ϕ.
See [AMRT10, Thm. 2 Sec. 3.2] and [AMRT10, Prop 2 Sec. 3.2].
Let τ denote complex conjugation with respect to gc then:

Bτ (u, v) = −B(u, τ(v))

is a positive-definite Hermitian form on gC. For each X ∈ p+ we have a map [·, X] : p− → kC. Denote by [·, X]∗ :
kC → p− the adjoint with respect to this Hermitian pairing. We may now state the following.
Theorem 2.2.6. The image of D ∈ p+ is:

Ad(K) · im(ϕ) = {X | [·, X]∗ ◦ [·, X] < 2 Idp−},

where the inequality implies a comparison of operator norms.
See [AMRT10, Thm. 3 Sec. 3.2].

Corollary 2.2.7. Every Hermitian symmetric domain D of the non-compact type can be realized as a bounded domain.
See [Hel01, Thm. VIII.7.1].

2.2.1 The O(2,n) Case
We now discuss the example of the Hermitian symmetric spaces in which we are most interested. That is those

associated to quadratic spaces of signature (2, n). Other references on this topic include [Fio09, Bru08, Bru02].
Let (V, q) be a quadratic space over Q. Then V (R) := V ⊗ R has signature (r, s) for some choice of r, s. The

maximal compact subgroup of Oq(R) is K ' Or(R) × Os(R) ⊂ Oq(R) and Oq(R)/K is a symmetric space. These
only have complex structures (and thus are Hermitian) if one of r or s is 2. Since interchanging r and s does not
change the orthogonal group (it amounts to replacing q by −q) we will assume that r = 2. We wish to construct the
associated symmetric spaces along with its complex structure in this case.
Remark. For much of the following discussion only the R-structure will matter, and as such, the only invariants of sig-
nificance are the values r and s. However, when we must consider locally symmetric spaces and their compactifications
the Q-structure, and potentially the Z-structure, will become relevant.

9



The Grassmannian
Let (V, q) be of signature (2, n). We consider the Grassmannian of 2-dimensional subspaces of V (R) on which the

quadratic form q restricts to a positive-definite form, namely:

Gr(V ) := {v ⊂ V | dim(v) = 2, q|v > 0}.

By Witt’s extension theorem (see [Ser73, Thm. IV.3]), the group G = Oq(R) will act transitively on Gr(V ). If
we fix v0 ∈ Gr(V ) then its stabilizer Kv0 will be a maximal compact subgroup. Indeed, since this group must preserve
both the plane and its orthogonal complement we have Kv0 ' O2×On. Thus Gr(V ) = G/Kv0 realizes a symmetric
space.
Remark. Though this is a simple and useful realization of the space, it is not clear from this construction what the
complex structure should be.

The Projective Model
We consider the complexification V (C) of the space V and the projectivization P (V (C)). We then consider the

zero quadric:
N := {[~v] ∈ P (V (C)) | b(~v,~v) = 0}.

It is a closed algebraic subvariety of projective space. We now define:

κ := {[~v] ∈ P (V (C)) | b(~v,~v) = 0, b(~v,~v) > 0}.

This is a complex manifold of dimension n consisting of 2 connected components.
Remark. One must check that these spaces are in fact well defined, that is, that the conditions do not depend on a
representative ~v. Indeed b(c~v, c~v) = c2b(~v,~v) and b(c~v, c~v) = ccb(~v,~v).
Remark. The orthogonal group Oq(R) acts transitively on κ. In order to see this we reformulate the condition that
~v = X + iY ∈ V (C) satisfies [~v] ∈ κ as follows. We observe that:

b(X + iY,X + iY ) = b(X,X)− b(Y, Y ) + 2ib(X,Y ) and

b(X + iY,X − iY ) = b(X,X) + b(Y, Y ).

It follows from the conditions b(X + iY,X + iY ) = 0 and b(X + iY,X − iY ) > 0 that:

[~v] ∈ κ⇔ b(X,X) = b(Y, Y ) > 0 and b(X,Y ) = 0.

We thus have that Oq(R) acts on κ. To show that it acts transitively we appeal to Witt’s extension theorem to find
g ∈ Oq(R) taking X 7→ X ′ and Y 7→ Y ′. This isometry g then maps [~v] 7→ [~v′].

Consider the subgroup O+
q (R) of elements whose spinor norm equals the determinant. This consists of those

elements which preserve the orientation of any, and hence all, positive-definite planes. The group O+
q (R) preserves

the 2 components of κ whereas Oq \O+
q (R) interchanges them. Pick either component of κ and denote it κ+.

Proposition 2.2.8. The assignment [~v] 7→ v(~v) := RX + RY gives a real analytic isomorphism κ+ → Gr(V ).
This is a straightforward check (see [Fio09, Lem. 2.3.38]).
The Tube Domain Model

Pick e1 an isotropic vector in V (R) and pick e2 such that b(e1, e2) = 1. Define U := V ∩ e⊥2 ∩ e⊥1 . We then may
express elements of V (C) as (a, b, ~y), where a, b ∈ C and ~y ∈ U . Thus

V = Qe1 ⊕Qe2 ⊕ U

and U is a quadratic space of type (1, n− 1).
Definition 2.2.9. We define the tube domain

Hq := {~y ∈ U(C) | q(=(~y)) > 0},

where =(~y) is the imaginary part of the complex vector ~y. We also define the open cone:

Ω = {~y ∈ U(R) | q(~y) > 0},

as well as, the map Φ from U(C)→ U(R) given by Φ(~y) = =(~y) so that Hq = Φ−1(Ω).
Proposition 2.2.10. The map ψ : Hq → κ given by ψ(~y) 7→ [− 1

2 (q(~y) + q(e2)), 1, ~y)] is biholomorphic.
This is a straight forward check (see [Fio09, Lem. 2.3.40]).
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Remark. The space Hq has 2 components. To see this suppose q has the form q(x1, ..., xn) = a1x
2
1−a2x

2
2− ...−anx2

n

with ai > 0. The condition imposed by q(=(Z)) > 0 gives us two components corresponding to z1 > 0 and z1 < 0.
Under the map ψ one of these corresponds to κ+. We shall label that component H+

q .

Via the isomorphism with κ, we see that we have a transitive action of O+
q (R) on Hq. One advantage to viewing

the symmetric space under this interpretation is that it corresponds far more directly to some of the more classically
constructed symmetric spaces such as the upper half plane.

Conjugacy Classes of Morphisms S→ O2,n

We now give the interpretation of the space as a Shimura variety (see Section 2.7).
We may (loosely) think of Shimura varieties as elements of a certain conjugacy classes of morphisms:

h : (S = ResC/R(Gm))→ GO2,n

satisfying additional axioms. In particular, we are interested in those morphisms where the centralizer:

ZGO(h(S)) = Z(GO2,n) ·K ' Gm · (O2×On).

We get a bijection between such maps and our space as follows:
Given an element 〈~x, ~y〉 ∈ Gr(V ) we consider the morphism h(reiθ) defined by specifying that it acts as(

r2 cos(2θ) r2 sin(2θ)

−r2 sin(2θ) r2 cos(2θ)

)
on the span(~x, ~y) and trivially on its orthogonal complement.

Conversely, given h in the conjugacy class of such a morphism we may take [~v] ∈ κ+ to be the eigenspace of
r2(cos(2θ) + i sin(2θ)).

The following claim is a straightforward check.
Claim. These two maps are inverses.

Note that the two components correspond to swapping the (non-trivial) eigenspaces of h.
Realization as a Bounded Domain

For this section we will assume that:

Ã =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

A


is the matrix for our quadratic form. This is not in general possible over Q if n ≤ 4. For the purpose of most of this
discussion we work over R and this fact is not a problem. However, it must be accounted for if ever rational structures
are to be used. In order to compute the bounded domain, we must work with the Lie algebra, and this is slightly
easier if we change the basis using the matrix:

1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1

1n−2


so that the matrix for the quadratic form is:

Â =


2 0 0 0
0 2 0 0
0 0 −2 0
0 0 0 −2

A

 =

2 0
0 2

A′

 .

We compute that the Lie algebra soÂ is

(
W Z ′

Z Y

)
, where W ∈ M2,2 is skew-symmetric, Y ∈ Mn,n is in soA′ , Z ∈ M2,n,

and Z ′ = −ZtA′/2. We conclude that the eigenspaces for the action of the centre of k on pC are p± are

(
0 Z ′

Z 0

)
,

where Z =
(
~zt ∓i~zt

)
and Z ′ = −ZtA′/2.
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In order to compute the exponential of the Lie algebra we observe that the square of this matrix is equal to

−1

2

(
ZtA′Z 0

0 0

)
= −~z

tA′~z

2

 1 ∓i
∓i −1

0

 ,

and that its cube is the zero matrix. We thus have that P± is(
12 − 1

4Z
tA′Z − 1

2Z
tA′

Z 1n

)
,

where Z =
(
~zt ∓i~zt

)
.

After undoing the change of basis P± becomes:

1n+2 +
1

2

 0 −iz1−z2 2z1 −iz1+z2 − ~z3A′
iz1+z2 0 −iz1−x2 2−iz2 i ~z3A

′

−2z1 iz1−z2 0 −iz1+z2 − ~z3A′
iz1−z2 2iz2 −iz1−z2 0 i ~z3A

′

~z3
t −i ~z3t ~z3

t −i ~z3t 0

− ~ztA′~z

8

( 1 −i 1 −i
−i −1 −i −1
1 −i 1 −i
−i −1 −i −1

0

)
,

where ~z3 = (z3, z4, . . . , zn−2). The action of this matrix on κ+ takes [1 : i : 1 : i : ~0] to:

Ψ(~z) = [(1, i, 1, i,~0) + 2(z1, z2,−z1,−z2, ~z3)− 1
2~z
tA′~z(1,−i, 1,−i,~0)] ∈ N.

One may check that this is an injective map. We thus conclude that D is the bounded domain:

{(z1, z2, ~z3) ⊂ P+| conditions }.

The conditions are computed by pulling them back from P (V (C)). The resulting conditions can be expressed as:

4 + 4~zA′~zt +
∣∣~zA′~zt∣∣2 > 0 and

4−
∣∣~zA′~zt∣∣2 > 0.

We have the following maps between these models:

Ψ : Bounded→ Projective

Ψ−1 : Projective→ Bounded

Υ : Bounded→ Tube Domain

Υ−1 : Tube Domain→ Bounded

The definition of the map Ψ is implicit in the above computations.
Set s(~z) = 1− 2z1 − 1

2~zA
′~zt then Υ is defined by:

y1 =
i+ 2z2 + i~zA′~zt

s(~z)
,

y2 =
i− 2z2 + i~zA′~zt

s(~z)
and

yi =
2zi
s(~z)

for i > 2.

To define an inverse to Υ set:

~y′ = ( 1
4 (iy1 + iy2 + ~yA′′~yt), 1

4 (y1 − y2),− 1
4 (iy1 + iy2 + ~yA′′~yt),− 1

4 (y1 − y2), ~y3).

Now set:

r(~y) =
~yA′′~yt

(~y′)A′′(~y′)t
.
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Notice that r(Υ(~z)) = 1− 2z1 − 1
2~zA

′~zt. We can therefore define Υ−1 via:

z1 = 1
4r(~y)(~yA′~yt + i(y1 + y2)) + 1,

z2 = 1
4r(~y)(y1 − y2) and

zi = r(~y)yi for i > 2.

2.2.2 Boundary Components and the Minimal Compactification
Locally symmetric spaces are often non-compact. It is thus often useful while studying them to construct

compactifications. We present here some of the most basic notions of this very rich theory. For more details see
[Hel01, BJ06, AMRT10, Nam80].
Definition 2.2.11. Consider a Hermitian symmetric domain D realized as a bounded domain in P+. We say x, y ∈ D
are in the same boundary component if there exist maps:

ϕj : H→ D j = 1, . . . ,m

with ϕj(H) ∩ ϕj+1(H) 6= ∅, and there exist x′, y′ ∈ H such that ϕ1(x′) = x and ϕm(y′) = y.
We say that two boundary components F1, F2 are adjacent if F1 ∩ F2 6= 0.

Theorem 2.2.12. The boundary components of the Hermitian symmetric domain D are the maximal sub-Hermitian
symmetric domains in D. Moreover, they satisfy the following:
• The group G acts on boundary components preserving adjacency.
• The closure D can be decomposed as D = tαFα, where the Fα are boundary components.
• For each boundary component Fα there exists a map:

ϕα : SL2(R)→ G

inducing a map
fα : H→ D

such that fα(i) = o (for the fixed base point o = K) and fα(i∞) ∈ Fα.
See [AMRT10, Thm. 1,2 Sec 3.3].

Theorem 2.2.13. There is a bijective correspondence between the collection {Fα} of boundary components and the
collection of real “maximal” parabolic subgroups Pα of G = Aut(D). (By “maximal” we mean that for each simple
factor Gi of G the restriction to the factor is either maximal or equal to Gi).

Explicitly we have Pα = {g ∈ G | gFα = Fα}. Moreover, Fα ⊂ F β if and only if Pα ∩ Pβ is a parabolic subgroup.
See [AMRT10, Prop. 1,2 Sec 3.3].

Definition 2.2.14. We say Fα is a rational boundary component if Pα is defined over Q. We define the space:

D∗ = ∪
rational

Fα.

Theorem 2.2.15. Let Γ ⊂ G(Q) be an arithmetic subgroup. There exists a topology on D∗ such that the quotient

X
Sat

:= Γ\D∗ has the structure of a normal analytic space.

We call X
Sat

the minimal Sataké compactification of Γ\D.
See [BJ06, Sec. III.3].

Remark. The topology one should assign may become more apparent once we introduce other compactifications.
2.3 Modular Forms

We give now a simplified notion of modular forms. More general and precise definitions can be found in any of
[Bor66, Mum77, BB66].
Definition 2.3.1. Let Q be the image of D = G/K in the projective space D̆ = GC/P

− and let Q̃ be the cone over
Q. A modular form f for Γ of weight k on D can be thought of as any of the equivalent notions:

1. A function on Q̃ homogeneous of degree −k which is invariant under the action of Γ.
2. A section of Γ\(OD̆(−k)|D) on Γ\D.
3. A function on Q which transforms with respect to the kth power of the factor of automorphy under Γ.

To be a meromorphic (resp. holomorphic) modular form we require that f extends to the boundary and that it
be meromorphic (resp. holomorphic). One may also consider forms which are holomorphic on the space but are only
meromorphic on the boundary.
Remark. The condition at the boundary depends on understanding the topology, a concept we have not yet defined.
There is an alternative definition in terms of Fourier series. Let Uα be the centre of the unipotent radical of Pα and
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set Uα = Γ ∩ Uα. This group is isomorphic to Zm for some m and the function f is invariant under its action. The
boundary condition can be expressed by saying the non-trivial Fourier coefficients (which are indexed by elements of
U∗α), are contained in a certain self-adjoint cone Ωα ⊂ U∗α.

The following is what is known as the Koecher principle (see for example [Fre90]).
Claim. If the codimension of all of the boundary components is at least 2, then every form which is holomorphic on
D extends to the boundary as a holomorphic modular form.

This result is a consequence of results about extending functions on normal varieties.
Theorem 2.3.2 (Baily-Borel). Let M(Γ,D) be the graded ring of modular forms then

X
BB

:= Proj(M(Γ,D))

is the Baily-Borel compactification of X. Moreover, this is isomorphic to the minimal Sataké compactification as an
analytic space

See [BB66] and [BJ06, III.4].
2.3.1 The O(2,n) Case

Specializing the previous section to the orthogonal case we can use the following definition for modular forms.
Definition 2.3.3. Let κ+ = {~v ∈ V (C) | [~v] ∈ κ+} be the cone over κ+. Let k ∈ Z, and χ be a character of Γ.
A meromorphic function on κ+ is a modular form of weight k and character χ for the group Γ if it satisfies the
following:

1. F is homogeneous of degree −k, that is, F (c~v) = c−kF (~v) for c ∈ C− {0}.
2. F is invariant under Γ, that is, F (g~v) = χ(g)F (~v) for any g ∈ Γ.
3. F is meromorphic on the boundary.

If F is holomorphic on κ+ and on the boundary then we call F a holomorphic modular form. In this case Uα and Ωα
are precisely those introduced for the tube domain model (see Section 2.2.1).

Remark. The Koecher principle implies condition (3) is automatic if the dimension of maximal isotropic subspace
is less than n. Noting that for type (2, n) the Witt rank is always at most 2, we see that the Koecher principle often
applies.
Remark. One of the best sources of examples of modular forms for these orthogonal spaces is the Borcherds lift (see
[Bor95, Bru04, Bru02] for more details). The Borcherds lift, which may be defined via a regularized theta integral,
takes nearly holomorphic vector-valued modular forms for the upper half plane and constructs modular forms on an
orthogonal space. The forms constructed this way have well understood weights, levels, and divisors. One can also
consider other types of forms (for example Eisenstein series, Poincare series and theta series).
2.4 Toroidal Compactifications

We will now introduce the notion of toroidal compactifications. Many more detailed references exist (see for
example [AMRT10, Pin90, FC90, Lan08, Per11, Nam80]). Toroidal compactifications play an important role in giving
geometric descriptions of modular forms, as well as in computing dimension formulas (see Section 2.5).

The key idea of toroidal compactifications of locally symmetric space is that locally in a neighbourhood of the
cusps, the space looks like the product of an algebraic torus and a compact space. We thus compactify locally
at the cusp by compactifying the torus. Doing this systematically allows us to glue the parts together to get the
compactification we seek.
2.4.1 Torus Embeddings

We give a very brief overview of toric varieties. For more details see [Ful93, KKMSD73, Oda78, AMRT10]. For
the purpose of this section we will restrict our attention to complex tori though many results hold in greater generality.
Definition 2.4.1. By a torus T over C of rank n we mean an algebraic group isomorphic to Gnm so that T (C) = (C×)n.
We shall denote the characters and cocharacters of T by X∗(T ) and X∗(T ). There exists a pairing between X∗(T )
and X∗(T )

Hom(T,Gm)×Hom(Gm, T )→ Hom(Gm,Gm) ' Z

given by (f, g) 7→ f ◦ g.
We have the following basic results:
• X∗(T ) ' X∗(T ) = Zn
• Lie(T ) ' Cn with the trivial bracket.
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• We have an exact sequence:

0 // X∗(T ) // Lie(T ) // T // 0

0 // Zn // Cn
exp

// (C×)n // 0

• As an algebraic variety T = Spec(C[X∗(T )]).
Example. Before proceeding let us give a few basic examples of compactifications of tori.
• Compactification of C×.

We have C× ↪→ P1 via x 7→ [x : 1]. The closure then contains [0 : 1] and [1 : 0].
• Compactification of (C×)2. We may consider maps (C×)2 → P2 or (C×)2 → P1 × P1 given respectively by:

(x, y) 7→ [x : y : 1] and (x, y) 7→ ([x : 1], [y : 1])

In the first case the boundary is 3 copies of P1 ([0 : y : 1], [x : 0 : 1], [1 : y : 0]) in the second it is 4
(([x : y], [0 : 1]), ([x : y], [1 : 0]), ([0 : 1], [x : y]), ([1 : 0], [x : y])). Notice that in both cases the copies of P1 we
have added form a chain with intersections at 0,∞.

We notice that in all these examples the torus T acts on its compactification and we have a natural orbit decomposition.
Question. Can these types of embeddings be characterized systematically?

The answer is given by the following definition:
Definition 2.4.2. A torus embedding consists of a torus T with a Zariski open dense embedding into a variety X
together with an action of T on X which restricts to the group action on the image of T in X.

A morphism of torus embeddings (T,X) → (T ′, X ′) consists of a surjective morphism f : T → T ′ and an
equivariant morphism f̃ : X → X ′ extending f .
Question. How can one describe an inclusion of T into another space?

The answer is given by the following claim.
Claim. A map from a torus T into an affine variety X can be constructed by considering any submonoid M ⊂ X∗(T )
and the map T = Spec(C[X∗(T )])→ Spec(C[M ]) = X induced by the inclusion of M ↪→ X∗(T ).

The above suggests an approach to the problem, we now proceed to make it systematic.
Cones and Cone Decompositions

If one works with the idea it becomes apparent that a random submonoid will lead to a poorly structured variety.
As such we are interested in defining ‘nice’ submonoids that will lead to ‘nice’ varieties.
Definition 2.4.3. Let NR be a real vector space, a cone Ω ⊂ NR is a subset such that R+ · Ω = Ω.

Ω is said to be non-degenerate if Ω contains no straight lines.
Ω is polyhedral if there exists x1, . . . , xn ∈ NR such that Ω = {

∑
i aixi | ai ∈ R+ ∪ {0}}.

Ω is homogeneous if Aut(Ω, NR) acts transitively on Ω.

The dual of Ω is Ω
∨

= {v∨ ∈ N∨R | v∨(y) ≥ 0 for all y ∈ Ω}. The dual of Ω is the interior of Ω
∨

.
We say Ω is self-adjoint (with respect to 〈·, ·〉) if there exists a positive-definite form on NR whose induced

isomorphism NR ' N∨R takes Ω to Ω∨.
Remark. Polyhedral cones are by definition closed, whereas homogeneous cones are relatively open.
Example. The first 5 examples cover all the examples of simple open homogeneous self-adjoint cones.
• In Rn the cone {(x1, . . . , xn) | x2

1 −
∑
i>1 x

2
i > 0 and x1 > 0}.

• The cone of positive-definite matrices in Mn(R).
• The cone of positive-definite Hermitian matrices in Mn(C).
• The cone of positive-definite quaternionic matrices in Mn(H).
• The cone of positive-definite octonionic matrices in M3(O).
• A more general version of the first case which we shall use in the sequel is the following. Consider the quadratic

space whose bilinear form b is ( 0 1
1 0 )⊕ (−A) where A gives a positive-definite quadratic form. Set

Ω = {~v ∈ NR | b(~v,~v) > 0, v1 > 0}.

The cone is open, non-degenerate and convex. It is also self adjoint with respect to the inner product x2
1 + x2

2 +
~x3A~x

t
3. We claim Ω∨ is given by:

{(a1, a2, ~a3) | 2x1x2 > ~x3
tA~x⇒ a1x1 + a2x2 +

∑
i>3

aiAxi > 0}.
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Indeed, by rescaling, suppose x2 = 1. Then we have:

2x1x2 > ~x3
tA~x3 ⇒ a1x1 + a2 +

∑
i>3

aiAxi > a1
1
2 ~x3

tA~x+ a2 +
∑
i>3

aiAxi.

Now writing:

a1
1
2 ~x3

tA~x3 + a2 +
∑
i>3

aiAxi = a1
2 ( ~x3 +

~a3

a1
)tA( ~x3 +

~a3

a1
) + a2 −

1

2a1
~a3
tA~a3

we see that this is larger than zero provided that 2a1a2 > ~at3A~a3. In particular if ~a ∈ Ω.
Definition 2.4.4. Given a subset Ω of a real vector space NR we say a set Σ = {σi} is a convex polyhedral
decomposition of Ω if:
• Ω = ∪σi.
• The σi are convex polyhedral cones.
• σi ∩ σj = σk ∈ Σ is a face of both σi and σj .

We may also refer to the decomposition as a partial convex polyhedral decomposition of NR.
We make partial convex polyhedral decompositions into a category by requiring morphisms be of the following

form. Given decompositions ΣN ,ΣM of NR,MR ,respectively, a morphism is a linear map f : NR →MR such that for
all σN ∈ ΣN there exists σM ∈ ΣM such that f(σN ) ⊂ σM .
Remark. Note that the definition requires that 0 ∈ Ω, thus Ω can not be both open and non-degenerate. The space
NR in which we are interested will almost always be either X∗(T ) × R or X∗(T ) × R. Typically the space Ω we

consider are either all of NR or the rational closure Ω′
rat

(the convex hull of the rational rays in Ω′) where Ω′ is an
open homogeneous self adjoint cone.
Definition 2.4.5. Given a cone decomposition Σ of Ω we define a space NΣ as follows:

NΣ = {y +∞σ | y ∈ N/ spanσ, σ ∈ Σ}.

We put a topology on this by specifying when limits converge. We say

lim yn +∞σ = x+∞τ

for σ a face of τ if
1. lim yn +∞τ = x+∞τ and
2. for any splitting span τ = span Ωσ ⊕ L′ and for any z ∈ σ we have ρ(yn) ∈ σ + z for all sufficiently large n.

We denote by ΩΣ the correspondingly enlarged object.
Constructing Torus Embeddings from Cone Decompositions

Definition 2.4.6. Given a torus T and a convex polyhedral cone σ ⊂ X∗(T )⊗ R we define a variety Xσ as follows:

Xσ = Spec(k[X∗(T ) ∩ σ∨]).

This variety comes equipped with a map T → X arising from the inclusion:

k[X∗(T ) ∩ σ∨] ↪→ k[X∗(T )].

Definition 2.4.7. Given a torus T , a cone Ω ⊂ X∗(T )⊗ R, and a convex polyhedral cone decomposition Σ of Ω, we
define a variety XΣ as follows. It has an open cover by affines:

Xσ = Spec(k[X∗(T ) ∩ σ∨])

for each σ, τ ∈ Σ. We glue Xσ and Xτ along their intersection Xσ ∩Xτ = Xτ∩σ.
Proposition 2.4.8. There is an action of T on XΣ. Moreover, there is a bijection between the orbits of T in XΣ and
Σ. We express this bijection by writing O(σ) for an orbit of T . Moreover, there is a continuous map = : XC,Σ → ΩΣ.
It maps the orbit O(σ) to X∗(T )⊗R +∞σ.

See [Oda78, Thm. 4.2].
Properties of Torus Embeddings

We now summarize a number of geometric results concerning torus embeddings. For more details see [Oda78].
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Definition 2.4.9. We say a convex polyhedral cone σ is rational (with respect to an integral structure NZ in the
ambient space) if there exists r1, . . . , rm ∈ NZ such that:

σ = {x | 〈ri, x〉 ≥ 0 for all i}.

For f to be a morphism of rational partial polyhedral cone decompositions we require that f(NZ) ⊂ MZ and that
MZ/f(NZ) be finite.
Theorem 2.4.10. There exists an equivalence of categories between normal separated locally of finite type torus
embeddings and rational partial polyhedral decompositions. Moreover, the variety is finite type if and only if Σ is finite
(as a set).

See [Oda78, Thm. 4.1].
Remark. One could obtain torus embeddings which are not normal by using monoids which do not arise from
cones, and which are not separated by using cones whose intersections contain open subsets of both. One can obtain
non-locally of finite type torus embeddings by removing the requirement of rationality.

For the remainder of this section assume all torus embeddings are normal separated and locally of finite type.
Theorem 2.4.11. A morphism of torus embeddings is proper if and only if the associated morphism of cone decom-
positions is surjective and the preimage of every cone is finite.

Consequently, a torus embedding is complete if and only if it is finite and decomposes all of X∗(T )⊗ R.
See [Oda78, Thm 4.4].

Remark. In particular finite refinements are proper.
Definition 2.4.12. A rational convex cone σ is said to be regular if it has a generating set which is a basis for its
span, that is, there exists x1, . . . , xn such that:

σ = {
∑

aixi | ai ∈ R+}

and xi form a basis for NZ ∩ spanσ.
Proposition 2.4.13. A torus embedding is regular if and only if all of its cones are regular.

See [Oda78, Thm. 4.3]
Definition 2.4.14. A convex rational polyhedral cone decomposition Σ is said to be projective if there exists a
continuous convex piecewise linear function φ : V → R such that the following properties hold:

1. φ(x) > 0 for x 6= 0.
2. φ is integral on NZ.
3. The top dimensional cones σ are the maximal polyhedral cones in Ω on which φ is linear.

Theorem 2.4.15 (Projectivity). If Σ is projective then the torus embedding corresponding to Σ is quasi-projective.
The statement of the result is [Nam80, Prop. 6.14]. For the proof see [Oda78, Sec. 6].

Theorem 2.4.16. Let XΣ be a torus embedding of finite type, then there exists a refinement Σ′ of Σ such that XΣ′

is non-singular and XΣ′ is the normalization of a blowup of XΣ along an ideal sheaf.
See [KKMSD73, Thm. 10,11]. Concretely one may use iterated barycentric subdivisions to find such a refinement.

2.4.2 Toroidal Compactifications
We now describe how to construct the toroidal compactification for a general Hermitian symmetric domain of

the non-compact type. The proofs that the constructions we describe have the desired properties can be found in
[AMRT10]. In practice one is able to explicitly compute all the objects involved. See for example [Nam80] for the
Siegel case, or the following section for the orthogonal case. What is in fact much harder is describing explicitly a
good choice of cone decomposition and the resulting space.

The key objects involved in the construction are the following:
• A Hermitian locally symmetric domain of the non-compact type:

X = Γ\D = Γ\G/K.

• The maximal (real) parabolic subgroups Pα ↔ Fα which correspond to boundary components:

Pα = {g ∈ G | gFα = Fα}.

• The unipotent radical Wα of Pα.
• The centre Uα = Z(Wα) and the quotient Vα =Wα/Uα.
• An open self adjoint homogeneous cone Ωα ⊂ Uα. It is the orbit under conjugation of Pα acting on ϕ(( 1 1

0 1 )) ∈ Uα
where ϕ is the map of Theorem 2.2.12. (See [AMRT10, Sec 3.4.2]).
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• The pieces of the Levi decomposition Gh,α, G`,α of Pα. They are characterized by the fact that

Gh,α = Aut(Fα) and G`,α = Aut(Ωα,Uα).

These morphisms are realized by maps ph,α, p`,α.
• A decomposition P+ ⊃ Bα = UαD = Fα × Vα × Uα,C. The inclusion D ↪→ Bα realizes D as a fibre bundle of

cones and vector spaces. The natural projections are equivariant for the actions of Gh,α on Fα and G`,α on Uα,C
through ph,α and p`,α. This map has an intrinsic description, see [AMRT10, Sec. 3.3.4].
• A map Φα : Bα → Uα such that D = Φ−1

α (Ωα). This map is equivariant for the actions of G`,α. This map has
an intrinsic description, see [AMRT10, Sec. 3.4].

We make the following additional definitions:
• Γα = Γ ∩ Pα.
• Wα = Γα ∩Wα.
• Uα = Wα ∩ Uα.
• Vα = Wα/Uα.
In order to compactify the space we shall need to describe the space locally using the following collection of open

covers.
Ωα ⊂ iUα = iX∗(T )⊗ R

Uα\D ⊂ Uα\Bα

��

= Fα × Vα × Uα,C/Uα

Φ

OO

πi

��

Uα,C\Bα = Fα × Vα

We define Tα = Uα,C/Uα. It is an algebraic torus (over C).
Heuristically one may think of Ωα as (R+)n and

Uα\D = {(τ1, τ2, τ3) | 0 < |τ3|}.

It thus seems natural to add points for τ3 = 0. The Sataké compactification effectively adds (τ1, τ2, τ3) ∈ Fα×(0)×(0).
The collection of points added for the toroidal compactifications we are considering shall typically be larger. In order
to functorially control the set of points added, we shall need the auxiliary information of cone decompositions.
Definition 2.4.17. A ρ`,α(Γα)-admissible polyhedral decomposition of Ωα is Σα = {σν} (relative to the Uα rational
structure on Uα) such that:

1. Σα is a rational convex polyhedral cone decomposition of Ωα
rat

the rational closure of Ωα,
2. Σα is closed under the action of ρ`,α(Γα), and
3. only finitely many ρ`,α(Γα) orbits in Σα.

A Γ-admissible family of polyhedral decompositions is Σ = {Σα}α Rational where:
1. Σα is a ρ`,α(Γα)-admissible polyhedral decomposition,
2. for γ ∈ Γ if γFα = Fβ then γΣαγ

−1 = Σβ , and
3. for Fα a boundary component of Fβ then Σβ = Σα ∩ Uβ .

The points being added
Now given such a ρ`,α(Γα)-admissible polyhedral decomposition Σα we may construct:

(Uα\Bα)Σα
= Fα × Vα × (Tα)Σα

= tσ∈ΣαO(σ),

where O(σ) = Fα × Vα × O′(σ) and O′(σ) is the points added with respect to σ to Tα. The O(σ) have the following
properties:

1. O(σ) a torus bundle over Fα × Vα,
2. for σ < τ have that O(τ) ⊂ O(σ) (for σ = {0} we have O(σ) = Uα\Bα), and
3. dim σ+ dim O(σ) = dim D.
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There is a map =:

= : Fα × Vα × Uα,C → Uα
(τ1, τ2, τ3) 7→ =(τ3)

which projects onto the imaginary part of Uα. It can be extended/descended to a map

= : (Uα\Bα)Σα → (Uα)Σα

in such a way so that:
= : O(σ)→ {y +∞σ}.

Using the fact that Φα is a translation of = we can then extend Φα to:

Φα : (Uα\Bα)Σα → (Uα)Σα .

With all this in hand, we make the following definitions:

(Uα\D)Σα := Interior of closure of Uα\D in (Uα\Bα)Σα , and

(Ωα)Σα := Interior of closure of Ωα in (Uα)Σα .

By continuity if follows that Φ−1((Ωα)Σα) = (Uα\D)Σα . This observation allows one to check the following claim:
Claim. If σ ∩ Ωα 6= ∅ then O(σ) ⊂ (Uα\D)Σα .

As a consequence we define:
O(Fα) := t

σ∩Ωα 6=0
O(σ).

We call these sets O(Fα) the points added with respect to Fα.
Note that the converse to the above claim does not hold. It is thus reasonable to ask about the other O(σ) which

are not part of O(Fα)? The answer is that these relate to O(Fβ) when Fα is a boundary component of Fβ . Indeed,
having Fα on the boundary of Fβ implies:
• Uβ ⊂ Uα,
• Ωβ is on the rational boundary of Ωα, and
• Σβ = Σα ∩ Uβ .

We can thus construct maps as follows

Uβ\D
Uβ\Uα

//
� _

��

Uα\D� _

��

(Uβ\D)Σβ

Uβ\Uα
//

� _

��

(Uα\D)Σα� _

��

(Uβ\D)Σβ

πα,β
// (Uα\D)Σα

Oβ(σ′) //
?�

OO

Oα(σ)
?�

OO

where σ′ ∈ Σβ has image σ ∈ Σα.

We define a projection map πα : (Uα\D)Σα → Γ\D
Sat

using the natural projection maps O(Fα)→ Fα. We assert
that this map is holomorphic, but note that we have not defined the topology on the Sataké compactification.

Gluing
Having defined the points we wish to add, we must describe how these points will all fit together. We first

take a further quotients of the space we have constructed. In order to get a reasonable space we need the following
proposition.
Proposition 2.4.18. The action of the group Γα/Uα on (Uα\D)Σα is properly discontinuous .

See [AMRT10, Sec. 3.6.3 Prop. 2].
Theorem 2.4.19. The quotient

(Γα/Uα)\(Uα\D)Σα
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has the structure of a normal analytic space. Moreover,

O(Fα) := (Γα/Uα)\O(Fα)

is an analytic subspace.
We have

Γ\D //
� _

��

Γ\D� _

��

(Γα/Uα)\(Uα\D)Σα

πα // (Γ\D)
Sat

(Γα/Uα)\O(Fα)
?�

OO

πα // Γα\Fα
?�

OO

We want the spaces (Γα/Uα)\(Uα\D)Σα to give us an “open covering” of (Γ\D)
tor

Σα
in the sense that the maps from

them give an open covering.
We give two ways to think about it.
• Firstly we consider the collection of (Γα/Uα)\(Uα\D)Σα modulo Γ, that is, taking one representative for each

cusp of X
Sat

. This is a finite collection.
Now if Fα ∩ Fβ ⊃ Fω, then we glue along the image of πβ,ω, πα,ω of (Uω\D)Σω in each factor. The difficulty is
that there is no map

(Γω/Uω)\(Uω\D)Σα → (Γα/Uα)\(Uα\D)Σα .

However, there is a neighbourhood of Bα on which (Uw\D)Σw injects so that the map descends.
• Alternatively we construct the space as

(Γ\D)
tor

Σα
=
∐
Fα

(Uα\D)Σα/ ∼

where we define the equivalence relation as follows. For xα ∈ (Uα\D)Σα and xβ ∈ (Uα\D)Σβ we say xα ∼ xβ if
there exists a boundary component Fw an element γ ∈ Γ and a point xw ∈ (Uω\D)Σω such that:

πα,ω(xω) = xα and

πα,ω(xω) = γxβ .

Using either interpretation we can define the map:

πFα : (Γα/Uα)\(Uα\D)Σα → Γ\D
tor
.

We note that πFα is injective near O(Fα). Consequently in a neighbourhood of (Γα/Uα)\O(Fα) the space (Γ\D)
tor

Σ

looks like:
(pα,h(Γ)\Fα)

tor
× V/“VZ + τVZ”× (Tα)Σα .

2.4.3 Properties of Toroidal Compactifications
We now discuss some of the properties of toroidal compactifications and how they relate to the choice of Σ. The

following results are more or less clear from the construction. Details can be found in [AMRT10].
1. The boundary has codimension 1, (O(σu) for σu minimal).

2. There is a map (Γ\D)
tor

Σ → (Γ\D)
Sat
.

3. The space (Γ\D)
tor

Σ is not a unique, but it is functorial in Σ, and is compatible with the level structure.
4. The space is compact.

Smoothness
Definition 2.4.20. A subgroup Γ ∈ GLn is neat if for all G ⊂ GLn, and algebraic maps Φ : G → H the group
Φ(Γ ∩G) is torsion-free.

A key property of neat subgroups is that they act without fixed points. It is a theorem of Borel [Bor69, Prop.
17.4] that neat subgroups exist.

Claim. The singularities of Γ\D
tor

are all either:
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1. finite quotient singularities from non-neat elements of Γ, or
2. toroidal singularities in πFα(O(σ)) for irregular cones σu.

This follows by observing which types of singularities can exist in the quotients of Fα × Vα × (Uα,C)Σα .
Claim. There exist regular Γ-admissible refinements.

See [FC90, p. 173] or [Loo88, Sec. 4].

Projectivity of (Γ\D)
tor

For more details on this see [AMRT10, Sec. 4.2].
Definition 2.4.21. A Γ-admissible decomposition Σα is called projective if there exists functions ϕα : Ωα → R+

which are:
1. convex, piecewise linear, and Γ-invariant functions for which ϕα(Γα ∩ Ωα) ⊂ Z, and
2. for all σ ∈ Σα there exists a linear functional `σ on Uα such that:

(a) `σ ≥ ϕα on Ωα, and
(b) σ = {x ∈ Uα | `σ(x) = ϕα(x)}

(equivalently σ the maximal subsets on which ϕα is linear).
Define ϕ∗α(λ) = min

σ,i
(~vi(λ)) where ~vi are vertices of σ ∩ {ϕ = 1}.

Proposition 2.4.22. Every holomorphic function on (Γ\D)
Sat

has a Fourier expansion of the form:∑
ρ∈Ωα∩U∗α

θρ(τ1, τ2)e2πiρ(τ3).

where (τ1, τ2, τ3) ∈ Fα × Vα × Uα,C.
See [Bai66, Sec. 3] for details. This is just the development of a Fourier series with respect to Uα. The positivity

condition on Fourier coefficients is equivalent to the growth conditions.

Definition 2.4.23. We define a sheaf Jm on X
Sat

by defining the stalks to be:

Jm,x = {f ∈ Ox | θρ 6= 0 only if ρ ∈ Uα ∩ Ω, ϕ∗α(ρ) ≥ m}.

We define the locally free sheaf Iα on (Uα\D)Σα
to be the one generate by e2πiϕα(τ2). We then define the sheaf I on

(Γ\D)
tor

by:
Γ(U, I) = {s ∈ ⊕

α
Γ(π−1

α (U), Iα) | ‘glue on overlaps’}.

We have that:
Jm = πα∗(I

m).

Theorem 2.4.24. The toroidal compactification (D/Γ)
tor

Σ is the normalization of the blow up of (D/Γ)
Sat

along Jm.
Moreover, π∗α(Jm) = Im.

See [AMRT10, Sec. 4.2.1].
2.4.4 Toroidal Compactification for the Orthogonal group

We now summarize all the objects we shall need for toroidal compactifications in the case of orthogonal groups.
We will assume that:

Ã =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

A


gives the matrix for our quadratic space over Q. Note that for n ≤ 4 there may be no such matrix over Q. The main
difference in the theory if no such matrix of this form exists is that certain classes of boundary components will simply
not exist. Though these cases are of interest, we will not treat them here.

Boundary Components and Parabolics
We now compute the shape of the parabolics for the different boundary components.
These parabolics Pα = {g ∈ G | gFα = Fα} come from fixing a real isotropic subspace α. The group Pα is the

stabilizer in G of this space. Up to equivalence the options for α are {e1}, {e1, e2}. It is conceivable that there may
be no rational parabolics of one or both types. This can only happen if n is small, and cannot happen based on our
assumption about the shape of the quadratic form. We have that the corresponding Pα have the following form:
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• {e1}
a x1 x2 x3 x4

0 ∗(1)
3 y3 ∗(3)

3 ∗(4)
3

0 0 a−1 0 0

0 ∗(1)
1 y1 ∗(3)

1 ∗(4)
1

0 ~∗(1)t
4 ~y4 ~∗(3)t

4 ∗


a ∈ Gm
(∗ij) ∈ SO1,n−1

x2 = −a(y3y1 + 1
2 ~y4A~y4

t)

xi = −a(∗(i)3 y1 + ∗(i)1 y3 +
~∗(i)4 A~y4

t) i 6= 2.

• {e1, e2}


a b x2 x3 ~x4

c d w1 w2 ~w4

0 0 d′ −b′ 0
0 0 −c′ a′ 0
0 0 ~yt ~zt ∗



(
a b
c d

)
∈ GL2, (∗ij) ∈ SOA(

d′ −c′
−b′ a′

)
= (
(
a b
c d

)−1
)t

d′x2 − c′w1 = − 1
2~yA~y

t

− b′x3 + a′w2 = − 1
2~zA~z

t

d′x3 − c′w2 − b′x2 + a′w1 = −~yA~zt

d′xi − c′wi = − 1
2
~∗(i)A~yt for i ≥ 4

− b′xi + a′wi = − 1
2
~∗(i)A~zt for i ≥ 4.

The unipotent radical Wα of Pα is:
• {e1}

1 x1 x2 x3 ~x4

0 1 y3 0 0
0 0 1 0 0
0 0 y1 1 0

0 0 ~y4
t 0 Id


x2 = −(y1y3 + 1

2 ~y4A~y4
t)

x3 = −y3

x1 = −y1

xi = −yiAi−3i−3 for i ≥ 4.

• {e1, e2}


1 0 x2 x3 ~x4

0 1 w1 w2 ~w4

0 0 1 0 0
0 0 0 1 0

0 0 ~y4
t ~z4

t Id


x2 = − 1

2~yA~y
t

w2 = − 1
2~zA~z

t

x3 + w1 = −~yA~zt

xi = −yiAi−3i−3 for i ≥ 4

wi = −ziAi−3i−3 for i ≥ 4.

We therefore find the centre Uα of Wα is:
• {e1}

1 x1 x2 x3 ~x4

0 1 y3 0 0
0 0 1 0 0
0 0 y1 1 0

0 0 ~y4
t 0 Id


x2 = −(y1y3 + 1

2 ~y4A~y4
t)

x3 = −y3

x1 = −y1

xi = −yiAi−3i−3 for i ≥ 4.

When we need to denote this compactly, we write Uα = {(y1, y3, ~y4)}.
• {e1, e2}

1 0 0 x3 0
0 1 w1 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 Id

 x3 = −w1.

22



When we need to denote this compactly, we write Uα = {(w1)}.
We can now describe Vα =Wα/Uα.
• {e1}

This is trivial.
• {e1, e2}

Coset representatives are given by (~y4, ~z4). The identification with ~v4 = ~y4 + i ~z4 gives it a complex structure.
We now describe the realization of D as a Siegel domain of the third kind. We have Bα = Uα,C · D ⊂ P+ and the

diagram:

Bα = Uα,C ·D

��

' Fα × Vα × Uα,C

��

Bα/Uα,C

��

' Fα × Vα

��

Bα/(Wα · Uα,C) ' Fα.

• {e1}
As Vα, Fα are trivial the identification Bα = Uα is apparent. We describe it in P (V (C)). We observe that:

Uα,C · D = Uα,C · [1 : i : 1 : i : ~0]

= [1− iy1 − iy3 − (y1y3 + 1
2 ~y4

tA~y4) : i+ y3 : 1 : i+ y1 : ~y4].

It is apparent from this that the map from P (V (C)) to Uα,C is given by:

[(v0, . . . , vn+1)] 7→ (y1, y3, . . . , yn) = ( v1v2 ,
v3
v2
. . . , vn+1

v2
).

Note the use of y1, y3 rather than y1 + i, y3 + i.
• {e1, e2}

It is more convenient to express the action inside the orbit above so Uα,C · D is:

Uα,C · [1− iy1 − iy3 − (y1y3 + 1
2 ~y4

tA~y4) : i+ y3 : 1 : i+ y1 : ~y4]

= [1− iy1 − i(y3 + w1)− (y1(y3 + w1) + 1
2 ~y4

tA~y4) :

i+ (y3 + w1) : 1 : i+ y1 : ~y4].

We compose this with the inverse above and conclude we have the following:

Vα ' {[ 1
2 ~v4

tA~v4 : 0 : 1 : 0 : ~v4] ∈ κ+}

in the sense that Vα = (~y4, ~z4) 7→ ~y4 + i ~z4 = ~v4. The map Bα → Uα,C given by:

[−(v1v3 + 1
2 ~v4

tA~v4) : v3 : 1 : v1 : ~v4] 7→ v3.

Finally, we have the map Bα → Fα ' H given by:

[−(v1v3 + 1
2 ~v4

tA~v4) : v3 : 1 : v1 : ~v4] 7→ v1.

We now describe the self-adjoint open cone Ωα ⊂ Uα.
• {e1}

Ωα = {(y1, . . . , yn) ∈ Uα | y1y3 + 1
2 ~y4A~y4 > 0 and y3 > 0}.

• {e1, e2}
Ωα = {(w1) ∈ Uα | w1 > 0}.

It comes with a map:
Φα : Bα = Pα · Uα,C/(Pα ∩K)→ Pα · Uα,C/Pα ' Uα.

• {e1}
Φα : ~y 7→ (=(y1),=(y3),=(~y4)).
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• {e1, e2}
Φα : ~y 7→ (2=(y1)=(y3) + =(~y4)tA=(~y4)).

We may check that D = Φ−1
α (Ωα) in either case.

We now look at the Levi decomposition for Pα. We have the subgroups Gh,α, G`,α,mα ⊂ Pα. These satisfy
Pα ' (Gh,α ·G`,α ·mα)Wα with mα being compact.
• {e1}

Gh,α is trivial.
G`,α is Gm × SO1,n−1.
m is trivial.

• {e1, e2}
Gh,α = SL2.
G`,α = Gm viewed as the diagonal in the apparent GL2 factor.
m = SOn−2.

This decomposition is characterized by two maps. The map ph,α : Pα � Gh,α ∼ Aut(Fα).
• {e1}

This is the trivial map.
• {e1, e2}

This is the map g 7→
(
a b
c d

)
where we view this in PGL2 = Aut(H) under the action(

a b
c d

)
◦ [1 : v1] = [1 : av1−b

−cv1+d ].

We see immediately that this map is equivariant for the action of Pα.
The map p`,α : Pα � G`,α = Aut(Uα,Ωα) (the group G`,α acts on Uα by conjugation).
• {e1}

This is the map Gm × SO1,n−1 → GO1,n−1. (It is the connected component of the identity which preserves the
cone.)
• {e1, e2}

This is the map g 7→ det
(
a b
c d

)
where we view det

(
a b
c d

)
∈ Gm.

In both cases we can check that the maps are equivariant.
We also have the following objects:
• Γα = Γ ∩ Pα.
• Γ′α = Γα ∩Ker(p`,α).
• Γα = p`,α(Γα) ⊂ Aut(Uα,Ωα).
• 1→ Γ′α → Γα → Γα → 1.
• Uα = Γ ∩ Uα a lattice.
• Wα = Γ ∩Wα.
• Wα/Uα ⊂ Vα a lattice.

Partial Quotient and Boundary Components
The open neighbourhoods of the cusps that we need to consider are the spaces Uα\Bα. These are:
• {e1}

Uα\Bα = Uα\Uα,C ' (C×)n.

We shall add points “near the origin” of C×. These points will correspond to the infinite limit points of Ωα.
• {e1, e2}

Uα\Bα = Fα × Vα × (Uα\Uα,C) = H× Cn−2 × C×.

We shall add the point “at the origin” of C× which corresponds to the point at infinity of R+ = Ωα.
We now consider the further quotient modulo Γα.
• {e1}

The group is Γα ⊂ SO1,n−1(Z). We thus wish to consider Γα\(C×)nΣα . The action on the interior of D is
non-trivial. However, on the O(σ) components of the cusps it simply acts to identify them so that locally near
the cusps, everything looks the same.
• {e1, e2}

The group Γα ⊂ {±1} acts trivially.
We next consider the quotient modulo Γ′α.
• {e1}

These groups are trivial, hence there is no action.
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• {e1, e2}
The group is Γ′α ⊂ SL2(Z) n (Z2)n−2. This acts trivially on the Uα,C component of Bα. we thus consider its
action on Fα × Vα = H× Cn−2. We see that the matrix:

a b ∗ ∗ ~∗
c d ∗ ∗ ~∗
0 0 d′ −b′ 0
0 0 −c′ a′ 0
0 0 ~y ~z X

 ∈ Γ′α

sends:
[∗ : Z : 1 : v1 : ~v4] ∈ Bα] 7→ [∗ : Z ′ : 1 : av1−b

−cv1+d : 1
−cv1+d (~y4 + v1~z4 +X~v4)].

Due to the equivariance of the action on Uα we have Z ′ = 0 if and only if Z = 0. Thus, in a small neighbourhood
N of X = 0 in Uα we have that Γ′α\Bα is of the form:

N × (Γ′α\(H× Cn−2)).

Define E(n−2) to be the quotient:
E(n−2) := Γ′α\(H× Cn−2)

for the action described above. It comes with a map:

E(n−2) � ph,α(Γ′α)\H

where the right hand side is the modular curve Y (ph,α(Γ′α)). The fibres of the morphism E(n−2) → Y (ph,α(Γ′α))
satisfy:

E(n−2)
τ = (Eτ )n−2

where Eτ = Eτ is the elliptic curve with level structure parametrized by τ ∈ Y (ph,α(Γ′α)). Thus we see that
E(n−2) = E ×Y · · · ×Y E is the (n− 2)-fold fibre product of the universal elliptic curve over the modular curve.
Adjacent boundary components

We now describe the relations between adjacent boundary components. As there are two types of boundary
components, there are naturally two types of adjacency to consider.

We shall first consider the case where Fα is 1-dimensional and Fβ is 0-dimensional. We say these are adjacent if

Fβ ⊂ Fα in X
Sat

.
In this case Fα corresponds to a 2-dimensional isotropic subspace containing the 1-dimensional isotropic subspace

corresponding to Fβ . It follows that the parabolics Pα and Pβ are simultaneously conjugate to our standard ones
above. We see that Uα ↪→ Uβ and admissibility of the cone decomposition implies that the image of Ωα (which is

1-dimensional) is a cone in Ω
rat

β .
We may also view Fβ as a boundary component of Fα ' H. Thus Fβ corresponds to a cusp of Y (ph,α(Γ′α)).

Without loss of generality it is the cusp i∞. We see that as τ ∈ H approaches Fβ , the lattice we are taking a quotient
by to get E(n−2) is degenerating to:

Zn−2 × i∞Zn−2 = Zn−2 ⊂ Uα.

We then see quite naturally that we have a map:

Fα × ((Uβ ∩ Vα)\Vα)× Uα\Uα,C = Fα × (C×)n−1 → (C×)n = Uβ\Uβ

using the map H exp→ C×.
Looking at the cone Ωα ∈ Uα we see that:

(Uα\Fα × Vα × Uα,C)Ωα ⊂ Uβ\Uβ tO(Ωα)

where we are viewing O(Ωα) relative to Bβ . We have further that:

O(Ωα) ' ((Uα ∩ Γβ)\H)× (Vβ ∩ Uα)\Vβ × (0)→ E(n−2).

We now wish to describe the closure of E(n−2) in the compactification.
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Given any other cone σ ∈ Σβ we see that O(σ) is in the closure of O(Ωα) in Bβ if and only if Ωα ⊂ σ. We thus
consider the set:

(Σβ)α := {σ ∈ Σβ | Ωα ⊂ σ}.

We now consider the image of (Σβ)α in Uβ/Uα ' R+×Vα. This gives us a cone decomposition for the cone associated
to H×Vβ . This cone decomposition is invariant under the action of Γα ∩ Γβ . Indeed (Uβ ∩ Vα)\Vβ ↪→ G`,α must
stabilize the collection of cones adjacent to Ωα and since Vβ centralizes Uβ this action descends to Uα/Uβ . We likewise
find that the stabilizer of i∞ in Gh,β injects into Wα, and thus also stabilizes Σβ,α. Moreover, as Vα = Uβ ∩ Vα it
is also rational for the appropriate rational structure. Consequently, if we proceed as in the usual construction of
toroidal compactification we can construct:

E(n−2)
Σβ,α := ((Γβ n Vα)\(H×(C×)n−2)(Σβ)α).

This map is injective near the cusp Fβ and realizes a compactification of E(n+2) near this point. Moreover, by
functoriality we obtain a map:

E(n−2)
tor

Σβ,α
→ X

tor

Σ

which lands in the fibre over Fβ .
We now consider the case where both Fα and Fβ are both 1-dimensional. Both boundary components are

characterized by 2-dimensional isotropic subspaces. The curves Fα and Fβ intersect in X
Sat

if and only if the associated
2-dimensional spaces intersect in a 1-dimensional isotropic space. In this case, there exists the boundary component
Fω corresponding to this 1-dimensional isotropic space and Fω = Fα ∩ F β . It follows that Fω is adjacent to both
Fα and Fβ in the sense described above. However, there is in general no reason for the closure of the fibres over Fα

and Fβ to intersect in X
tor

Σ just because the images intersect in X
Sat

. From the discussion in the previous case, it is

apparent that the closures of the fibres will intersect in X
tor

Σ if and only if the cones Ωα and Ωβ viewed in Ωω are both
contained in a common cone σ ∈ Σω. In this case, the intersection of the closure of the fibres is precisely:

∪
σ⊃Ωβ ,Ωα

O(σ).

Remark. We remark that if Σ is regular then this intersection (provided it is non-empty) has dimension n− 2.
Remark. Even though OV (Q) will act transitively on the set of boundary components it is not in general true
that there exists a lattice L ⊂ V such that OL(Z) will act transitively on either the 0-dimensional or 1-dimensional
boundary components.

However, if the Hasse invariant is trivial, then there exists a lattice L ⊂ V with square free discriminant. For
such a lattice, the primitive representative for every isotropic vector can be embedded into a hyperplane H which is a
direct factor of L. If OV has Q rank 2, it follows that the isomorphism class of H⊥ is uniquely determined and thus
OL(Z) will act transitively on the 0-dimensional boundary components.

This argument fails for 1-dimensional boundary components as:

H ⊕H ⊕ E8 ⊕ E8 ' H ⊕H ⊕D+
16.

2.4.5 Constructing Rational Polyhedral Cone Decompositions
We now introduce a method for the construction projective rational polyhedral cone decomposition. This is

largely a summary of the method outlined in[AMRT10, Section 2.5], See also [Loo88]. Before proceeding we should
note that the resulting cone decompositions need not be regular.

We first introduce the notation we shall be using throughout.
• L a lattice with a positive-definite bilinear form 〈·, ·〉.
• L# the dual of L with respect to 〈·, ·〉.
• Ω is a convex open homogeneous cone in V = L⊗ R self-adjoint with respect to 〈·, ·〉.
• Γ a subgroup of AutL(Ω, V ).

Definition 2.4.25. A subset K is said to be a kernel of Ω if: 0 /∈ K and K + Ω ⊂ K.
We say two kernels are comparable if λK ′ ⊂ K ⊂ λ−1K ′.
The semi-dual of a set A is:

A∨ = {h ∈ Hom(V,R) | h(a) ≥ 1 for all a ∈ A}.
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The extreme points of a convex set A are:

E(A) = {x ∈ A | x =
y + z

2
⇒ y = z = x}.

We summarize a few key results of [AMRT10, Sec 2.5.1-2].
Proposition 2.4.26. For a kernel K we have the following:
• K∨ is a kernel
• K = ∪

e∈E(K)
e+ Ω.

Proposition 2.4.27. The closed convex hull of Ω ∩ L is a kernel for Ω. Moreover, these are all comparable indepen-
dently of L.
Definition 2.4.28. A kernel is called a core if K is comparable to the closed convex hull of Ω ∩ L. It is called a
co-core if K∨ is a core.
Example. We have the following examples of cores:
• Kcent the closed convex hull of Ω ∩ L is a core.
• K ′cent the closed convex hull of Ω ∩ L# is a core.
• Kperf = (closed convex hull of Ω ∩ L \ 0)∨ is a core.

Definition 2.4.29. A closed convex kernel is called locally rationally polyhedral if for any rational polyhedral
cone Π whose vertices are in Ω there exists a finite collection of xi ∈ VQ ∩ Ω such that:

Π ∩K = {y ∈ Π | 〈xi, y〉 ≥ 1}.

It is said to be Γ-polyhedral if it is moreover Γ-invariant.
Notation 2.4.30. Let T ⊂ 1

NL ∩ Ω \ 0 we define:

KT = {x ∈ Ω | 〈x, y〉 > 1 for all y ∈ T}.

Proposition 2.4.31. If T is stable under the action of Aut(L#,Ω), then KT is Aut(L,Ω)-polyhedral. If K is
Aut(L#,Ω)-polyhedral then K∨ is Aut(L,Ω)-polyhedral.

See [AMRT10, Sec. 2.5.2 Prop. 9,10].
Definition 2.4.32. For a convex set A ⊂ V , a hyperplane H is said to support A if A\H is connected and A∩H 6= ∅.

For y ∈ Ω denote by Hy := {x ∈ V | 〈x, y〉 = 1} the associated hyperplane. Given a kernel K define:

YK = {y ∈ Ω | Hy supports K,Hy ∩ E(K) spans V }.

For y = {y1, . . . , ym} ⊂ YK let σy be the cone generated by ∩iHyi ∩ E(K).
Proposition 2.4.33. Let K be a Γ-polyhedral co-core for Ω and define:

Σ := {σy | y ⊂ YK finite}.

The decomposition Σ is Γ-admissible and projective.
For the proof of the first statement see [AMRT10, Sec. 2.5.2 Prop. 8] for the proof of projectivity see [AMRT10,

Sec. 4.2].
What the above theorem does is it translates the abstract problem of finding a Γ-admissible cone decomposition

into the concrete problem of understanding how the extreme points of a lattice intersect hyperplanes. This should not
be assumed to be a simple task.
Proposition 2.4.34. Taking iterated subdivisions of a Γ-admissible and projective cone decomposition preserves Γ-
admissibility and projectivity. By this process one may construct a projective regular cone decomposition.

See [Loo88, Sec. 4].
2.5 Dimension Formulas for Spaces of Modular Forms

One very natural question which remains unanswered about modular forms on orthogonal symmetric spaces is
that of giving explicit formulas for the dimensions of spaces of modular forms on these spaces. These types of formulas
have a wide variety of applications, both computational and theoretical. This problem has been extensively studied
in lower dimensional cases where exceptional isomorphisms exist between the orthogonal Shimura varieties and other
classical varieties. In particular, the (2,1)-case corresponds to the classical modular and Shimura curves and the (2,2)-
case corresponds to Hilbert modular surfaces. Many results are known for these cases (see for example [DS05, Ch. 3]
and [Fre90, Ch. 2]). Additionally, the split (2,3)-case corresponds to a Siegel space where the work of Tsushima (see
[Tsu80]) gives us dimension formulas. The only work in the general case is that of [GHS08]. They are able to compute
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asymptotics for the dimensions as one changes the weight for several higher dimension cases. The standard approach
to this type of problem and the one we intend to discuss is that which has been used successfully in the above listed
cases.

The first tool we shall discuss is the Riemann-Roch formula.
2.5.1 Hirzebruch-Riemann-Roch Theorem

Before discussing the theorem we shall quickly survey the objects involved in the statement of this theorem. Most
of what we say can be found in [Har77, Appendix A]. More thorough treatments exist, both from a more topological
approach [Hir66] or algebraic approach [BS58].

What the Hirzebruch-Riemann-Roch theorem fundamentally is about is a formula for the Euler characteristic in
terms of the values of intersection pairings between certain cycles and cocycles. We will say very little about what
this means. Two good references for this material are [Ful98, Ful84].

Chern Classes
The main cohomology classes involved in the Riemann-Roch theorem are the Chern classes. There are many ways

to introduce them; for an alternate topological approach see [MS74]. We mostly introduce notation and key results
we shall use.
Notation 2.5.1. Let E be a locally free sheaf of rank r on a non-singular projective variety X of dimension n. Let
P(E) be the associated projective space bundle (see [Har77, II.7]). Denote by CHr(X) the Chow ring of X, that is,
the codimension r cycles up to equivalence. Let ξ ∈ CH1(P(E)) be the class of the divisor corresponding to OP(E)(1).
Let π : P(E)→ X be the projection. Denote by TX the tangent sheaf of X and by Ω1

X the cotangent sheaf of X.
Definition 2.5.2. For i = 0, . . . , r we define the ith Chern class ci(E) ∈ CHi(X) by the conditions c0(E) = 1 and

r∑
i=0

(−1)iπ∗ci(E) · ξr−i = 0.

We define the total Chern class
c(E) = c0(E) + c1(E) + · · ·+ cr(E),

and the Chern polynomial
ct(E) = c0(E) + c1(E)t+ · · ·+ cr(E)tr.

For a partition α = (α1, . . . , αm) of i =
∑
` α` we shall write cα(E) =

∏
` cα`(E).

Proposition 2.5.3. The following properties uniquely characterize the Chern classes.
1. If E = OX(D), then ct(E) = 1 +Dt.
2. If f : X ′ → X is a morphism, then for each i we have ci(f

∗E) = f∗ci(E).
3. If 0→ E ′ → E → E ′′ → 0 is exact, then ct(E) = ct(E ′) · ct(E ′′).

The following principle allows simplified statements for the next set of definitions.
Proposition 2.5.4 (Splitting Principle). Given E on X there exists a morphism f : X ′ → X such that f∗ : CH(X)→
CH(X ′) is injective and E ′ = f∗E splits. Explicitly this means we may write E ′ = E ′0 ⊇ E ′1 ⊆ · · · ⊆ E ′r = 0 so that the
successive quotients are invertible sheaves.

See [Ful98, Sec. 3.2 Thm. 3.2].
Definition 2.5.5. It follows from functoriality that if E splits with quotients L1, . . . ,Lr then:

ct(E) =

r∏
i=1

ct(Li) =

r∏
i=1

(1 + ait).

We define the exponential Chern character to be:

ch(E) =

r∑
i=1

eai =

r∑
i=1

(∑
n

1
n!a

n
i

)
.

We define the Tod class to be:

td(E) =

r∏
i=1

ai
1− e−ai

,

where x
1−e−x = 1 + 1

2x+ 1
12x

2 − 1
720x

4 + . . ..
With this notation we can express certain functorialities in a simple manner as follows:
• ch(E ⊕ F) = ch(E) + ch(F),
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• ch(E ⊗ F) = ch(E) ch(F), and
• ch(E∨) = ch(E)−1.

The Euler Characteristic
Theorem 2.5.6 (Serre). Let X be a projective scheme over a Noetherian ring A and let OX(1) be a very ample
invertible sheaf on X over Spec(A). Let E be a coherent sheaf on X. Then the following properties hold:

1. For each i ≥ 0 the ith cohomology Hi(X, E) is a finitely generated A-module.
2. There exists an n0 such that Hi(X, E(n)) = 0 for all i > 0 and n ≥ n0.

See [Har77, III.5.2].
Definition 2.5.7. Let X be a projective scheme over k and let E be a coherent sheaf on X we define the Euler
characteristic of E to be:

χ(E) =
∑
i

(−1)i dimkH
i(X, E).

Proposition 2.5.8. Let X be a projective scheme over k, let OX(1) be a very ample invertible sheaf on X over k,
and let E be a coherent sheaf on X. There exists P (z) ∈ Q[z] such that χ(E(n)) = P (n) for all n. We call P the
Hilbert polynomial of E relative to OX(1).

See [Har77, Thm. I.7.5 and Ex. 2.7.6].
Theorem 2.5.9 (Hirzebruch-Riemann-Roch). For a locally free sheaf E of rank r on a non-singular projective variety
X of dimension n we have the following formula for the Euler characteristic:

χ(E) = deg(ch(E). td(TX))n.

The statement is from [Har77, A.4.1]. For the proof see [BS58].
Corollary 2.5.10. Consider a locally free sheaf E of rank r on a smooth projective variety X of dimension n. There
exists a ‘universal polynomial’ Q such that:

χ(E) = Q(c1(E), . . . , cr(E); c1(Ω1
X), . . . , cn(Ω1

X))

=

n∑
i=0

∑
|α|=i

∑
|β|=n−i

aα,βc
β(E) · cα(Ω1

X),

where α, β are partitions of i, n− i, and the aα,β are integers which depend only on α, β, n.

Proof. This follows from the observation that the Tod and Chern characters are universal polynomials in the Chern
classes.

2.5.2 Kodaira Vanishing
In order to effectively apply this theorem to computing dimensions of H0s, one needs to know that, for the line

bundle in question, the higher cohomology vanishes. To this end we have the following results.
Theorem 2.5.11 (Kodaira). If X is a non-singular projective variety of dimension n and L is an ample line bundle
on X then:

Hi(X,L⊗(−m)) = 0 for all m > 0, i < n.

The statement is [Har77, Rem. III.7.15]. For the proof see [Kod53].
Corollary 2.5.12. If X is a non-singular projective variety of dimension n and L is an ample line bundle on X then:

Hi(X,L⊗(m) ⊗ Ω1
X) = 0 for all m > 0, i > 0.

This follows immediately from the previous result by Serre duality (see [Har77, III.7 and III.7.15]).
2.5.3 Hirzebruch-Proportionality

In order to effectively apply the Riemann-Roch theorem to the situation of locally symmetric spaces there are a
number of key issues that must be overcome. The first is that one must be working with a line bundle on a projective
variety. It is not immediately apparent that modular forms should be sections of such a bundle and this should
not be assumed lightly. The second is how to actually compute the various intersection pairings that make up the
Riemann-Roch formula. Both of these problems have at least partial solutions coming out of the theory of toroidal
compactifications (see [AMRT10, Mum77]).
Notation 2.5.13. Throughout this section we will be using the following notation. Let D = G/K be a Hermitian
symmetric domain of the non-compact type and let D̆ = Gc/K be its compact dual. Each of these has the induced
volume form coming from the identification of tangent spaces at a base point with part of the Lie algebra pC ⊂ gC.
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Let Γ ⊂ Aut(D) be a neat arithmetic subgroup with finite covolume and let X = Γ\D be the corresponding locally

symmetric space. We will denote by X a choice of smooth toroidal compactification and by X
BB

the Baily-Borel
compactification.
Definition 2.5.14. We then define the Hirzebruch-Mumford volume to be:

VolHM (X) =
Vol(X)

Vol(D̆)
.

Proposition 2.5.15. Given a G-equivariant analytic vector bundle E0 on D there exists:
• an analytic vector bundle Ĕ on D̆ which agrees with E0 on D,
• an analytic vector bundle E on X with an induced Hermitian metric, and
• a unique extension E to X such that the induced metric is a good singular metric on X.
See [Mum77, Thm 3.1].

Theorem 2.5.16. Using the notation of the previous proposition. For each partition α of n = dim(X) the associated
Chern numbers cα(E) and cα(Ĕ) satisfy the following relation:

cα(Ĕ) = (−1)dim(X) VolHM (X)cα(E).

See [Mum77, Thm 3.2].
Geometric Modular Forms

We now give a definition of the spaces in which we are interested.
Definition 2.5.17. Given a representation ρ : K → GLn we define a bundle Eρ on D via

Eρ = K\(G×ρ Cn).

We define a ρ-form on X to be a Γ-equivariant section of Eρ such that the induced map f̃ : G→ Cn satisfies:∣∣∣f̃(g)
∣∣∣ ≤ C ||g||nG

for some n > 1, C > 0. The norm ||g|| is defined as in [Bor66, Sec. 7] as Tr(Ad(s(g))−1 · Ad(g)), where s is a Cartan
involution.

We say a ρ-form is holomorphic if it is a holomorphic section of:

Ĕρ = KCP+\(GC ×ρ Cn)

on the inclusion of E ↪→ Ĕ.
Proposition 2.5.18. The vector space of holomorphic ρ-forms is precisely:

H0(X,Eρ),

where X is a smooth toroidal compactification of X and Eρ the unique extension of Eρ to X.
See [Mum77, Prop 3.3].

Proposition 2.5.19. Consider the case Ĕ = Ω1
D̆ so that E = Ω1

D. In this case

E = Ω1
X

(log)

is the bundle whose sections near a boundary of k intersecting hyperplanes are of the form:

k∑
i=1

ai(z)
dzi
zi

+

n∑
i=k+1

ai(z)dzi.

See [Mum77, Prop 3.4.a].
Proposition 2.5.20. Consider the case Ĕ = ΩnD̆ so that E = ΩnD is the canonical bundle of D. In this case

E = f∗(O
X
BB (1))
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is the pullback of an ample line bundle on the Baily-Borel compactification. The sections of O
X
BB (n) are the modular

forms of weight n.
See [Mum77, Prop 3.4.b].

Corollary 2.5.21. Suppose n′ = dim(X
BB −X), then for all k > n′ the cycle [Ω1

X
(log)]k is supported on X.

Proof. This is true for the ample line bundle on X
BB

for which Ω1
X

(log)k is the pull back. Hence the statement is

true for Ω1
X

(log)k.

Corollary 2.5.22. For X = Γ\D a locally symmetric space, the modular forms are:

Mk(Γ) = H0(X,Ωn
X

(log)k)

is the space of modular forms of weight k level Γ for G. Furthermore the cusp forms are:

Sk(Γ) = H0(X,Ωn
X

(log)k−1 ⊗ Ωn
X

).

Computing Dimensions
We now describe how to compute dimensions for spaces of modular forms.

Proposition 2.5.23. Suppose D is a cycle on X supported entirely on X, then

D · cα(ΩX(log)) = D · cα(ΩX).

This follows from the properties of the Chern classes.
Lemma 2.5.24. Suppose Q is the universal polynomial of Corollary 2.5.10 then:

EX(`) : = Q(`c1(Ω1
X

(log));c1(Ω1
X

(log)), . . . , cn(Ω1
X

(log)))

−Q(`c1(Ω1
X

(log)); c1(Ω1
X

), . . . , cn(Ω1
X

))

=

n′∑
i=0

`i[c1(Ω1
X

(log))i]
∑
|α|=n−i

bα(cα(Ω1
X

)− cα(Ω1
X

(log)))

for constants bα which depend only on α and not on X.

Proof. This is a direct application of Corollary 2.5.21 and Proposition 2.5.23.

Theorem 2.5.25. Consider (ΩnD̆)−1 the ample line bundle on D̆ and let

PD̆(`) =
∑
i

dim(Hi(D̆, (ΩnD̆)−1))

be the associated Hilbert polynomial. Suppose Γ is a neat arithmetic subgroup and X is a smooth toroidal compactifi-

cation of X = Γ\D with n′ = dim(X
BB −X). Then for ` ≥ 2 we have:

dim(S`(Γ)) = VolHM (X)PD̆(`− 1)− EX(`).

See [Mum77, Prop 3.5].
Remark. A remark is in order on the issue of the weight of a modular form. The weight ` in the above theorem is
what is known as the geometric weight. This differs from the arithmetic weight by a factor of dim(X).
Notation 2.5.26. Denote the boundary of X by ∆ = X − X and write [∆] =

∑
[Di] as a decomposition into its

irreducible components [Di]. Denote by ∆k the kth elementary symmetric polynomial in the [Di]. Moreover, for α a
partition denote by ∆α =

∏
` ∆α` .

Proposition 2.5.27. Let X be an n dimensional complex manifold and suppose ∆ = X \ X is a reduced normal
crossings divisor. Denoting by Ω1

X
(log) the subsheaf of ΩX with log-growth near ∆. Then:

cj(Ω
1
X

) =

j∑
i=0

(−1)j−ici(Ω
1
X

(log))∆j−i.
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Proof. This is proven is similar to [Tsu80, Prop 1.2]. It follows from considering the following two exact sequences:

0 // Ω1
X

// Ω1
X

(log) // ⊕ODi // 0,

0 // ODi // OX(−Di) // OX // 0.

Corollary 2.5.28. For a partition α of j we find:

cα(Ω1
X

) =
∏
`

(
α∑̀
i=0

(−1)α`−ici(Ω
1
X

(log))∆α`−i

)
=
∑
β,γ

dα,β,γc
β(Ω1

X
(log))∆γ ,

where the dα,β,γ depend only on α, β, γ and not on X.
Corollary 2.5.29. We have that:

EX(`) =

n′∑
i=0

`i[c1(Ω1
X

(log))i]
∑
|α|=n−i

bα

 ∑
|β|<|α|
|γ|=|α|−|β|

dα,β,γc
β(Ω1

X
(log))∆γ

 ,

where the coefficients bα and dα,β,γ depend only on α, β, γ and n and not otherwise on X.
Remark. We have the following remarks about the above:
• All of the intersections in the above formula take place in the boundary, since |γ| > 0 for every term appearing

in the formula.
• There are only finitely many connected components of boundary components and finitely many inequivalent

orbits of boundary component.
• Boundary components are of the form:

ΓF \F n (Z2m\Cm) nO(σ)

for the various boundary components F and cones σ.

• Intersections between adjacent F ’s in X
BB

is understood by the spherical Bruhat-Tits building of G over Q.
• The intersections of two cones in F are either another cone of F or a cone of an adjacent boundary component
F ′ contained in the closure of F .
• The Chern classes generally ‘descend well’ to adjacent boundary components, see [Tsu80, Lem. 5.1].

In general [Tsu80, Sections 3,4,5] provides guidelines for computing these intersection numbers.
Remark. The above results combine to reduce the issue of computing dimension formulas to the following steps:

1. Computing the Hilbert polynomial PD̆. These are known in all the basic cases.
2. Computing the volume VolHM (X). This depends on the choice of Γ, the formulas typically involve special values

of L-functions.
3. Computing the terms bα, dα,β,γ . This is a formal, though unpleasant calculation and in high dimensions it is

probably best left to computer algebra software.
4. Computing the intersection numbers of all the terms appearing (see the previous remark).

2.5.4 The Orthogonal Case
The following discussion follows closely that of [GHS08, Section 2].

Theorem 2.5.30. Let D be the symmetric space for an orthogonal group of signature (2, n), then:

χ(OD̆(−n)`) = χ(OPn+1(−n`))− χ(OPn+1(−n`− 2)) = ( n+1−n`
n )− ( n−1−n`

n ) .
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Proof. We have describe D̆ as a quartic in Pn+1 with canonical bundle OD̆(−n). The adjunction formula places it
into the following exact sequence:

0→ OPn+1(−n`− 2)→ OPn+1(−n`)→ O`D̆ → 0.

This allows us to compute the Hilbert polynomial of OD̆ from that of OPn+1 . In particular using the fact that
dim(H0(OPn+1(k))) = ( n+1+k

n ) allows us to check the result.

The non-trivial volume forms on a Hermitian symmetric domain D are induced by the Killing form and the
identification of p with TD,x, where x is any base point. Up to scaling this form is unique.

For the group O2,n it is shown in [Hel01, p. 239] that the tangent spaces for D and D̆ are respectively:(
0 U
U t 0

)
and

(
0 U
−U t 0

)
in the Lie algebra of G. The killing form is Tr(M1M

t
2) which induces the form 2 Tr(U1U

t
2). Fix a lattice L in the

underlying quadratic space. In [Sie67] Siegel computed the volume of O(L)\D relative to Tr(U1U
t
2) as:

2α∞(L,L) |D(L)|(2+n+1)/2

(
2∏
k=1

π−k/2Γ(k/2)

)(
n∏
k=1

π−k/2Γ(k/2)

)
,

where α∞(L,L) is the real Tamagawa volume of O(L). The computations of [Hua79] when combined with the above
yield the formula:

Vol(D̆) = 2

(
n+2∏
k=1

πk/2Γ(k/2)−1

)(
n∏
k=1

π−k/2Γ(k/2)

)(
2∏
k=1

π−k/2Γ(k/2)

)
.

Combining these results we find:
Proposition 2.5.31. The Hirzebruch-Mumford volume for an orthogonal symmetric space is:

VolHM (SO(L)\D) = α∞(L,L) |D(L)|(2+n+1)/2

(
n+2∏
k=1

πk/2Γ(−k/2)

)
.

In order to compute α∞(L,L) we use several facts.
Proposition 2.5.32. For an indefinite lattice of rank at least 3 the genus equals the spinor genus.

This follows from [Kit93, Thm 6.3.2].
Proposition 2.5.33. The weight of a lattice depends only on its spinor genus.

This is discussed in [GHS08, p224]. See also [Shi99, Thm 5.10].
Now using the fact that the Tamagawa volume of SOV (Q)\ SOV (A) = 2 we may conclude:

Proposition 2.5.34. For an indefinite lattice of rank at least 3 the following formula holds:∏
p

αp(L,L) =
2

|spn+(L)|

or equivalently:

α∞(L,L) =
2

|spn+(L)|
∏
p

αp(L,L)−1,

where spn+(L) is the proper spinor genus of L.
Remark. It is known (see [Kit93, Cor 6.3.1]) that |spn+(L)| is a power of 2. Moreover, by [Kit93, Cor 6.3.2] computing
|spn+(L)| can be reduced to a finite computation.

The local densities αp(L,L) can also be computed. These computations are explained in Chapter 4. Note that
αp differs from βp by a factor of qrank(L)ν(2).
2.5.5 Non-Neat Level Subgroups

An important aspect of the above discussion was the appearance of the term ‘non-singular’. In order to obtain
a non-singular variety from a locally symmetric space one is forced to take blowups. This process is not (trivially)
well-behaved with respect to the existence or dimension of sections. The above machinery only works directly, without
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the need for any modifications, when the locally symmetric space is non-singular. Consequently, an important result
is that every locally symmetric space has a non-singular finite cover. This result follows from the following:
Theorem 2.5.35. Suppose p - Φ`(1) and deg(Φ`) ≤ n for all `, then Γ(p) ⊂ GLn(Z) is neat.

See [Bor69, Prop. 17.4].
Two natural questions now arise:

Question 1. What does it mean to have a modular form on a singular space?
Question 2. How can one compute the dimension of this space from the corresponding dimension of the cover?
Remark. The reason the first question is important is that line bundles may not descend to a desingularization of
the quotient. Notice that the desingularization of (SL2(Z)\H) is P1. If the line bundle of modular forms of weight 2
descended, it would by necessity have global sections. Moreover, even if the line bundle does descend, it is not clear
that Γ-invariant sections will descend to holomorphic sections.
Notation 2.5.36. Suppose we have a normal subgroup Γ′ ⊂ Γ with Γ′ neat. Denote by Sk(Γ′) the space of weight k
cusp forms on X(Γ′). Define Sk(Γ) = Sk(Γ′)Γ to be the space of Γ-invariant cusp forms. Define S̃k(Γ) ⊂ Sk(Γ) to be
the subspace of cusp forms which extend to holomorphic forms on a desingularization X̃(Γ) of X(Γ) = Γ\X(Γ′).
Proposition 2.5.37. With the notation as above we can compute:

dim(Sk(Γ)) =
∑

γ∈Γ/Γ′

tr(γ|Sk(Γ′)).

The proof is a standard argument. A generalization of the Riemann-Roch theorem by Atiyah and Singer [AS68]
allows this to be computed.

We first introduce the following notation:
Notation 2.5.38. Suppose γ ∈ Γ, χ is a character of Γ and θ ∈ C×. Denote by Xγ = {x ∈ X | x = γ(x)} and by
Nγ = NXγ the normal bundle of Xγ in X. For a vector bundle E denote by Eγ(θ) the θ-eigenspace of γ and by E(χ) the

χ-isotypic component. Suppose ct(E) =
∏

(1− xit), then set Uθ(E) =
∏

( 1−θ
1−θexi ) and ch(E)(γ) =

∑
χ χ(γ) ch(E(χ)).

Theorem 2.5.39. Suppose k is sufficiently large so that Hi(X,ΩNX(log)k−1) = 0 for i > 0 then:

tr(γ|Sk(Γ)) =

{
ch(ΩNX(log)k−1 ⊗ ΩNX |Xγ)(γ)

∏
θ U

θ(Nγ(θ)) td(Xγ)

det(1− γ|N∗γ )

}
[Xγ ].

This is a polynomial in the weight k of degree at most Xγ .
See [Tai82, Sec. 2] and [AS68, Thm. 3.9].

Remark. The contribution of the identity element of Γ in this formula gives us the Riemann-Roch theorem for Sk(Γ).
To evaluate this formula one needs a complete understanding of the ramification locus of the quotient map.

On the issue of the relation of Sk(Γ) to S̃k(Γ) we have the following result.
Proposition 2.5.40. Let X̃(Γ) be a non-singular model of X(Γ) and let X̃(〈γ,Γ′〉) be the non-singular model of
X(〈γ,Γ′〉) which covers it. A Γ′-invariant form extends to X̃(Γ) if and only if it extends to X̃(〈γ,Γ′〉) for all γ ∈ Γ.

See [Tai82, Prop. 3.1].
Definition 2.5.41. Let γ act on X with a fixed point x ∈ X. Suppose the eigenvalues for the action of γ on TX,x
are e2πiαj for j = 1, . . . , n. We say the singularity at x is γ-canonical if

∑
j αj − bαjc ≥ 1.

Proposition 2.5.42. Every invariant form extends to X̃(〈γ,Γ〉) if and only if all the singularities are γk-canonical
for all γk 6= Id.

See [Tai82, Prop. 3.2].
Remark. Forms which have sufficiently high orders of vanishing along the ramification divisor will still extend even
if the singularities are not canonical.
Theorem 2.5.43. Let L be a lattice of signature (2, n) with n ≥ 9 and let Γ ⊂ Γ′ be as above. There exists a toroidal
compactification of X(Γ) such that all the singularities are γ-canonical for all γ ∈ Γ′.

See [GHS07, Thm 2].
Remark. The results of [GHS07] are slightly more refined. They show that for n ≥ 6 the only source of non-canonical
singularities on the interior are reflections. For n ≥ 7 the reflections no longer give non-canonical singularities. For
the boundary, they show the 0-dimensional cusps never present non-canonical singularities (by a choice of toroidal
compactification). They also show that the 1-dimensional cusps may only have non-canonical singularities over the
usual points i, ω ∈ H and these points present no problems if n ≥ 9. Moreover, from their proof one can compute
lower bounds on ` such that Γ(`) would only give canonical singularities.

The computations involved in obtaining these results use the structure of singularities that we will discuss in the
following section.
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2.6 Ramification for Orthogonal Shimura Varieties
The purpose of this section is to describe the nature of the ramification between different levels for the orthogonal

group. The only other discussion of this topic with which we are familiar is the work of [GHS07, Sec. 2]. Some of the
results here are motivated by their constructions.

Let L be a Z-lattice of signature (2, n). Recall that:

DL = KL = {[~z] ∈ P(L⊗Z C) | q(~z) = 0, b(~z, ~z) > 0}.

Denote by OL the orthogonal group of L. For Γ a subgroup of OL(Z) we set:

XL(Γ) := Γ\DL.

When Γ is neat XL(Γ) can be given the structure of a smooth quasi-projective variety. We also wish to think about
XL(Γ) when Γ is not neat. It will be a quotient of XL(Γ′) for some neat subgroup Γ′ ⊂ Γ by a finite group of
automorphisms. The quotient certainly exists as a stack (though we shall not discuss this further). However, one
often expects that one can make sense of it as a scheme, in which case the cover πΓ : XL(Γ′) → XL(Γ) will be a
ramified covering.

The first thing we shall do is describe the structure of some ‘explicit’ ramification divisors. We will next explain
why this captures all of the ramification.
2.6.1 Generalized Heegner Cycles

We now define a class of cycles on our spaces. This is essentially the same definition as the cycles considered in
[Kud04], see also [Kud97a].
Definition 2.6.1. Let S ⊂ L be a (primitive) sublattice of signature (2, n′). Then S⊥ is a (primitive) negative-definite
sublattice of L. Define:

DL,S = {[~z] ∈ DL | b(~z, ~y) = 0 for all ~y ∈ S⊥}.

This is a codimension rankS⊥ subspace of DL, defined by algebraic conditions. Moreover, we see that:

DS ' DL,S ⊂ DL.

Let ΦS = {S′ | S′ = γS for some γ ∈ Γ}. Define:

HL,S = ∪
S′∈ΦS

DL,S′

to be the generalized Heegner cycle associated to this set of (primitive) embeddings of S into L. Its image in
XL(Γ) will be an analytic cycle. A more careful analysis and a precise definition can result in obtaining an algebraic
cycle (see [Kud04]).
Remark. In the definitions above we could just as well have taken S ⊂ L#, the dual of L, or in fact any lattice in
L⊗Q. However, for our purposes, since (S⊥)⊥ ∩ L would give a primitive lattice generating the same DL,S , there is
no real loss of generality in assuming this for our purposes.

We should remark that if S has corank 1 then HL,S = Hxi,q(xi) is just a usual Heegner divisor (see [Bru02, p. 80]).
This justifies our choice of name. It is not our intent to imply that there is (or is not) a relation to the generalized
Heegner cycles arising from certain Kuga-Sato varieties (see [BDP10]).
2.6.2 Ramification near DL,S

We introduce the following notation (for any non-degenerate S):

ΓS = {γ ∈ Γ | γS ⊂ S},
ΓS = {γ ∈ OS | γ lifts to Γ}, and

Γ̃S = {γ ∈ ΓS | γ|S⊥ = Id}.

Remark. It would be convenient if Γ̃S ' ΓS , however, this is hard to guarantee if L 6= S ⊕ S⊥.
We return to the setting where S ⊂ L is a sublattice of signature (2, n′), so that S⊥ is a negative-definite lattice.

It follows that ΓS⊥ , and hence Γ̃S⊥ , are both finite groups. We find that Γ̃S × Γ̃S⊥ ↪→ OL, while ΓS × ΓS⊥ may not.
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We have the following maps:

XS(Γ̃S)

����

� � // (Γ̃S × Γ̃S⊥)\DL

����

XS(ΓS) // XL(Γ).

Remark. If we want the bottom map to be injective we would need that for each σ ∈ OL with x, σ(x) ∈ DL,S⊥ then
there exists τ ∈ OS with τ(x) = σ(x).

We wish to explain the local ramification near DL,S . Fix e1 and e2 isotropic vectors spanning a hyperplane in
S ⊗K, where K is a totally real quadratic extension of Q. Note that we cannot always take e1 and e2 in S. We may
then choose to express the spaces DS and DL as tube domains relative to the same pair e1, e2. In particular we may
write:

DL = {~u ∈ UL = 〈e1, e2〉⊥ ⊂ L⊗ C | q(=(~u)) > 0}

with DL,S in DL being precisely:

DL,S = {~u ∈ US = 〈e1, e2, S
⊥〉⊥ ⊂ L⊗ C | q(=(~u)) > 0}.

Thus we see that in a neighbourhood of DL,S in DL we can express

DL = DL,S ⊕ (S⊥ ⊗ C).

Then Γ̃S⊥ acts on the complementary space S⊥ ⊗ C. We see that the cycle DL,S is the generic ramification locus for
this action. That is, DL,S is maximal among cycles fixed by this action (with respect to inclusion among cycles).
Remark. We remark that for some points of DL,S the group ΓS⊥ = ΓS may also cause ramification in the quotient.
This ramification will not in general be generic, and it will typically restrict to some sub-cycle of DL,S .

Indeed, a group element g fixes τ ∈ DL,S if and only if τ is an eigenspace of g. Thus g can only fix all of DL,S
if S is an eigenspace. This would imply that τ acts as −1 on S. Such an element acts trivially on DS as this is a
projective space. The effect of the quotient by g is the same as by −g ∈ OS⊥ .
2.6.3 Generalized Special Cycles

We will now introduce another type of cycle on the spaces X = Γ\DL which play a role in ramification. We will
call these generalized special cycles because of their relationship to special points (see Section 2.7). Some of the
constructions we shall perform will become more natural with the material in Chapter 3.

Let F/Q be a CM-field and consider the CM-algebra:

E = F d = F (1) × · · · × F (n).

Denote complex conjugation for both F and E by σ . View E as an F -algebra under the diagonal embedding of F into
E. Label the embeddings Hom(F,C) as {ρ1, ρ1, . . . ρm, ρm}. Pick λ = (λ(1), . . . , λ(n)) ∈ (Eσ)× such that ρ1(λ(1)) ∈ R+

but ρj(λ
(i)) ∈ R− for all other combinations of i, j. We now consider the rational quadratic space (V, qE,σ,λ) given by

V = E and
qE,σ,λ(x) = 1

2 TrE/Q(λxσ(x)).

Notice that the signature of the quadratic form is of the shape (2, `). We define also the F -quadratic space (V ′, q′E,σ,λ)
given by V ′ = E and

q′E,σ,λ(x) = 1
2 TrE/F (λxσ(x)).

Notice that qE,σ,λ(x) = TrF/Q(q′E,σ,λ(x)). We have the tori TE,σ and TF,σ defined by:

TE,σ(R) = {x ∈ (E ⊗Q R)× | xσ(x) = 1},
TF,σ(R) = {x ∈ (F ⊗Q R)× | xσ(x) = 1},

as well as maps:

TF,σ
∆
↪→ TE,σ ↪→ ResF/Q(Oq′E,σ,λ

) ↪→ OqE,σ,λ ,

where the first map ∆ is the diagonal embedding. Now suppose further that: q = qE,σ,λ ⊕ q⊥ and consider the
inclusion:

OqE,σ,λ ↪→ Oq .
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Definition 2.6.2. The generalized special cycle associated to the inclusions TF,σ
φ

↪→ · · · ↪→ Oq as above is:

Dφ = {[~z] ∈ κ+
q | g~z = ρ0(g)~z for all g ∈ TF,σ(R)}.

For any lattice L in the quadratic space of q this gives us a cycle in DL. Set Φ = {γ−1φγ | γ ∈ Γ} and define:

Hφ = ∪
φ∈Φ
Dφ.

The image of Hφ in X = Γ\DL is a cycle on X of the form:

Γ′\Dφ = Γ′\ResF/Q(Oq′E,σ,λ
)(R)/KE,σ,λ,

where Γ′ = Γ ∩ ResF/Q(Oq′E,σ,λ
)(Z) and KE,σ,λ is a maximal compact subgroup of ResF/Q(Oq′E,σ,λ

)(R). Note that:

ResF/Q(Oq′E,σ,λ
)(R) ' O2,m−2(R)×Om(R)d−1.

Remark. If d = 1 then the special cycle will be a special point.
2.6.4 Ramification Near Dφ
Notation 2.6.3. Denote the group of N th roots of unity by µN and a choice of generator by ζN .

The group µN has a unique irreducible rational representation ψN . The representation ψN is precisely the
ϕ(N)-dimensional representation of µN acting on the rational vector space Q(ζN ) by multiplication.

For each a ∈ (Z/NZ)× the generator ζN acts on:

xa =
∑

b∈Z/NZ

ζ−bN ⊗ ζ
a−1b
N ∈ Q(ζN )⊗ ψN

by multiplication by ζaN . We shall denote this (a)-isotypic eigenspace by ψN (a) ⊂ Q(ζN )⊗ ψN .
Conversely, we recover the rational subspace QζbN as being spanned by:∑

γ

γ(ζbN )γ(xa),

where the sum is over γ ∈ Gal(Q(ζN )/Q). The vectors ζaN for a ∈ (Z/NZ)× form a rational basis for ψN .
Now consider the special case of the previous section where F = Q(ζN ) and E = Q(ζN )n. Assume that q = qE,σ,λ.

Moreover, assume that the integral structure on E = F d is of the form L = ⊕Li, where the Li are fractional ideals
of F (i). This requirement is equivalent to saying the integral structure is such that via µN ⊂ TF ⊂ Oq we find
µN ⊂ Oq(Z).
Proposition 2.6.4. The cycle Dφ is the ramification divisor for µN under this action. Moreover, locally near Dφ we
have that:

DL = Dφ ×
∏

a∈(Z/NZ)×\{1}

Cr(a− 1),

where the action of µN on Cr(a) is via χa.

Proof. We identify the tangent space near τ ∈ Dφ with:

TDL,τ = τ⊥/τ = ⊕a(L⊗ C)(a)/τ.

Without loss of generality (or rather by choice of ζN ) we may suppose τ is in the ζN -eigenspace. The above then
becomes:

τ⊥/τ = TDφ/τ ⊕
a6=1

((L⊗ C)(a)/τ).

We see that the action of µN on (L⊗C)(a)/τ is by ζa−1
N , where the −1 comes from the action on τ . We thus see that

in a neighbourhood of τ around Dφ the group µN acts non-trivially, whereas it clearly acts trivially on Dφ.

Remark. As with the previous case, points τ ∈ Dφ may have other sources of ramification.
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2.6.5 Ramification at τ
We will now explain why the situations described above are in fact the only source of ramification. Fix τ ∈ DL.

We define a lattice S ⊂ L by setting:
S = ({<(τ),=(τ)}⊥)⊥.

Note that the lattice S⊥ is a potentially 0-dimensional negative-definite lattice. We observe that τ ∈ C⊗ S. We wish
to consider the stabilizer of τ ∈ DL. This is precisely:

Γτ = {γ ∈ Γ | there exists λγ ∈ C× with γ(τ) = λγτ}.

We immediately obtain a homomorphism χτ : Γτ → C× given by χτ (γ) = λγ .
We have the following key results from [GHS07, Sec. 2.1].

Proposition 2.6.5. With the above notation we see the following:
• There is an inclusion Γτ ⊂ ΓS.
• The kernel ker(χτ ) equals Γ̃S⊥ .
• The image of Γτ/Γ̃S⊥ is a cyclic subgroup of ΓS.

Proof. The first point follows immediately from the definition of S and ΓS .
To see the second point, notice that the inclusion Γ̃S⊥ ⊂ ker(χτ ) is apparent from the discussion of Section 2.6.2.

Now for the reverse inclusion, if g ∈ ker(χτ ) and x ∈ S we see:

(τ, x) = (gτ, gx) = (τ, gx).

This implies that:
(τ, x− gx) = (τ , x− gx) = 0,

and thus, x− gx ∈ S⊥. However, S⊥ is negative-definite and thus:

S ∩ S⊥ = (S⊥)⊥ ∩ S⊥ = 0.

For the final point notice that:
Γτ/Γ̃S⊥ ' χτ (Γτ ) = µrτ ⊂ C∗.

Thus the natural map:
ΓS → ΓS

takes Γτ/Γ̃S⊥ to a cyclic subgroup of ΓS .

It follows from the proposition that the group Γτ/Γ̃S⊥ gives an action of µrτ on S.
Proposition 2.6.6. There are no trivial eigenvectors for the action of µrτ on S.

Proof. Suppose ~x is a nontrivial eigenvector and that g ∈ µrτ is a nontrival element. Then we write:

(τ, x) = (gτ, gx) = χτ (g)(τ, x).

Likewise since τ is also an eigenvector we find:

(τ , x) = (gτ , gx) = χτ (g)(τ , x).

Therefore, x ∈ S⊥ ∩ S = {0}.

It follows from this proposition that S = φdrτ as a representation of µrτ .
Proposition 2.6.7. We can decompose S = φdrτ in such a way that q is non-degenerate on each factor and this is an
orthogonal decomposition with respect to q.

Proof. First we observe that we can proceed by induction provided there exists at least one non-degenerate factor.
Indeed, if q|φrτ is non-degenerate it follows that µN stabilizes (φrτ )⊥. We may thus proceed inductively on d.

Next we observe that the restriction of q is non-degenerate if and only if it is non-trivial. This follows from two
key facts:

1. Gal(Q(ζrτ )/Q) acts transitively on eigenspaces, and
2. b(xa, xb) = 0 if a 6= b−1.
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It follows that if ϕ(rτ ) > 2, then q|φrτ is non-degenerate since there are no isotropic spaces of size larger than 2.
For the case of ϕ(rτ ) = 2 it is not possible to have d = 1. It follows that there exists a pair of φrτ such

that the restriction of q to φ
(1)
rτ ⊕ φ

(2)
rτ is nontrivial. If q restricts trivially to each factor, set y

(1)
i = x

(1)
i + x

(2)
i and

y
(2)
i = x

(1)
i − x

(2)
i . The restriction of q is then nontrivial on span(y

(j)
i ) ' φrτ . This completes the argument.

Proposition 2.6.8. If χτ (Γτ ) 6⊂ {±1} then τ is on a special cycle Dφ of DS, where F = Q(χ(Γτ )). Hence, τ is on a
generalized special cycle of DL.

Proof. Because the Q-span of φrτ (µrτ ) ⊂ End(φrτ ) is equal to Q(ζrτ ) we may extend the action of µrτ to one of TF
on each factor. This implies by way of the results of Chapter 3 that we are in the setting of the previous section. In
particular, there exists a unique factor which is not negative-definite, and for it there exists a unique R-factor which
is positive-definite.

Claim. If χτ (Γτ ) = {±1} then the image of Γτ acting on DL,S acts trivially on all of DL,S.

Proof. This follows since the entire space is the (−1)-eigenspace.

Remark. From Propositions 2.6.5 and 2.6.8 it follows immediately that the ramification of DL consists entirely of
the ramification along DL,S coming from Γ̃S⊥ , and the ramification along Dφ ⊂ DL,S coming from the action of µN
on Dφ.

Note though that if Γ̃S⊥ 6= ΓS then the quotient action by µN does not act trivially on the S⊥ ⊗ C component
of the tangent space to DL,S . This phenomenon can only arise if L 6= S ⊕ S⊥.
2.7 Explicit Class Field theory (and Canonical Models)
2.7.1 Shimura Varieties and Hermitian Symmetric Spaces

There is an important relation between Shimura varieties (or at least their points over C) and Hermitian symmetric
spaces. More details of this relation are found in the notes of Milne [Mil05] or the work of Deligne [Del71]. The following
section illustrates this connection.
Notation 2.7.1. We shall denote by S = ResC/R(Gm) and S1 ⊂ S the subtorus consisting of the norm 1 elements.
Concretely this means:

S(R) ' {
(
a b
−b a

)
| a, b ∈ R} and S1(R) ' {

(
a b
−b a

)
| a, b ∈ R, a2 + b2 = 1}.

For a reductive group G denote its centre by Z(G) and let Gad = G/Z(G) be the associated semi-simple group.
Definition 2.7.2. A connected Shimura datum is (G,X), a semi-simple algebraic group G defined over Q and a
Gad(R)+ conjugacy class of maps ρ : S1

R → Gad
R satisfying the following axioms:

1. The only eigenvalues that appear in the representation of S1 on Lie(Gad)C induced by ρ are a+ bi, a− bi and 1.
2. Conjugation by ρ

((−1 0
0 −1

))
is a Cartan involution of Gad.

3. Gad has no Q-simple factors Gi such that Gi(R) is compact.
A Shimura datum is (G,X), a reductive algebraic group G defined over Q and a G(R) conjugacy class of maps
ρ : SR → GR satisfying the same axioms.

As per the introduction on Hermitian symmetric spaces (Section 2.2) such a conjugacy class is equivalent to a
Hermitian symmetric space. One must be careful about the normalizations of h versus ρ to obtain the above conditions.
Definition 2.7.3. We shall denote the finite adéles of Q by Af .

Let (G,X) be a connected Shimura datum and K be the maximal compact subgroup associated to the Cartan
involution coming from ρ ∈ X. The connected Shimura variety associated to (G,X) is the inverse system:

MC(G, ρ)(C) = lim
←
Γ

Γ\Gad(R)/K = lim
←
Kf

Gad(Q)\Gad(A)/K ×Kf ,

where the Γ run over all ‘congruence’ subgroups of G(Q) and the Kf run over compact open subgroups of G(Af ).
For (G,X) a Shimura datum the Shimura variety associated to (G,X) is:

MC(G, ρ)(C) = lim
←
Kf

G(Q)\X ×G(Af )/Kf ,

where Kf run over compact open subgroups of G(Af ).
Given (G1, X1) and (G2, X2) together with a map f : G1 → G2 such that f(X1) ⊂ X2, one obtains a morphism

of Shimura varieties.
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Remark. What we have just defined is the ‘complex points’ of the Shimura variety. The Shimura variety should
be viewed as the associated complex scheme, or inverse system of complex schemes associated to this system. Such
schemes exist by the theorem of Baily-Borel (see [BB66]).

The adèlic description makes it clear that there exists an action of the finite adéles on a Shimura variety.
2.7.2 Shimura Reciprocity

In order to explain the context of our results concerning special fields we must first introduce the notions of special
points and Shimura reciprocity. We give here a very terse description of the ideas at work. We will follow fairly closely
the format of [Del71] where you may find a more thorough exposition.
Definition 2.7.4. Let τ : E → C be a number field with a complex embedding and let MC(G, ρ) the complex model
of the Shimura variety associated to G. A model over E of MC(G, ρ) consists of:

1. a scheme ME(G, ρ) over E, endowed with a continuous action of G(Af ), and
2. an isomorphism ME(G, ρ)⊗E,τ C 'MC(G, ρ) compatible with the action of G(Af ).

To give a scheme M over E together with a continuous action of G(Af ) amounts to giving:
1. a scheme KM over E for every open compact subgroup K of G(Af ), and
2. a homomorphism JL,K(x) : KM → LM for every pair K and L of compact open subgroups of G(Af ) and for

each x ∈ G(Af ) with xKx−1 ⊂ L. These homomorphisms must satisfy:
(a) JM,L(y)JL,K(x) = JM,K(yx).
(b) JK,K(x) = Id if x ∈ K.
(c) For K a normal subgroup of L, the map JK,K defines an action of L/K on KM , and moreover, JL,K(e)

defines (L/K)\KM → LM .
Let F be a finite extension of E, together with a complex embedding extending that of E. If ME(G, ρ) is a model

of MC(G, ρ) over E, we denote by MF (G, ρ) = ME(G, ρ)⊗E F the model of MC(G, ρ) over F .
Given a model ME(G, ρ) there is an action of Gal(E/E) on ME(G, ρ), and thus on the profinite system:

π0(ME(G, ρ)) = lim
←
π0(KME(G, ρ))

∼→ π0(MC(G, ρ)).

Likewise the group G(Af ) acts on π0(ME(G, ρ)). The action factors through:

π(G) := π0(G(A)/G(Q))

and again through its quotient π(G)/π0(K∞). This makes π0(ME(G, ρ)) into a principal homogeneous space under
the commutative group π(G)/π0(K∞) (see [Del71, 3.4]). As these two actions commute this induces a map:

λM : Gal(E/E)→ π(G)/π0(K∞).

For a number field E, class field theory identifies the largest abelian quotient of E/E with the group π0(TE(A)/TE(Q))
and the above map can be interpreted as:

λM : Gal(E/E)ab = π0(TE(A)/TE(Q))→ π(G)/π0(K∞).

We shall call this morphism the reciprocity map.
Remark. It would be a very desirable property of models that morphisms should descend to them.

Given a pair of Shimura data (G1, ρ1) and (G2, ρ2) together with models ME1
(G1, ρ1) and ME2

(G2, ρ2) over E1

and E2, respectively. Suppose there is a morphism f : (G1, ρ1)→ (G2, ρ2) that descends to the models:

fE1
: ME1

(G1, ρ1)→ME2
(G2, ρ2).

The immediate implication is that E2 ⊂ E1. It also follows immediately that the Galois action on ME2
(G2, ρ2) must

induce reciprocity on ME1
(G1, ρ1).

Example. The simplest example of a Shimura datum comes from taking the group G = T a rational torus such that
T (R) is compact. In this case the varieties KMC(G, ρ) are finite sets. Thus to give a model over any field E which
splits T is equivalent to giving a Galois action on this set.
Definition 2.7.5. The canonical model for the Shimura variety of a rational torus TE is the unique model for
which the reciprocity morphism is the reciprocity morphism of class field theory. There exists a minimal field E(T, ρ)
over which this model can be defined. It is often called the reflex field or special field of the point. We shall say
that a field E is a special field for a Shimura variety if it is the special field for a special point on that variety.
Definition 2.7.6. A point h ∈MC(G, ρ) is called a special point if h is in the image of some ME(T, ρ′).
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Definition 2.7.7. For a Shimura variety MC(G, ρ) a model ME(G, ρ) over E is said to be weakly canonical if for
every special point h that is associated to MC(T, ρ′) the inclusion from the canonical model ME(T,ρ′)(T, ρ

′) is defined
over the composite field E(T, ρ′)E.

The model is said to be canonical if the field E is the field of definition of an associated Hodge filtration (see
[Del71, 3.13]).
Theorem 2.7.8. Given any Shimura variety a canonical model exists and is unique.

For many types of Shimura varieties this theorem follows from an explicit construction for a canonical model for
the Siegel spaces (see [Del79, Sec. 2.3]). More generally see [Mil83].
2.7.3 Special Fields for the Orthogonal Group

From the concrete descriptions of the structure of the Hermitian symmetric spaces associated to orthogonal groups
(see Section 2.2) and the structure of tori in orthogonal groups we shall describe later (see Chapter 3), we easily obtain
the following characterization:
Proposition 2.7.9. A CM-field L with totally real subfield K is a special field for the Shimura variety associated to
Oq if there exists a CM-algebra E containing L as a direct factor, ie. E = E′ ⊕ L, for which the associated algebraic
torus TE,σ embeds into Oq in such a way that the trivial eigenspace of TL,σ ⊂ TE,σ is negative-definite.
Remark. It is not immediately clear to what extent the condition “the trivial eigenspace of TL,σ is negative-definite”,
which does not appear in the general conditions for embedding tori, places any new restrictions. This condition might
appear to present an obstruction to the local-global principle for the embedding of algebras. As such a remark is in
order on the obstruction to the local-global principal (for a more detailed discussion see [PR10] and [BF13]). The
source of the local-global conditions is precisely the requirement (see proof of Corollary 3.5.4):
We can divide the Hasse-Witt conditions between the factors in such a way that each factor can control the ones it is
given and each factor is given an even number.
This is not an obstruction if:
For each pair i, j there exists a non-split quaternion algebra A which is split by Eφii and E

φj
j for all CM-types φi of

Ei and φj of Ej.
or equivalently:
For each pair i, j there exists p a prime of Q and pi, pj |p primes of Ei, Ej such that both pi, pj do not split respectively
over Eσi , E

σ
j .

For each factor Ei of E the Chebotarov density theorem tells us that the density of primes of Q that have a factor in
Eσi that is inert in Ei should be at least 1/[Ei : Q]. If Ei were Galois, this ratio can be more explicitly computed as:∣∣{γ ∈ Gal(Ei/Q) | σ = α−1γrα for some α, r}

∣∣ / |Gal(Ei/Q)| .

The formula is looking for elements where a power of Frobenius is a conjugate of σ. If Cσ is the largest cyclic 2-group

in Gal(Ei/Q) containing σ and Γ2 is a Sylow 2-subgroup, then this ratio is at least |Cσ|−1
|Γ2| . It follows that if the Ei are

chosen at random then we expect infinitely many primes to prevent any local-global obstructions. Moreover, given an
extension E1 the conditions one needs to impose on E2 to make E1 ⊕ E2 not satisfy the local-global principle places
many restrictions on E2. It is not at all apparent that such an E2 can even exist. Nonetheless, examples do exist
where the local-global conditions will fail when E1 is degree 4 and E2 is degree 2 (see [PR10, Ex. 7.5]).
Claim. Let E = E1E2 be the normal closure of the composite field. If there exists σE ∈ Gal(E/k) such that σE |Ei = σ
for i = 1, 2 then E1 ⊕ E2 satisfies the local-global principle.

For a more precise statement about CM-algebras see [BF13, Cor 4.1.1]. The key point here is that when Frobp =
σE it must also restrict to both σE |Ei , and consequently, the associated primes over p in each factor are inert.
Theorem 2.7.10. Suppose (V, q) is a quadratic space over Q of signature (2, `) with ` even. Suppose that (E, σ) is a
CM-field with complex conjugation σ and that [E : Q] = 2 + `. Then TE,σ ↪→ Oq if and only if:

1. Eφ splits the even Clifford algebra C0
q for all CM-types φ of E, and

2. D(q) = (−1)(2+`)/2δE/Q.
If this occurs then E is a special field.

See Theorem 3.1.2.
Theorem 2.7.11. Suppose (V, q) is a quadratic space over Q of signature (2, `) with ` odd. Suppose that (E, σ) is a
CM-field with complex conjugation σ and that [E : Q] = 1 + `. Then TE,σ ↪→ Oq if and only if:

1. Eφ splits the even Clifford algebra C0
q for all CM-types φ of E.

If this occurs then E is a special field.
See Theorem 3.1.2.

Theorem 2.7.12. Suppose (V, q) is a quadratic space over Q of signature (2, `) with ` even. Suppose that (E, σ) is a
CM-field with complex conjugation σ and that [E : Q] = `. Set d = (−1)`/2D(q)δE/Q. Then TE,σ ↪→ Oq if and only if:
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1. Eφ splits Q(
√
d)⊗Q C0

q for all CM-types φ of E.
The field E can always be made a special field.

Proof. It is apparent that the condition to have E embed into Oq is that TE⊕Q(
√
d),σ ↪→ Oq. From this the only

conditions that remain then are the splitting conditions and the local-global conditions.
The local-global conditions here are automatic because complex conjugation on each factor is induced by an

element of the Galois group of the composite field. Note that E is not always a special field but it is for certain
embeddings TE,σ ↪→ Oq.

Theorem 2.7.13. Suppose (V, q) is a quadratic space over Q of signature (2, `). Suppose that (E, σ) is a CM-field
with complex conjugation σ and that [E : Q] < `. Then TE,σ ↪→ Oq in such a way that E is the special field for the
corresponding special point.

Proof. Picking λ ∈ Eσ with precisely 1 positive embedding we claim that we may write:

q ' qE,σ,λ ⊕ q′.

Indeed, such a space q′ would have dimension at least 3. Quadratic forms of dimension 3 are universal for discriminants,
Hasse invariants and signatures. That is the form:

Dqx2
1 +Hx2

2 +−qHx2
3

has discriminant −D, and Hasse invariant (D,−1)(q,DH). We can thus easily satisfy any imposed discriminant, Hasse
invariant and signature conditions by picking H, q,D appropriately and noting that the sign of D must be compatible
with the signature conditions that we are imposing.

Example. The special fields for Shimura curves attached to quaternion algebras over Q are precisely the quadratic
CM-fields which split the quaternion algebra. In this case the quadratic form is the one coming from the reduced
norm restricted to the trace 0 elements.

The special fields for Hilbert modular surfaces are either degree 2 or 4. The degree 4 CM-fields are precisely those
which satisfy the discriminant condition. In this case we use the quadratic form:

x2
1 − x2

2 + x2
3 −Dx2

4.

The even Clifford algebra is trivial, and hence there is no splitting condition. To investigate degree 2 extensions notice
that the form is isomorphic to:

x2
1 +D1x

2
2 −D1x

2
3 −Dx2

4.

Hench, any quadratic extension Q(
√
D1) can be made a special field.

42



CHAPTER 3
Characterization of Special Points of Orthogonal Symmetric Spaces

The main content of this chapter has been published in [Fio12].
It is available at http://dx.doi.org/10.1016/j.jalgebra.2012.08.030.
The version here contains some minor corrections and changes.

3.1 Introduction
Given an algebraic group G defined over Q and its associated symmetric space G(R)/K, where K is a maximal

compact subgroup, one is interested in the special points (see [Del71, 3.15]). They correspond to those algebraic tori
T ⊂ G which are maximal, defined over Q and for which T (R) is compact. To such a torus T one can associate a field
F which is the special field for the corresponding point. This special field appears as part of an étale algebra E which
is naturally associated to the torus. We wish to answer the following:
Question. Given a quadratic form q with its corresponding orthogonal group Oq, what are the conditions on an étale
algebra E such that E is associated to a maximal torus T of Oq?

This problem is taken up, to some extent, by Shimura in [Shi80]. Some work on the problem also appears in my
masters thesis [Fio09] as well as several other papers. This work is in fact complementary to my masters thesis where
an abstract classification in terms of group cohomology is given. The relationship between those results and these
will be the subject of future work (see Chapter 5 for further details). The most useful description for our current
purposes is the work of Brusamarello, Chuard-Koulmann and Morales [BCKM03], from which one can extract various
necessary and sufficient conditions on the algebra E. In this paper we rephrase the conditions which can be derived
from [BCKM03].

The primary goal of this work is thus to prove the following:
Theorem 3.1.1. Let (V, q) be a quadratic space over a number field k of dimension 2n or 2n + 1 and discriminant
D(q), and let (E, σ) be a degree 2n field extension E of k of discriminant δE/k together with an involution σ. Then
Oq contains a torus of type (E, σ) if and only if the following three conditions are satisfied:

1. Eφ splits the even Clifford algebra C0
q for all σ-types φ of E.

2. If dim(V ) is even then δE/k = (−1)nD(q).
3. Let ν be a real infinite place of k and let s be the number of homomorphisms from E to C over ν for which σ

corresponds to complex conjugation. The signature of q is of the form (n− s
2 + 2i, n+ s

2 − 2i)ν if the dimension
is even and either (n− s

2 + 2i+ 1, n+ s
2 − 2i)ν or (n− s

2 + 2i, n+ s
2 − 2i+ 1)ν if ν((−1)nD(q)δE/k) is respectively

positive or negative when the dimension is odd, where 0 ≤ i ≤ s
2 .

Moreover, for any E satisfying condition (2) we have that
√
D(q) ∈ Eφ for every σ-type φ of E.

The notion of a σ-type will be introduced in Definition 3.2.2.
We remark that the conditions in the theorem above are independent of the choice of similarity class representative

for the quadratic form that defines Oq. We also note that one can replace the first condition of Theorem 3.1.1 by the
condition that for all primes p of k where the even Clifford algebra is not split, there exists a prime p|p of Eσ such
that p does not split in E. The equivalence of these conditions is the content of Lemma 3.5.9 and comes up in the
proof of the main theorem.

We would also like to point out that the theorem above, which holds for fields with involutions, does not extend
to arbitrary étale algebras with involution. It follows from our proof that the conditions in the theorem are sufficient
to ensure that there exist local embeddings for all of the places of k. Thus, the only obstacle to generalizing to étale
algebras is the existence of a local-global principle. We would like to thank Prof. Eva Bayer, for pointing out the
recent work of Prasad and Rapinchuk [PR10] on this problem. In their paper they provide both a counterexample
to the local-global principle for étale algebras as well as giving a sufficient condition for when a local-global principle
still holds. We also refer the reader to the forthcoming work of Eva Bayer [BF13] which gives a complete description
of the obstructions to the local-global principle.

The original motivation for this work came from the problem of determining which CM-fields could be associated
to the special points of a given a orthogonal group. The following corollary answers this question.
Corollary 3.1.2. Suppose in the theorem that k = Q, the signature of q is (2, `) and (E, σ) is a CM-field with complex
conjugation σ. Then Oq contains a torus of type (E, σ) if and only if:
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1. For each prime p of Q with local Witt invariant W (q)p = −1 there exists a prime p|p of Eσ that does not split
in E.

2. If ` is even, then D(q) = (−1)(2+`)/2δE/Q. (No further conditions if ` is odd.)
Corollary 3.1.3. Suppose that k = Q and the signature of q is (2, `). Let F be a totally real field. Then there exists
a CM-field E with Eσ = F , such that the orthogonal group Oq contains a torus of type (E, σ) if and only if:

1. No condition if ` odd.
2. If ` is even, then (up to squares) D(q) = NF/k(δ) for an element δ ∈ F which satisfies the condition that for all

primes p of k with W (q)p = −1 there is at least one prime p|p of F such that δ is not a square in Fp.
As a final application, we have the following which recovers classical results concerning the classification of CM-

points, and answers the more recently raised question of classifying almost totally real cycles on the Hilbert modular
surfaces associated to real quadratic fields (see [DL03]).
Corollary 3.1.4. Let d ∈ Q be a squarefree positive integer. Consider the quadratic form:

qd = x2
1 − x2

2 + x3
3 − dx2

4.

This implies Spinqd(R) ' SL2(R)2 is associated to the Hilbert modular surface for Q(
√
d). Let (E, σ) be an algebra of

dimension 4 with involution σ. Then Oq has a torus of type (E, σ) if and only if the σ-reflex fields of E all contain

Q(
√
d). In particular, the algebras associated to tori in Spinqd all contain Q(

√
d).

3.2 Preliminaries
We begin by recalling a few of the basic notions relevant to the statement of the theorem.
For this section let k be a field of characteristic 0, fix an algebraic closure k and let Γ = Gal(k/k) be the absolute

Galois group.
3.2.1 Étale Algebras

By an étale algebra E over k of dimension n we mean a product of finite (separable) field extensions Ei/k where
the dimension of E as a k-module is n. The discriminant δ(E/k) or δE/k is the product of the field discriminants

δEi/k. We have that E ⊗k k ' ×ρkeρ, where the eρ are orthogonal idempotents indexed by ρ ∈ Homk−alg(E, k).
The isomorphism is given by the map x ⊗ α 7→

∑
ρ αρ(x)eρ. The Galois group Γ acts on the collection {eρ} by

τeρ = eτ◦ρ. This action, together with the natural action on coefficients, corresponds to having Γ act on E ⊗k k via

the second factor so that
(
E ⊗k k

)Γ ' E. Thus, the descent data needed to fully specify the k-isomorphism class of
an n-dimensional étale algebra is the Galois action on the collection {eρ}. For a more detailed discussion of the theory
of Galois descent, in particular how it applies to this setting see [KMRT98, Ch. 18]. The key result is:
Proposition 3.2.1. There exists a bijective correspondence between isomorphism classes of étale algebras over k
of dimension n and isomorphism classes of Γ-sets of size n. The correspondences being E 7→ Homk−alg(E, k) and

Ω 7→
(
×ρ∈Ωkeρ

)Γ
.

We will often use this result to construct étale algebras by specifying a Γ-set.
By an étale algebra with involution (E, σ) over k we shall mean an étale algebra E over k together with

σ ∈ Autk−alg(E) of exact order 2. We will denote by Eσ = {x ∈ E|σ(x) = x} the fixed étale subalgebra of σ. The
action of σ on E induces an action on idempotents given by σ : eρ 7→ eρ◦σ. We see immediately that this action
commutes with the Galois action. Now, consider the disjoint collection of sets Homk−alg(E, k) = t{ρ, ρ ◦ σ}. Since
the actions of σ and Γ on Homk−alg(E, k) commute we find that Γ acts on the collection of sets {ρ, ρ◦σ}. We can thus
consider the étale algebra whose idempotents come with this action. It is the subalgebra Eσ of E under the inclusion
map e{ρ,ρ◦σ} 7→ eρ + eρ◦σ.

Convention. For the remainder of this paper we restrict our attention to the case where dimk(Eσ) =
⌈

dimk(E)
2

⌉
. For

the most part we shall also assume that dimk(E) is even. Unless it is otherwise specified, all algebras with involution
satisfy these additional properties.

We will now introduce the notions of σ-types and σ-reflex algebras. These generalize the notion of CM-types and
CM-reflex algebras which are important in the theory of complex multiplication and have been extensively studied. We
shall only mention the notions which will be of use to us. For a more detailed exposition of CM-types and CM-reflex
fields see either [Lan83, 1.2 and 1.5] or [Mil06, 1.1, pp.12-19].
Definition 3.2.2. Let (E, σ) be an algebra with involution. A subset φ ⊂ Homk−alg(E, k) is said to be a σ-type of
E if φ t φσ = Homk−alg(E, k). Denote the set of σ-types:

Φ = {φ ⊂ Homk−alg(E, k)|φ t φσ = Homk−alg(E, k)}.

Then both Γ and σ act on Φ and these actions commute. For a σ-type φ ∈ Φ denote its orbit in Φ under Γ by Γφ ⊂ Φ
and denote the stabilizer by Γφ = {γ ∈ Γ|γφ = φ}.
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We define the σ-reflex algebra of φ to be (Eφ, σ), where Eφ is the étale algebra whose idempotents are indexed
by Γφ ∪ Γφσ with the induced action of Γ and σ.

We define the complete σ-reflex algebra to be (EΦ, σ), which is the étale algebra whose idempotents are
indexed by Φ with the natural action of Γ and σ.

Proposition 3.2.3 (Alternate definition of reflex field). Let φ be a σ-type of E and define Ẽφ = k
Γφ

. If Γφ = Γφσ

then Eφ is a field and Eφ ' Ẽφ. Otherwise, if Γφ 6= Γφσ then Eφ = Ẽφ × Ẽφ.

Proof. We claim that Ẽφ naturally has idempotents corresponding to Γφ. Indeed, the idempotents of Ẽφ = k
Γφ

correspond to Homk(k
Γφ
, k), which is naturally identified with Γ/Γφ as Γ-sets. The map sends γΓφ to γ ◦ Id where

Id : k
Γφ → k is the identity inclusion. Likewise we can identify Γ/Γφ and Γφ as Γ-sets via the map γΓφ 7→ γφ.

By the correspondence between Γ-sets and étale algebras we conclude Ẽφ is isomorphic to the étale algebra whose
idempotents are Γφ. If Γφ = Γφσ this gives us the result. Otherwise, Eφ has idempotents Γφ t Γφσ. As the action

of Γ is from the left on Γφσ it follows that as Γ-sets Γφσ is isomorphic to Γφ. Thus we conclude Eφ = Ẽφ × Ẽφ.

Definition 3.2.4. Let (E, σ) be an étale algebra with involution over k and let φ be a σ-type of E. There is a natural
map Nφ : E → Eφ which is defined by:

Nφ

(∑
ρ

aρeρ

)
=

∑
φi∈(Γφ∪Γφσ)

∏
ρ∈φi

aρ

 eφi .

This map is called the σ-reflex norm of the σ-type φ.
We want to show that this map, which a priori maps E ⊗k k to Eφ ⊗k k, actually maps E to Eφ = (Eφ ⊗k k)Γ.

Since E = (E ⊗k k)Γ we have that for γ ∈ Γ and
∑
ρ aρeρ ∈ E the formula:

∑
ρ

aρeρ = γ

(∑
ρ

aρeρ

)
=
∑
ρ

γ(aρ)eγ◦ρ

implies that γ(aρ) = aγ◦ρ. Using this we check that:

γ

∏
ρ∈φi

aρ

 =
∏
ρ∈φi

γ(aρ) =
∏
ρ∈φi

aγ◦ρ =
∏

ρ∈γ(φi)

aρ.

Finally we may check that:

γ

(
Nφ

(∑
ρ

aρeρ

))
=

∑
φi∈(Γφ∪Γφσ)

γ

∏
ρ∈φi

aρ

 eγφi

=
∑

φi∈(Γφ∪Γφσ)

 ∏
ρ∈γ(φi)

aρ

 eγφi

= Nφ

(∑
ρ

aρeρ

)
.

Hence we conclude that Nφ

(∑
ρ aρeρ

)
∈ (Eφ ⊗k k)Γ = Eφ.

Proposition 3.2.5 (Computing σ-reflex algebras). We summarize some results which allow for the computation of
σ-reflex algebras.

1. Let E be a field with σ an involution of E and let φ be a σ-type of E. Then Eφ = Ẽφ as above.
2. Let F be an étale algebra and let (E, σ) = (F × F, σ), where σ interchanges the factors F . Then there are a

number of different σ-types of E:
(a) Let φ = Hom(F, k) ⊂ Hom(F ×F, k) correspond to maps on the first factor. Then Eφ = k×k where σ acts

by interchanging factors.
(b) Fix one element ρ ∈ Hom(F, k) and set φ = (Hom(F, k) \ {ρ}) ∪ {ρ ◦ σ}. Then Eφ = ρ(F )× ρ(F ) where σ

acts by interchanging factors.
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(c) More generally one any choice of S ⊂ Hom(F, k) one can take φ =
(
Hom(F, k) \ S

)
∪Sσ. Then Eφ = L×L

where σ acts by interchanging factors and where L = Ẽφ ⊆ ∪
ρ∈S

im(ρ).

3. Let (E1, σ1) and (E2, σ2) be algebras with involutions. A σ-type for (E, σ) = (E1 × E2, σ1 × σ2) is of the form

φ = φ1 t φ2, where the φi are σi-types for Ei. Then Ẽφ ' Ẽφ1

1 Ẽφ2

2 and so the factors of Eφ are the composite

of those of the Eφii .

Proof. In each case the proof amounts to a direct application of Proposition 3.2.3 together with a computation of Γφ.
For case (1), where E is a field, Proposition 3.2.3 is the complete result. For case (2) where E = F ×F and the factors
are interchanged by σ, we note that the orbits of Γ on Homk−alg(E, k) can be decomposed into those factoring through
the first F factor and those factoring through the second. Thus Γφ is just {γ ∈ Γ | γS = S} where S ⊂ Hom(F, k)
is the set describing φ as in each of the subcases of (2). It is then clear that Γφ contains ∩ρ∈S Gal(k/ im(ρ)). From
this one concludes the result in the special cases of S = ∅ or S = {ρ}. In case (3) where E = E1 ×E2, it is clear that
Γφ = Γφ1

∩ Γφ2
which implies the result.

Corollary 3.2.6. Write (E, σ) = ×i(Ei, σi) as a direct product where each Eσii is a field. Then EΦ is a product of
even degree field extensions if and only if Ei is a field for at least one i.

Proof. If every factor Ei is of the form Eσi × Eσi with σi interchanging factors then E = F × F for F ' ×iEσi with
σ interchanging factors. Then by the proposition above there exists φ with Eφ = k × k and thus one of the direct
factors of EΦ is k.

Conversely, by the computations above every factor of Eφ is formed as a composite extension of Ẽφii . If there

exists a factor Ei which is a field then for all φi the field Ẽφii is even degree. It follows that every factor of EΦ contains

an even degree subextension of the form Ẽφii and so EΦ is a product of even degree field extensions.

Proposition 3.2.7 (Localization of Reflex Algebras). Suppose k is a number field, p be a prime of k (finite or
infinite) and let kp be the completion of k at p. By the localization of (E, σ) and (Eφ, σ) at p we mean the algebras
(Ep = E ⊗k kp, σp) and ((Eφ)p = Eφ ⊗k kp, σp). Let G = Gal(kp/kp)\Γ/Γφ, then:

(Eφ)p = ×
g∈G

(Ep)
(gφ)p ,

where g is any representative of the coset g. In particular, (EΦ)p = (Ep)
Φp .

Proof. The idempotents of Ep and (Eφ)p are in natural bijection with those of E and Eφ, respectively. That is, by
fixing a single map k ↪→ kp we obtain a Galois equivariant bijection Homk−alg(E, k) ' Homkp−alg(Ep, kp) with respect

to the associated inclusion Γp = Gal(kp/kp) ↪→ Gal(k/k). This naturally induces a bijection between the set of σ-types
for (E, σ) and σp-types for (Ep, σp). However, because Γp is only a subgroup of Γ, the Galois orbit of φp in Φp under
Γp may be strictly smaller than the Galois orbit of φ in Φ under Γ. Hence, it may happen that (Ep)

φp 6= (Eφ)p. In
order to capture all of the orbits recall G = Γp\Γ/Γφ so that:

Γφ = t
g∈G

Γp(gφ),

where g is any representative of the coset g. It follows that:

(Eφ)p = ×
g∈G

(Ep)
(gφ)p .

3.2.2 Algebraic Tori
We now recall some basic properties of algebraic tori in linear algebraic groups.

Definition 3.2.8. A k-algebraic group is an algebraic torus T if it satisfies any of the following equivalent properties
(see [Bor91, 8.4 and 8.5] for a proof of the equivalence):

1. T is connected and diagonalizable over k.
2. T is connected, abelian and all its elements are semisimple.
3. k[T ] is spanned by X∗(T ) = Homk(T,Gm).
4. Tk ' Gnm for some n.
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Given any k-rational representation of T into GLm there exists a collection Ω ⊂ X∗(T ) of characters that appear
once the representation is diagonalized over k. We may consider the map:

Tk →
∏
χ∈Ω

Gm t 7→ (χ(t))χ∈Ω

where the natural Galois action of Γ on T is by permuting the χ as per the action of Γ on X∗(T ). The descent data
needed to recover the isomorphism class of a k-torus of rank n from its k-isomorphism with Gnm is the specification of
the Galois action on X∗(T ) ' Zn. See [PR94, 2.2.4] for a discussion of Galois descent as it relates to the classification
of tori. The key result is:
Proposition 3.2.9. There exists a contravariant equivalence of categories between k-isomorphism classes of algebraic
tori of rank n and Z[Γ]-modules which as Z-modules are torsion free and of rank n. The equivalence takes T 7→ X∗(T ).

Specifying a Galois action on X∗(T ) is equivalent to specifying the Galois action on any Galois stable spanning
set Ω ⊂ X∗(T ), in particular those spanning sets arising from faithful representations. Moreover, for a fixed reductive
group G of rank n and for any two k-conjugate tori T1, T2 ⊂ G, the sets ΩT1 ,ΩT2 can be identified (non-canonically).
In particular, to classify the k-isomorphism classes of maximal tori contained in G, it suffices to consider a single such
spanning set Ω ⊂ Zn. Then any k-torus in G gives a Galois action on Ω which in turn gives rise to a representation
Γ→ GLn(Z). One may then study the tori knowing only that they arise from a Γ-set Ω which spans Zn. One should
note that the condition T ⊂ G may impose further conditions on which Γ-actions on Ω are possible.
Proposition 3.2.10. Let Ω be a finite Γ-invariant set of generators of X∗(T ). Let E = EΩ be the étale algebra whose
idempotents are the Γ-set Ω. Consider the torus TE := ResE/k(Gm), that is, the torus such that for any k-algebra R
we have TE(R) = (E ⊗R)∗. Then T ↪→ TE.

Proof. First we note that X∗(TE) = ZΩ. We thus obtain a natural Z-linear map from X∗(TE) → X∗(T ) by taking
Ω, the basis of X∗(TE), to Ω as a spanning set of X∗(T ). This map is surjective and Γ-equivariant thus inducing a
surjective map k[TE ]→ k[T ] which corresponds to an injective map T ↪→ TE .

Definition 3.2.11. If E is an étale algebra over k we say a k-torus S is of type E if S ↪→ TE and E contains no
proper subalgebras with this property.

Note that any embedding of S ↪→ TE (where S is of type E) arises as above. To see this consider the representation
of S arising from the regular representation of TE on E. Note also that the Galois closure of the composition of fields
which comprise E is a minimal splitting field for the torus S.
Example. Let L ⊂ E be étale algebras over k and consider χ ∈ Homk(TE , TL) corresponding to χ = NE/L, then
Ker(χ)0 ⊂ TE is a torus of type E.
Definition 3.2.12. Let (E, σ) be an étale algebra with involution over k and put χ = NE/Eσ . Then we define:

TE,σ = Ker(χ)0 = {t ∈ TE |tσ(t) = 1}.

We remark that under the natural action of TE on E as a k-vector space, TE,σ preserves the bilinear forms defined by:

BE,σ,λ(x, y) = TrE/k(λxσ(y)),

where λ ∈ Eσ. Moreover, TE,σ is a maximal torus in the orthogonal group attached to this bilinear form.
In the case where E is of dimension 2n+1 but Eσ has dimension n, we find that E = E′×k, where σ acts trivially

on the k summand. The only difference with the even case is that one must then take the connected component of
the identity to ensure the resulting group is connected.
Proposition 3.2.13. Let q be a quadratic form over k and let Oq be the associated orthogonal group. Let T ⊂ Oq be
a maximal k-torus. Then there exists an étale algebra with involution (E, σ) over k such that T = TE,σ. Moreover,
suppose TE,σ ⊂ Oq is a maximal torus. Then q(x) = qE,λ(x) = 1

2 TrE/k(λxσ(x)) for some choice of λ ∈ (Eσ)∗.

Proof. We shall give a sketch of the construction that all tori are of this form, for details see [BCKM03, Prop. 3.3].
As in the discussion relating descent data of tori to étale algebras we observe that for any T ⊂ Oq the set of characters
ΩT which appear in the representation is of the form:

ΩT = {χ1, . . . , χn, χ
−1
1 , . . . , χ−1

n }

(including also the trivial character with multiplicity one if dim(q) is odd) with the χi forming a basis of X∗(T ). One
checks easily that on the étale algebra E which has idempotents indexed by ΩT one can construct an involution σ
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by interchanging χi and χ−1
i for each i. It is straightforward to check that T ∼= TE,σ, and σ restricts to the adjoint

involution with respect to q.
The statement concerning the structure of quadratic forms preserved by such tori is the content of any of [Shi80,

Prop. 5.4],[BCKM03, Prop. 3.9] and [Fio09, Thm. 4.4.1]. We present the argument of [BCKM03]. By interpreting
the quadratic space as a rank one E-module, we may consider the adjoint maps for the two quadratic forms (that is, q
and qE,1), both of which are preserved by T , as being isomorphisms from E to its linear dual. Hence, composing one
with the inverse of the other, α = ad(qE,1)−1 ◦ ad(q) : E → E gives an E-automorphism of E which must correspond
to multiplication by a unit λ. We may then conclude that q = qE,λ.

3.2.3 Clifford Algebras
Definition 3.2.14. Let (V, q) be a quadratic space over k. We define the associated Clifford algebra to be:

Cq = ⊕
i≥0

V ⊗i/〈x⊗ x− q(x)〉.

The involution v 7→ −v on V induces an involution of Cq. We define the even and odd parts of the Clifford algebra to
be respectively the +1 and −1 eigenspaces for this involution and denote them C0

q and C1
q.

The structure of the Clifford algebra as a graded algebra is well known; in particular we have:
Theorem 3.2.15. If m = dim(V ) is odd then:

1. Z(Cq) ' k(
√
d), where d = (−1)(m−1)/2D(q) and D(q) is the discriminant of q,

2. C0
q is a central simple algebra over k and Cq ' C0

q ⊗̂Z(Cq) (where ⊗̂ is the graded tensor product), and

3. Cq is a central simple algebra over Z(Cq) (if the centre is not a field we mean Cq ' C0
q ×C0

q).
If m = dim(V ) is even then:

1. Cq is a central simple algebra over k,

2. Z(C0
q) = k(

√
d), where d = (−1)m/2D(q) and D(q) is the discriminant of q, and

3. if Cq ' Mt(A) (where A is a division algebra) then C0
q ' Mt/2(A⊗ Z(C0

q)).

Proof. The above theorem is essentially the content of [Lam05, V.2.4-5]. The final statement in the even case is not
explicitly stated in [Lam05] but follows from the proof of [Lam05, IV.3.8].

Definition 3.2.16. Let (V, q) be a non-degenerate quadratic space over k of dimension m with an orthogonal basis
{ei}, where we write q(ei) = ai. We then define the following invariants:
• The discriminant D(q) =

∏
i ai viewed as an element of k∗/(k∗)2.

• The Hasse invariant H(q) =
∏
i<j

(ai, aj), where (ai, aj) is the Hilbert symbol (see [Ser73, Ch. III] and [Ser79,

Ch. XIV]), viewed as an element of Br(k) = H2(Γ,±1).

• The Witt invariant W (q) =

{
[C0
q], m = 1 mod 2,

[Cq], m = 0 mod 2
, where [B] denotes the Brauer class of B, viewed as an

element of Br(k) = H2(Γ,±1).
• The signature (rρ, sρ)ρ at each real infinite place ρ of k.
• The orthogonal discriminant Dorth(q) = δ(Z(C0

q)/k) viewed as an element of k∗/(k∗)2.

• The orthogonal Witt invariant W orth(q) = [C0
q] viewed as an element of Br(Z(C0

q)).
Remark. The first four invariants are properly invariants of q, indeed when k is a number field they entirely determine
q. The latter three are invariants of the orthogonal group associated to q. That is, Oq determines q only up to similarity
(rescaling by k∗). Likewise, the signature, orthogonal discriminant and orthogonal Witt invariant determine q up to
similarity.

The last two invariants are not standard.
Proposition 3.2.17. Let m = dim(V ). We have the following relations among the above invariants:

1. D(q) =

{
(−1)(m−1)/2δ(Z(Cq)), m = 1 mod 2,

(−1)m/2 δ(Z(C0
q)), m = 0 mod 2,

2. H(q) = W (q) · (−1, D(q))(m−1)(m−2)/2 · (−1,−1)(m+1)m(m−1)(m−2)/8, where the product is in the Brauer group,
3. W orth(q) = [W (q)⊗ Z(C0

q)].
These properties are the content of [Lam05, V.2.5, V.3.20 and V.2.4-5], respectively.

Theorem 3.2.18. Let (E, σ) be an étale algebra with involution over k such that TE,σ ↪→ Oq as a maximal subtorus.
Then EΦ embeds into C0

q as a maximal étale algebra stable under the canonical involution of Cq. Moreover, the

canonical involution restricts to σ on EΦ.
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Proof. We claim that it is sufficient to consider the case of dim(V ) even. Indeed, if dim(V ) is odd then we can
decompose V = V ′ ⊕ spank(~v) where TE,σ acts trivially on ~v. With q′ = q|V ′ and TE,σ ↪→ Oq′ and using that
Cq′ ↪→ Cq we obtain the result.

We may identify the space V with E. Thus V ⊗k k is identified with E ⊗k k. Suppose under the isomorphism
of V with E we have that q(x) = 1

2 TrE/k(λxσ(x)). We use {eρ}ρ∈Homk−alg(E,k) as the generators for the Clifford

algebra after base change to k. We note that we recover both C0
q and V as the Galois invariants of C0

q ⊗kk and V ⊗k k,
respectively. Moreover, as the inclusion V ↪→ Cq is k-rational, the Galois actions on the {eρ} viewed as elements of
V ⊗k k or as elements of Cq ⊗kk is the same.

For each ρ ∈ Homk−alg(E, k) set δρ = 1
ρ(λ)eρ ⊗ eρ◦σ ∈ C0

q. These elements satisfy the following properties:

1. The action of σ on δρ agrees with the canonical involution of Cq,
2. δ2

ρ = δρ,
3. δρσ(δρ) = 0 and δρ + σ(δρ) = 1,
4. the δρ all commute, and
5. the Galois action on {δρ} is the same as that on {eρ}.

Now for each σ-type φ ∈ Φ of E set δφ =
∏
ρ∈φ δρ. These elements then satisfy the following properties:

1. δ2
φ = δφ,

2. δφ1
δφ2

= 0 for φ1 6= φ2,
3.
∑
φ δφ =

∏
ρ(δρ + δρ◦σ) = 1, and

4. the Galois action on {δφ}φ∈Φ is the same as that on {φ}φ∈Φ.
Thus the δφ are Galois stable orthogonal idempotents and hence by taking Galois invariants give an étale subalgebra
of C0

q. As the Galois action on idempotents matches that of EΦ, this gives an embedding of EΦ into C0
q. Moreover,

this algebra is preserved by the canonical involution of Cq, and the involution restricts to σ on it.
The algebra is maximal as an étale subalgebra for dimension reasons.

Remark. We have the map ϕ : E → C0
q given by:

ϕ

(∑
ρ

xρeρ

)
=
∑
φ∈Φ

∏
ρ∈φ

xρ

 δφ =
∏
ρ∈φ′

(xρδρ + xρ◦σδρ◦σ)

where φ′ is any σ-reflex type of E. It is a multiplicative map (it is the reflex norm followed by the inclusion). Moreover,
the image of TE,σ lies in the spin group, with ϕ being a section of the natural covering map θ : Spinq → Oq. Indeed,
we have θ(ϕ(

∑
ρ xρeρ))(1E) =

∑
ρ xρx

−1
ρ◦σeρ. Note that TE,σ consists of those elements where xρ = x−1

ρ◦σ, and hence

θ ◦ φ = x2 on TE,σ.
3.3 Computing Invariants

In this section we will compute the invariants of the forms TrE/k(λxσ(x)).
Recall that for L/F a finite extension of fields and O an order of L, the discriminant δO/OF of O is that of the

F -quadratic form Q(x) = TrL/F (x2) on O.
Lemma 3.3.1. Let F be a number field or a p-adic field and let L = F (z) be an algebraic extension of degree m with
fz(X) ∈ OF [X] the minimal (monic) polynomial of z. Let δL/F (z) be the discriminant of the order OF [z] ⊂ L. Let
λ ∈ L∗ and consider the quadratic form Q(x) = TrL/F (λx2). Then:

D(Q) = NL/F (λ)δOF [z]/OF (z)

= NL/F (λ)

∏
i<j

(ρi(z)− ρj(z))

2

= NL/F (λ)(−1)m(m−1)/2NL/F (f ′z(z)),

where ρi are the m embeddings L ↪→ F .

Proof. These are well-known equalities. To compute det
(
TrL/F (λz`zj)

)
`j

factor the matrix as:(
TrL/F (λz`zj)

)
`j

=
(
ρi(λz

`)
)
`i
·
(
ρi(z

j)
)
ij

= diag(ρi(λ)) ·
(
ρi(z)

`
)
`i
·
(
ρi(z)

j
)
ij
.

By applying the Vandermonde determinant formula and a comparing the result to NL/F (f ′z(z)) yields the result.
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Lemma 3.3.2. Let L/F be an extension of either number fields or local fields. The corestriction (or transfer map)
CorL/F : Br(L)[2]→ Br(F )[2] satisfies:

CorL/F ((a, b)L) = (a,NL/F (b))F

for all a ∈ F ∗, b ∈ L∗.
This is [Ser79, Ex. XIV.3.4].
The second part of the following result is the main theorem of the paper of Brusamarello–Chuard-Koulmann–

Morales and will be important in the sequel.
Theorem 3.3.3. Let (E, σ) be an étale algebra with involution over k of dimension 2n and let λ ∈ Eσ∗. Then the
invariants of qE,λ(x) = 1

2 TrE/k(λxσ(x)) are:
1. D(qE,λ) = (−1)nδE/k,
2. H(qE,λ) = H(qE,1) · CorEσ/k(λ, δE/Eσ ),
3. W (qE,λ) = W (qE,1) · CorEσ/k(λ, δE/Eσ ).

Proof. The first statement is well known, though we include a proof for the convenience of the reader. By writing
E = Eσ(

√
d) := Eσ[y]/(y2 − d) we may write x ∈ E as x = s+ t

√
d. Then we observe that qE,λ(x) = TrEσ/k(λs2) +

TrEσ/k(−λdt2). Set Qλ(s) = TrEσ/k(λs2) and Q−λd(t) = TrEσ/k(−λdt2) so that qE,λ ' Qλ ⊕ Q−dλ. We thus have
D(qE,λ) = D(Qλ)D(Q−λd). By Lemma 3.3.1 this gives:

D(qE,λ) = NEσ/k(λ) · δEσ/k ·NEσ/k(−λd) · δEσ/k
= NEσ/k(−d) = (−1)nNEσ/k(d) (mod (k∗)2).

By observing that δE/k = NEσ/k(δE/Eσ )δ2
Eσ/k (see [Ser79, Prop. III.4.8]) and that δEσ(

√
d)/Eσ = d (mod (k∗)2) we

conclude the result.
The second statement is the content of [BCKM03, Thm. 4.3]. The final statement follows from the first two

statements by using Proposition 3.2.17. The proposition states that the Hasse and Witt invariants differ by a constant
depending only on the discriminant. As D(qE,λ) = D(qE,1) the second and third statement are thus equivalent.

The above theorem, together with some easy special cases, is largely sufficient for the proof of our main result (see
the proof of Lemma 3.5.5 for how it comes into play). However, we would like to give more precise formulas for the
Hasse and Witt invariants that can be directly computed from the data describing the fields. This has the advantage
of giving the information we need in the special cases, as well as being of interest in its own right. The first step is a
lemma which is useful for explicitly calculating traces.
Lemma 3.3.4 (Euler). Let L = F (z) be a finite separable extension of F of degree m with fz(x) ∈ OF [x] the minimal
(monic) polynomial of z. We then have:

TrL/F

(
z`

f ′z(z)

)
=

{
1, ` = m− 1

0, 0 ≤ ` < m− 1.

This is [Ser79, III.6, Lem. 2].
The next step is to show that the fields in which we are interested are always primitively generated in a simple

way.
Proposition 3.3.5. Let F/k be any finite separable extension of infinite fields of characteristic not 2, and let E/F
be a quadratic extension. Then there exists α ∈ E such that E = k(α) and F = k(α2).

Proof. Suppose E = F (
√
β) with β ∈ F and F = k(γ). We claim it suffices to show that there exists an ` ∈ k

such that F = k((` + γ)2β). Indeed, if F = k((` + γ)2β) then F ⊂ k((` + γ)
√
β) and so γ ∈ k((` + γ)

√
β). Hence√

β ∈ k((`+ γ)
√
β) and thus F (

√
β) = k((`+ γ)

√
β). Consequently, taking α = (`+ γ)

√
β gives the result.

Now let `1, `2, `3 ∈ k be distinct values such that k((`i + γ)2β) are all the same field, say L. Since all these values
are in the same field, so are their linear combinations. We compute that:

(`1 + γ)2β

(`2 − `1)(`3 − `1)
+

(`2 + γ)2β

(`1 − `2)(`3 − `2)
+

(`3 + γ)2β

(`1 − `3)(`2 − `3)
= β.

This shows that β ∈ L. We then observe that:

1

(`2 − `1)

(
(`2 + γ)2 − (`1 + γ)2

)
− `2 − `1 = 2γ.
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This proves that γ ∈ L, and hence L = F = k((`1 + γ)2β).

The following lemma combines the above two results to show that for a particular choice of λ ∈ Eσ the invariants
of qE,λ can be computed explicitly.
Lemma 3.3.6. Let F/k be an extension of number fields of degree m. Suppose F = k(z). Let E = F (

√
z) = k(

√
z)

and σ be the non-trivial element of Gal(E/F ). Let fz be the minimal (monic) polynomial for z over k. View E as a
2m-dimensional k-vector space equipped with the quadratic form Q(x+ y

√
z) = qE,−f ′z(z)−1(x+

√
zy). Then:

1. H(Q) = (−1,−1)
m(m−1)/2
k · (NF/k(z),−1)m−1

k , and
2. W (Q) = 1.

Proof. Let Ẽ = F (
√
−z) = k(

√
−z) and notice that f√−z(X) = f(−X2) is the minimal polynomials of

√
−z. Hence

f ′√−z(X) = −2Xf ′z(−X2), in particular f ′√−z(
√
−z) = −2

√
−zf ′z(z). Therefore under the identification of F × F ,

using its natural basis, with Ẽ under the basis 1,
√
−z and writing w = x+ y

√
−z we compute:

qE,−f ′z(z)−1(x+
√
zy) = TrF/k

(
−1

f ′z(z)
(x2 − zy2)

)
= TrẼ/k

(
−1

2f ′z(z)
w2

)
= TrẼ/k

( √
−z

f ′√−z(
√
−z)

w2

)
.

Now, by Lemma 3.3.4, for any extension k(α)/k of degree n, the matrix for the quadratic form

Q̃(x) = Trk(α)/k

(
α

f ′α(α)
x2

)
in the basis {1, α, . . . , αn−1} has the shape:

0 · · · 1 a1

1 a1 a2

... . .
.

1 . .
. ...

1 a1

a1 a2 · · · an


,

for some values ai ∈ k. Note that the form is non-degenerate on the span of {1, α, . . . , αn−2} and let β be a generator

for the orthogonal complement. Then {1, α, . . . , αn−2, β} is a basis and the matrix for Q̃ with respect to it is:

A =



0 · · · 1 0
1 a1 0

... . .
.

1 . .
. ...

1 a1

0 0 · · · Y


,

for some Y ∈ k.

Lemma 3.3.7. The matrices:

0 · · · 1
1 a1

... . . .

1
...

1 a1 · · · an

 and



0 · · · 1
1 0

... . . .

1
...

1 0 · · · 0


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represent the same quadratic form. In particular, denoting by 〈y1, . . . , yn〉 the diagonal form with diagonals yi, the
quadratic form associated to either matrix is isomorphic to one of:

〈1,−1〉
n−1
2 ⊕ 〈1〉 or 〈1,−1〉n2

depending on the parity of n.

Proof. This is a simple inductive argument using the similarity-transform defined by:

1 0 · · · 0
−a1 1

−a2 0
. . .

...
...

−an−1

− 1
2an 0 · · · 1


.

It follows from the lemma that Q̃ is isomorphic to one of:

〈1,−1〉
n−2
2 ⊕ 〈1, Y 〉 or 〈1,−1〉

n−1
2 ⊕ 〈Y 〉.

Next, by Lemma 3.3.1 we know that the discriminant of Q̃ is:

Nk(α)/k(α)Nk(α)/k(f ′α(α)−1)δk(α)/k = Nk(α)/k(α)(−1)n(n−1)/2.

We conclude that Y = Nk(α)/k(α)(−1)n−1 up to squares. In particular, in the case α =
√
−z, we can immediately see

that the Hasse invariant of the quadratic form is:

H(Q) = (−1,−1)
m(m−1)/2
k · (Nk(

√
−z)/k(

√
−z),−1)m−1

k

= (−1,−1)
m(m−1)/2
k · (Nk(z)/k(z),−1)m−1

k .

Moreover, since the quadratic form has discriminant (−1)mNk(z)/k(z) we compute using Proposition 3.2.17 that the
Witt invariant is:

W (Q) = ((−1)mNk(z)/k(z),−1)m−1
k · (−1,−1)

m(m−1)/2
k ·

(−1,−1)
m(m−1)/2
k · (Nk(z)/k(z),−1)m−1

k

= 1.

Combining the above two results, we may now give a general formula for the Hasse and Witt invariants for the
forms qE,λ.
Theorem 3.3.8. Let F = k(z) be an extension of degree m, let E = k(

√
z), and let λ ∈ F . Consider the quadratic

form qE,λ(x) = 1
2 TrE/k(λNE/F (x)). Then:

1. H(qE,λ) = CorF/k((−λf ′z(z), z)F ) · (Nk(z)/k(z),−1)m−1
k · (−1,−1)

m(m−1)/2
k , and

2. W (qE,λ) = CorF/k((−λf ′z(z), z)F ).

Proof. From Theorem 3.3.3 we have the following two equations:

H(qE,λ) = H(qE,1) · CorF/k((λ, z)F ), and

H(qE,−f ′z(z)−1) = H(qE,1) · CorF/k((−f ′z(z), z)F ).

Solving for H(qE,1) and substituting the results of Lemma 3.3.6 yields:

H(qE,λ) = H(qE,−f ′z(z)−1) · CorF/k(λf ′z(z))

= (−1,−1)
m(m−1)/2
k · (NF/k(z),−1)m−1

k · CorF/k((−λf ′z(z), z)F ).
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The Witt invariant computation follows similarly.

3.4 Local Invariant Computations for Tr(λx2)
The above gives us a global cohomological description of the invariants of the quadratic forms in which we are

interested. However, the quadratic forms Tr(λx2), which were studied extensively by Serre (see [Ser84]) and others,
are not in general covered by the previous section. Moreover, we have further interest in a detailed local description
of these forms as this has applications to computing local densities and discriminant groups. Similar calculations can
be found in the work of Epkenhans (see [Epk89, Lem. 1]). The current section gives a description of these quadratic
forms in terms of basic combinatorial data regarding the ramification structure of the field extensions involved.
Lemma 3.4.1. Let F/k be an unramified extension of non-Archimedean local fields of degree f , with residue char-
acteristic different from 2. Let πk be a uniformizer of k. Let QF be any quadratic form on a vector space V over F
of dimension n. View V as a k-vector space via restriction of scalars. The form Qk(x) = TrF/k(QF (x)) on V has
invariants:

D(Qk) = NF/k(D(QF ))δnF/k, and

H(Qk) = H(QF )
[
(πk, NF/k(D(QF )))k(πk, δF/k)k(πk,−1)

f(f−1)/2
k

]νπF (D(QF ))

.

(By abuse of notation we identify the 2-torsion in the Brauer groups of F and k via the natural isomorphism.)

Proof. It suffices to check the formula for a member of each isomorphism class of quadratic space over V . If n ≥ 3 by
checking the Hasse invariants and discriminants one finds that every isomorphism class of non-degenerate quadratic
space over V is represented by one of:

〈1〉n−3 ⊕ 〈b, πk, abπk〉 or 〈1〉n−2 ⊕ 〈b, abπk〉,

for some a, b ∈ O∗F . We refer to these as the first and second cases. In either case by decomposing the form into the
diagonal pieces with trivial and non-trivial valuations we may write:

TrF/k(QF ) ∼= M1 ⊕ πkM2.

In the first case, M1 has discriminant δn−2
F/kNF/k(b) and dimension f · (n− 2), whereas M2 has discriminant NF/k(ab)

and dimension 2f . One then computes in the first case that:

H(Qk) = (πk,−1)fk · (N(ab), πk)k

= (πk,−1)F · (ab, πk)F

= H(QF ).

In the second case, M1 has discriminant δn−1
F/kNF/k(b) and M2 has discriminant δF/kNF/k(ab). Thus we have:

H(Qk) = (πk, NF/k(b))k · (πk, NF/k(a))f−1
k · (πk, δF/k)fn−1

k · (πk,−1)
f(f−1)/2
k

= (πk, NF/k(a))f−1
k · (πk, δF/k)k · (πk,−1)

f(f−1)/2
k

= H(QF )
[
(πk, NF/k(D(QF )))k · (πk, δF/k)k · (πk,−1)

f(f−1)/2
k

]
.

Here we have used the fact that δfF/k is a square in k for an unramified extension.

For the cases n = 1, 2 we must check that similar formulas hold for: 〈bπk, abπk〉, 〈1, a〉, 〈a〉, 〈aπk〉. We omit these
calculations.

The results on the structure of trace forms for ramified extensions will rely on the following lemma.
Lemma 3.4.2. Let L/F be a totally ramified extension of local fields. Let z = πL be a uniformizer of OL and fz(x)
be the minimal (monic) polynomial of z. Then fz is an Eisenstein polynomial and the collection 1, z, z2, . . . , zm−1 is
an OF -basis of OL and NL/F (z) is a uniformizer of F .

See [Ser79, Prop. I.6.18] for a proof.
Before proceeding with the next two lemmas we will introduce some notation. Let L/F be a totally ramified

extension of local fields of degree m. Let πL be a uniformizer of L and set πF = NL/F (πL) to be a uniformizer of
F . Let f = fπL be the minimal monic polynomial of πL over F . Suppose u ∈ O∗L, v ∈ O∗F , 0 ≤ ` ≤ m, k ∈ Z and
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set λ =
πkF

uv2π`Lf
′(πL)

. We remark that if the residue characteristic is not 2, then for any given λ ∈ L∗ there exists

corresponding u, v, `, k. Now denote by Q(x) the F -quadratic form on L given by Q(x) = TrL/F (λx2) and consider

M1 = span{uvz`, . . . , uvzm−1} and M2 = span{v, . . . , vz`−1} as quadratic subspaces of L.
Lemma 3.4.3. With the notation as above, we have the following properties of Q,M1,M2:

1. The discriminant of Q is D(Q) = (−1)m(m−1)/2u−mπmk−`F .
2. The decomposition L = M1 ⊕M2 is orthogonal with respect to Q.
3. The discriminants of 1

πkF
Q|M1

and 1

πk−1
F

Q|M2
are respectively:

D(
1

πkF
Q|M1

) = (−1)(m−`)(m−`−1)/2um−` and

D(
1

πk−1
F

Q|M2
) = (−1)`(`+1)/2−m`u−`.

Hence these forms are unimodular.
4. The Hasse invariant is:

H(Q) = (πF , u)(m−`)` · (πF ,−1)k(m2(m−1)/2+`2(1−m))−`(m−`)(m−`−1)/2.

Proof. The formula for the discriminant of Q is Lemma 3.3.1. The orthogonal decomposition is an elementary calcu-
lation which follows from Lemma 3.3.4 and Lemma 3.4.2.

Next, noticing that u ∈ F we can use Lemma 3.3.4 to compute that the matrix representations of 1
πkF
Q|M1 and

1

πk−1
F

Q|M2 . We see that they are respectively:

u



0 · · · 0 1
0 1 ∗

... . .
.

∗

0 . .
. ...

0 1 ∗
1 ∗ · · · ∗


and

1

u



∗ · · · ∗ a
a 0

... . .
.

. .
. ...

∗ a 0
a 0 · · · 0


,

where a = πF
f(0) = (−1)m. One can explicitly calculate the ∗ terms from the coefficients of f , but what is of particular

importance is that in both cases one finds that aij = alk whenever i+j = l+k. As a consequence of this using Lemma
3.3.7 we can explicitly find a change of basis matrix so that the result is of form:

u



0 · · · 0 1
0 1 0

... . .
.

0

0 . .
. ...

0 1 0
1 0 · · · 0


and

1

u



X 0 · · · 0
0 0 1
... . .

.
1 0

. .
. ...

0 1
0 1 0 · · · 0


.

The determinants of the matrices are then:

(−1)(m−`)(m−`−1)/2um−` and (−1)(`−1)(`−2)/2u−`X,

respectively. Thus knowing D(Q) we have that up to squares X is:

X = (−1)(`−1)(`−2)/2+`(`+1)/2−m`u−`−m−`+m = (−1)m`+1.

The computation of the discriminants of the Mi and then the Hasse invariant of Q are direct calculations.

Remark. If the residue characteristic is not 2 the above gives us a method to calculate the invariants of forms
TrL/F (λx2) for an arbitrary λ.

We now restrict ourselves to the case that the residue characteristic is not 2. In addition to the above notation,
suppose that E/L is a quadratic extension with involution σ. Fix w a non-square element of O∗F . Writing x =
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x1 + x2

√
δE/Eσ consider the quadratic form on E

qE/F,λ(x) = 1
2 TrE/F (λxσ(x)) ' TrEσ/F (λx2

1)− TrEσ/F (λδE/Eσx
2
2).

Then set λ′ = λδE/Eσ , k′ = k and choose u′, v′, `′ so that λ′ =
πkF

u′v′2π`
′
L f
′(πL)

. Let Q′,M ′i be defined similarly to

Q,Mi using λ′ instead of λ so that qE/F,λ(x) = Q(x1) − Q′(x2). Now define Ni = Mi ⊕ −M ′i and Ñ1 = 1
πkF
N1 and

Ñ2 = 1

πk−1
F

N2 their unimodular rescalings.

Lemma 3.4.4. With the notation as above we have the following:
1. If δE/Eσ = w then `′ = ` and u′ = wu. Then:

D(Ñ1) = (−1)`−mw`−m and D(Ñ2) = (−1)−`w−`.

It follows that:

D(qE/F,λ(x)) = (−1)mwmπ
2(mk−`)
F , and

H(qE/F,λ(x)) = (πF , w)km−`.

2. If δE/Eσ = πEσ then `′ = `− 1 and u′ = u. Then:

D(Ñ1) = (−1)u and D(Ñ2) = (−1)m+1u.

It follows that:

D(qE/F,λ(x)) = (−1)mπ
2(mk−`)+1
F , and

H(qE/F,λ(x)) = (πF , u) · (πF ,−1)k(`−m−1)+m+`(`+1)/2.

3. If δE/Eσ = wπEσ then `′ = `− 1 and u′ = wu. Then:

D(Ñ1) = (−1)uw`−m+1 and D(Ñ2) = (−1)m−1uw1−`.

It follows that:

D(qE/F,λ(x)) = (−1)mwmπ
2(mk−`)+1
F , and

H(qE/F,λ(x)) = (πF , u) · (πF , w)(m`−m−`2−1) · (πF ,−1)k(`−m−1)+m+`(`+1)/2.

4. If Eσ/F is still an extension of fields but E = Eσ × Eσ, δE/Eσ = 1, then `′ = ` and u′ = u. Then:

D(Ñ1) = (−1)`−m and D(Ñ2) = (−1)−`.

It follows that:

D(qE/F,λ(x)) = (−1)mπ
2(mk−`)
F , and

H(qE/F,λ(x)) = 1.

Proof. The proof is a direct, although tedious, calculation based on Lemma 3.4.3.

Remark. By combining the results above for totally ramified extensions with those of Lemma 3.4.1 one obtains
results for arbitrary extensions.

In the formulas above the parameter m is determined by the ramification degree of Eσ. The parameters k and `
are controlled together by both the higher ramification degrees of Eσ and the valuation of λ. Finally the square class
of u is controlled by the square class of λ.

The following two lemmas are direct computations.
Lemma 3.4.5. Let F/k be an extension of local fields of residue characteristic 2. Then when viewed as a quadratic
form on F × F the Witt invariant of TrF/k(x2 − y2) is 1.
Lemma 3.4.6. Let F = R or F = C, then as a quadratic form on F × F the Witt invariants of TrF/R(x2 + y2) and
TrF/R(x2 − y2) are 1, and the Witt invariant of TrF/R(−x2 − y2) is −1.
3.5 The Main Results

We recall the main result:
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Theorem 3.5.1. Let Oq be an orthogonal group over a number field k defined by a quadratic form q of dimension 2n
or 2n+ 1, and let (E, σ) be a field extension of k with an involution and of dimension 2n. Then Oq contains a torus
of type (E, σ) if and only if the following three conditions are satisfied:

1. Eφ splits the even Clifford algebra W orth(q) for all σ-types φ of E.
2. If dim(q) is even then δE/k = (−1)nD(q).
3. Let ν be a real infinite place of k and let s be the number of homomorphisms from E to C over ν for which σ

corresponds to complex conjugation. The signature of q is of the form (n− s
2 + 2i, n+ s

2 − 2i)ν if the dimension
is even and either (n− s

2 + 2i+ 1, n+ s
2 − 2i)ν or (n− s

2 + 2i, n+ s
2 − 2i+ 1)ν if ν((−1)nD(q)δE/k) is respectively

positive or negative when the dimension is odd, where 0 ≤ i ≤ s
2 .

Moreover, for any E satisfying condition (2) we have that
√
D(q) ∈ Eφ for every σ-type φ of E.

By Proposition 3.2.13 the entire theorem is reduced to showing that the conditions are equivalent to the existence
of λ ∈ (Eσ)∗ such that the quadratic form qE,λ = 1

2 TrE/k(λxσ(x)) has the same invariants as q. We now proceed
with a series of lemmas which will conclude with the result.
Lemma 3.5.2. Let (E, σ) be an étale algebra over k with involution and let λ ∈ Eσ. For a real infinite place ν of k
the quadratic form qE,λ = 1

2 TrE/k(λxσ(x)) has signature (n+ r
2 −

s
2 , n−

r
2 + s

2 )ν where s (respectively r) is the number
of real embeddings ρ ∈ Homk−alg(E

σ,R) of Eσ which are ramified in E with ρ(λ) > 0 (respectively ρ(λ) < 0).

Proof. This is an immediate check.

Lemma 3.5.3. Let F be a number field, let eν = ±1 be a collection of numbers indexed by the places of F , and let
δ ∈ F . Then there exist λ ∈ F with (λ, δ)ν = eν if and only if the following three conditions are satisfied:

1. All but finitely many eν are 1.
2. An even number of the eν are −1.
3. For each ν there exists λν ∈ Fν with (λν , δ)Fν = eν .

Proof. This is well known. For the result over Q see [Ser73, Thm. 2.2.4], for the result over an algebraic number field
see [O’M00, 71:19a].

Corollary 3.5.4. Let (E, σ) be an extension of a number field k of degree 2n together with an involution. For each
place ν of k let eν ∈ {±1}, and for each infinite place let (sν , rν)ν be such that sν , rν ∈ N and sν + rν = 2n. Then
there exists λ ∈ Eσ with qE,λ having signatures (sν , rν)ν and Hasse invariants eν if and only if the following three
conditions are satisfied:

1. All but finitely many eν are 1.
2. An even number of the eν are −1.
3. For each ν there exists λν ∈ Eσν such that H(qEν ,λν ) = eν and moreover, the signature of qEν ,λν is (sν , rν)ν if ν

is an infinite place of k.

Proof. Supposing there exists a λ, then conditions (1), (2) and (3) are immediate.
Let us prove the converse. For µ ∈ (Eσ)∗ denote by QE/Eσ,µ(x) = 1

2 TrE/Eσ (µxσ(x)) the Eσ-quadratic form on
E. First we recall Theorem 3.3.3 tells us that:

H(qE,µ)ν = H(qE,1)ν
∏
u|ν

H(QE/Eσ,µ)u,

where the u run over places of Eσ over ν. Now for each place u of Eσ define fu ∈ {±1} as follows:
• If u|ν is an infinite place, set fu = H(QE/Eσ,λν )u.
• If u|ν is a finite place and H(qE,1)νeν = 1, set fu = 1.
• If u|ν is a finite place and H(qE,1)νeν = −1, set fu = H(QE/Eσ,λν )u.

We now notice that for each place ν of k we have:∏
u|ν

fµ =
∏
u|ν

H(QEν/Eσν ,λν )u = H(qE,1)νH(qEν ,λν ) = H(qE,1)νeν

and moreover, that only finitely many fu 6= 1. It follows that
∏
u fu =

∏
ν H(qE,1)νeν = 1. Finally we have that if

fu 6= 1 then fu = H(QE/Eσ,λν )µ = (λν , δE/Eσ )u. The values fu thus satisfy the conditions of Lemma 3.5.3 and we
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conclude that there exists λ ∈ Eσ with (λ, δE/Eσ )u = fu. By the choices of the fu we find:

H(qE,λ)ν = H(qE,1)ν
∏
u|ν

H(QEν/Eσν ,λ)u = H(qE,1)ν
∏
u|ν

fu = eν .

Finally, by Lemma 3.5.2 the signature of qE,λ at a real infinite place ν is given by: 1
2

∑
u|ν

mu(H(QEν/Eσν ,λ)u + 1), 1
2

∑
u|ν

mu(H(QEν/Eσν ,−λ)u + 1)

 ,

where mu = 1 if Eu = R× R and mu = 2 if Eu = C. Since H(QEν/Eσν ,λ)u = H(QEν/Eσν ,λν )u for all u it follows that
the signature of qE,λ at ν is the same as that of qEν ,λν , which is to say it is precisely (sν , rν)ν .

Lemma 3.5.5. Let (E, σ) be an étale algebra with involution. Let Ep = ×iEpi be a decomposition into a product of
fields. Then there exists values λ+, λ− ∈ Eσ such that the p-adic part of the Hasse invariant for 1

2 TrE/k(λ±xσ(x)) is
respectively +1,−1 if and only if the involution σ restricts to an automorphism of Epi for one of the constituent fields
Epi of the étale algebra Ep. Moreover, if W (qE,λ)p is independent of λ then W (qE,λ)p = 1 for all λ.

Proof. From Theorem 3.3.3 recall that we have:

W (qE,λ) = CE · CorEσ/k((λ, δE/Eσ )Eσ ),

for some constant CE which does not depend on λ. Thus, both λ± exist if and only if CorEσp/kp((λ, δEp/Eσp
)Eσp ) is not

constant as a function of λ. Writing Eσp = ×jEσpj let ρj be the projection of Eσp onto the jth factor. Using the fact
that the cohomology and the corestriction maps factor as products we have:

CorEσp/kp((λ, δEp/Eσp
)Eσp ) =

∏
j

CorEσpj/kp((ρj(λ), ρj(δEp/Eσp
))Eσpj ).

We thus conclude that both λ± exist if and only if for at least one j the function CorEσpj/kp((ρj(λ), ρj(δEp/Eσp
))Eσpj )

is not constant with respect to λ. The corestriction map being injective for local fields, this is equivalent to
(λj , ρj(δEp/Eσp

))Eσpj being non-constant. This last assertion is the same as saying that ρj(δEp/Eσp
) is a non-square

or that σ acts as the non-trivial field automorphism on the factor Epi of Ep that is over Eσpj .
For the second part, we need to show that whenever W (qE,λ)p is independent of λ then W (qE,λ)p = 1. In-

deed if W (qE,λ)p does not depend on λ, then by the first part of the lemma Ep/E
σ
p has no factors which are

field extensions. Thus the element z appearing in the formula in Theorem 3.3.8 is a square and this implies
W (qE,λ)p = CorEσp/kp((−λf ′z(z), z)Eσp ) = 1.

Corollary 3.5.6. Let E/k be an extension of number fields. Let q be a quadratic form of dimension 2n. Then Oq

has a torus of type (E, σ) if and only if the following three conditions are satisfied:
1. For all primes p of k where none of the factors of Ep are proper field extensions of factors of Eσp , we have

W (q)p = 1.
2. We have (−1)nδE/k = D(q) (equivalently (−1)nδEp/kp = D(qp) for all p).
3. The signature conditions of Theorem 3.5.1.

Proof. By Proposition 3.2.13 we have that Oq has a torus of type (E, σ) if and only if there exists λ ∈ (Eσ)∗ such
that the quadratic form qE,λ = 1

2 TrE/k(λxσ(x)) has the same invariants as q. Thus we must show that the existence
of such a λ is equivalent to the conditions of the corollary.

For each place ν of k set eν = H(q)ν and for each infinite places set (sν , rν)ν to be the signature of q. Then the
eν , (sν , rν)ν satisfy (1) and (2) of Corollary 3.5.4 as they arise from the quadratic form q. We thus have by Corollary
3.5.4 that the question of existence is local.

We now check that conditions (1), (2) and (3) are equivalent to the local conditions on the existence of λν for all
places ν of k. For a finite place ν of k a λν exists with qEν ,λν ' q if and only if a λν exists with both D(qEν ,λν ) = D(q)
and H(qEν ,λν ) = H(q)ν . Theorem 3.3.3 tells us that (2) (at ν) is equivalent to the discriminant condition and Lemma
3.5.5 tells us that (1) (at ν) is equivalent to the Hasse invariant condition. For an infinite place ν we have by Lemma
3.5.2 that the existence of a λν is equivalent to (3) at ν. Note that for infinite places (3) implies (1) and (2). We have
thus shown that the existence of a global λ is equivalent to (1), (2) and (3) for all ν, which completes the result.
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Corollary 3.5.7. Let E/k be an extension of number fields. Let q be a quadratic form of dimension 2n + 1. Then
Oq has a torus of type (E, σ) if and only if the following two conditions are satisfied:

1. For all primes p of k where none of the factors of Ep are proper field extensions of factors of Eσp , we have
W (q)p = 1.

2. The signature conditions of Theorem 3.5.1.

Proof. We proceed as in the previous corollary, except we now have the added flexibility of choosing what the orthogonal
complement of the sub-quadratic space qE,λ looks like. In particular, Oq has a torus of type (E, σ) if and only if
q ' qE,λ ⊕ 〈a〉 for some λ ∈ (Eσ)∗. In order for q and qE,λ ⊕ 〈a〉 to have equal discriminants it is necessary that
a = (−1)nD(q)/δE/k. As this can always be done there is no discriminant condition in this case. Again as above, by
Corollary 3.5.4 the question of the existence of λ is local.

We must find the local condition on Witt invariants. Knowing the discriminants of qE,λ and 〈a〉 we see that
H(qE,λ⊕〈a〉)p depends on λ if and only if H(qE,λ)p does. Hence this also holds for the Witt invariants. Furthermore,
the obstructions to changing Witt invariants arise at the same places as in Corollary 3.5.6. Now, we compute that
W (q)p = W (−aqE,λ)p = W ((−1)n+1D(q)δE/kqE,λ)p (see [Lam05, V.2.9]). Next, by Theorem 3.3.8 we know that if
the Witt invariant of qE,λ is independent of λ then W (qE,λ)p = 1 independently of λ, and consequently independently
of rescaling. In particular it follows that W (q)p = W ((−1)n+1D(q)δE/kqE,λ)p = 1. This gives us the condition on
Witt invariants (1).

Finally, the signature conditions (2) are precisely those of Lemma 3.5.2 together with the sign contribution that
is dictated by the 〈a〉 piece at each ν.

Remark. The condition “Ep contains no field extensions of factors of Eσp ,” can be rephrased as “for all constituent
fields Ei of E and all the primes pi above p in Eσi , there exists at least one pi which does not split in Ei.”

This condition thus says that for some computable collection of primes which divide the discriminant of the
quaternion algebra, none are totally split between Eσ and E. We point out that there is no condition on the behaviour
of these primes between k and Eσ. We also point out that primes which divide the discriminant of E to odd degree
ramify for at least one place, and so automatically satisfy this condition.
Lemma 3.5.8. Let (E, σ) be an étale algebra with involution. Then every reflex algebra of (E, σ) contains an element
y such that y2 = δE/k.

Proof. Suppose E = Eσ(
√
x) with x chosen so that δE/Eσ = x. Then we have δE/k = (−1)nN(x). Let φ be a σ-type

of E. Then let:
y =

∏
ρ∈φ

ρ(
√
x) ∈ Eφ,

and moreover, we see that σ(y) = (−1)ny and yσ(y) = N(x) = (−1)nδE/k. The result follows.

Lemma 3.5.9. Let (E, σ) be an étale algebra over k with involution, and let A be a quaternion algebra over k. Then
Eφ splits A for all σ-types φ of E if and only if we have [Ap] = 1 for every place p where Ep contains no factors which
are quadratic extensions of factors of Eσp .

Proof. We first state some facts concerning the splitting of quaternion algebras. A quaternion algebra is split by an
étale algebra E if it is split by each factor. A quaternion algebra is split by a field L if it is split locally everywhere,
that is, for each prime pL in L. A local field L splits a nonsplit quaternion algebra if and only if L contains a quadratic
subextension.

Thus, every reflex algebra Eφ splits a quaternion algebra A if and only if EΦ does. This happens if and only if
EΦ

p splits A for every prime p of k. Consequently EΦ splits a quaternion algebra A if and only if for each p we have

that Ap nonsplit implies (Ep)φ has even degree for all φ.
It follows from Corollary 3.2.6 that (Ep)φ has even degree for all φ if and only if at least one factor of Ep/E

σ
p is a

field extension. Thus, the only condition for EΦ to split A is that if Ap is not already split, then Ep/E
σ
p must contain

a field extension.

Proof of Theorem 3.5.1. What remains to show is that the conditions of Corollaries 3.5.6 and 3.5.7 in the even and odd
cases, respectively, are equivalent to those of Theorem 3.5.1. We see immediately that the conditions on signatures and
discriminants are the same and that the additional data about discriminants in the even case is provided by Lemma
3.5.8. What remains to show is that the Witt invariant conditions agree.

Lemma 3.5.9 tells us precisely that the condition of the corollaries (for all primes p of k where none of the factors
of Ep are proper field extensions of factors of Eσp , we have W (q)p = 1) is equivalent to the statement that all the

σ-reflex fields of E split W (q). Thus we want to show that we can replace W (q) by W orth(q) in the condition of the
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previous sentence. In the odd dimensional case there is nothing to show as these are equal. For the even case, since
W orth(q) = W (q)⊗k Z(C0

q) and Z(C0
q) ⊂ Eφ it follows that:

W orth(q)⊗k Eφ = W (q)⊗k Z(C0
q)⊗k Eφ = (W (q)⊗k Eφ)⊕ (W (q)⊗k Eφ).

It follows that Eφ splits W (q) if and only if it splits W orth(q). This gives us the equivalence of the final condition of
the theorem with those of the corollaries and thus completes the proof.

3.6 Applications
One of the primary motivations for this work is to understand the possible special fields associated to the special

points on Shimura varieties of orthogonal type (see [Del71]). We now give some applications in this direction.
Corollary 3.6.1. Suppose in Theorem 3.5.1 that k = Q, the signature of q is (2, `) and (E, σ) is a CM-field with
complex conjugation σ. Then Oq contains a torus of type (E, σ) if and only if:

1. For each prime p of Q with local Witt invariant W (q)p = −1 there exists a prime p|p of Eσ that does not split
in E.

2. If ` is even, then D(q) = (−1)(2+`)/2δE/Q. (No further conditions if ` is odd.)

Proof. We have put ourselves in a situation in which the signature condition is automatic. We thus must check only
the remaining conditions. The discriminant condition remains the same, and the Witt invariant condition is precisely
that of Corollary 3.5.6.

Corollary 3.6.2. Suppose that k = Q and the signature of q is (2, `). Let F be a totally real field. Then there exists
a CM-field E with Eσ = F , and the orthogonal group Oq containing a torus of type (E, σ) if and only if:

1. No condition if ` odd.
2. If ` is even, then (up to squares) D(q) = NF/k(δ) for an element δ ∈ F which satisfies the condition that for all

primes p of k with W (q)p = −1 there is at least one prime p|p of F such that δ is not a square in Fp.

Proof. In this case we are now looking for any CM-field extension.
The norm condition in the even dimension is precisely the condition required so that we have a quadratic extension

of the desired discriminant and the desired primes are not totally split. To eliminate entirely the Witt invariant
conditions in the odd case we note that we can simply force these to be ramified in the quadratic extension.

Remark. In order to satisfy the condition that the primes where W (q)p = −1 will not split in the quadratic extension
for δ one is looking to modify δ by an element of square norm which is not a square modulo some prime p over p.
Elements of square norm tend to be contained in quadratic subextensions. Let L ⊂ F be a degree 2 subextension. We
claim that L contains an element which is not a square in OFp. Indeed, if p is ramified or inert over L one may take
any representative of a nonsquare in OL/(p ∩ OL). If p is split take any representative of a uniformizer of OL(p∩OL).
Corollary 3.6.3. Let d ∈ Q be a squarefree positive integer. Consider the quadratic form:

qd = x2
1 − x2

2 + x3
3 − dx2

4.

This implies Spinqd(R) ' SL2(R)2 is associated to the Hilbert modular space for Q(
√
d). Let (E, σ) be a field of

dimension 4 with involution σ. Then Oq has a torus of type (E, σ) if and only if the σ-reflex fields of E all contain

Q(
√
d).

Proof. Firstly, a computation using Proposition 3.2.17 together with the fact that H(qd) = (−1,−d) shows W (qd) = 1.
Thus all the σ-reflex fields Eφ automatically split the even Clifford algebra. Since Theorem 3.5.1 already states that if
Oq has a torus of type (E, σ) then

√
d ∈ Eφ for all φ. It thus remains only to show, that under the present conditions,√

d ∈ Eφ for all φ implies both the discriminant and signature conditions of Theorem 3.5.1 hold. To this end, we
introduce some further notation.

Let m ∈ Q be such that Eσ = Q(
√
m), let τ be the non-trivial automorphism of Eσ and let δ = a+ b

√
m ∈ Eσ be

such that E = Eσ(
√
δ). Let N be the normal closure of E over Q, then one checks that N = Q(

√
m,
√
δτ(δ),

√
δ) has

degree 4 or 8 over Q. Set M = Q(
√
δτ(δ),

√
δ +

√
τ(δ)) ⊆ N . Notice that σ extends to N and that on its restriction

to M we have Mσ = Q(
√
δτ(δ)).

We now must divide the argument into two cases depending on Gal(N/Q). In the first case suppose Gal(N/Q) =
(Z/2Z)2. Then we may assume δ ∈ Q and so the two σ-reflex fields of E are M = Q(

√
δ) and Q(

√
mδ) with their

intersection being Q. It follows that
√
d ∈ Eφ for all φ implies d is a square. Moreover, as E is biquadratic, δE/Q is

a square and E is either CM or totally real. Thus
√
d ∈ Eφ for all φ is equivalent to d = δE/Q mod squares. (Notice

that the case of d a square is technically excluded from the statement of the corollary.)
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Now in the second case suppose Gal(N/Q) 6= (Z/2Z)2. Then Gal(N/Q) is either Z/4Z or D8. In either case a
check shows that M is (up to isomorphism) the unique σ-reflex field for E and Mσ is the only quadratic subextension
of M . Moreover, the discriminant of E is δE/Q = δτ(δ) and Mσ = Q(

√
δτ(δ)) hence

√
d ∈ Eφ for all φ is equivalent

to d = δτ(δ) = δE/Q mod squares. Finally, since b2m = (a2 − δτ(δ)) it follows that δ = a+
√
a2 − δτ(δ). Thus using

that δτ(δ) = r2d > 0 we find that E is either totally complex or totally real.
We have thus shown that in all cases,

√
d ∈ Eφ for all φ implies that d = δE/Q and that E is either totally

complex or totally real. One now observes that E being totally complex or totally real implies the signature condition
and this concludes the proof.

Remark. It follows that the tori in Spinq are all associated to algebras which are two dimensional over Q(
√
d). This is

well known for the tori associated to CM-points, but we have shown the analogous fact also holds for those associated
to so-called almost totally real cycles (for the definition see the discussion following [DL03, Prop. 2.4]). It is worth
noting that these E can never be ATR extensions, that is extensions with only one complex place. It is the reflex
fields of these E which may be ATR extensions.
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CHAPTER 4
Representation Densities for Hermitian Lattices

4.1 Introduction
The issue of computing local densities goes back decades to when they were first introduced by Siegel [Sie35].

These types of computations have many applications beyond those originally envisioned (see for example [GK93,
Kud97b, SP04, GHS08, GV12] among others) and formulas for them have been worked out to cover many cases (see
for example [Pal65, Wat76, Kit93, CS88, Shi99, Kat99, SH00, GY00, Yan04, Cho12]).

The primary application we have in mind in the present work is for computing the arithmetic volumes of the
orthogonal groups that arise from Hermitian lattices. These lattices arise in the study of special points on orthogonal
Shimura varieties and these arithmetic volumes relate, by way of the Hirzebruch-proportionality principle and the
Riemann-Roch theorem (see [Mum77, GHS08]), to the dimensions of spaces of modular forms on the associated
Shimura varieties.

Another important application is their use, by way of the Siegel mass formula, as part of a stopping condition
when enumerating the genus of a lattice. This has important applications in the theory of algebraic automorphic
forms on orthogonal groups (see [Gro99] and [GV12]). The sections of this paper are organized as follows:
(4.2) We introduce the general theory of lattices so far as it is needed in the sequel.
(4.3) We discuss specifically lattices over p-adic rings.
(4.4) We introduce representation densities and develop formulas for computing them.
(4.5) We obtain results about the structure of lattices under transfer.
(4.6) We develop formulas for the representation densities of Hermitian lattices in terms of the invariants of the fields

involved.
(4.7) We discuss the concrete example of Q(µp).

Almost none of the introductory content (Sections 2 and 3) is new, however, we present it in the format we intend
to use in the sequel. Many results on representation densities are known:
• The work of Pall, Watson and the book of Kitaoka [Pal65, Wat76, Kit93] give formulas for βp(L,L) over Zp for

arbitrary L and p.
• The work of Conway and Sloane [CS88] corrected minor errors in the above work verifying their formulas by

checking many cases.
• Katsurada [Kat99] computes βp(L,M) over Z2.
• Shimura [Shi99] computes formulas for βp(L,L) when L is maximal, over Op any finite extension of Zp.
• Hironaka and Sato [SH00] computes βp(L,M) over Zp when p 6= 2.
• The work of Gan and Yu [GY00] gives a high level machinery for computing βp(L,L) when p 6= 2 the recent

work of Cho [Cho12] extends this to work to cover unramified extensions of Z2.
However, formulas for all cases do not yet exist. Our results (Section 4) cover the case of computing βp(L,L) where
L is unimodular over any finite extension of Zp (including especially p = 2). This is the content of Theorems 4.4.11
and 4.4.18. We also give clean reduction formulas to compute βp(L,L) for arbitrary L in terms of the collection of all
of its Jordan decompositions. This is the content of Theorem 4.4.28.

By a Hermitian form we mean a quadratic form of the shape:

qE,λ(x) = TrE/k(λxσ(x)),

where E is an étale k-algebra with involution σ and λ is a unit of Eσ, the subalgebra of elements fixed by σ. By a
Hermitian lattice we mean a fractional ideal Λ of OE in E. In order to study the representation density problem
specifically for Hermitian lattices we must first obtain structure theorems for lattices that arise from transfer. That
is, we compute properties of the Jordan decomposition for lattices whose quadratic forms arise as TrR2/R1

(qR2
). This

is the content of Section 5. Having done this, we can convert the usual formulas for representation densities, which
are expressed in terms of combinatorial data about Jordan decompositions, to formulas that express the density in
terms of properties of the fields involved. This is done in Section 6.
4.2 General Notions of Lattices

In this section we introduce the general theory of lattices. Many good references exist which treat this topic in
a varying degree of generality. See for example [Kit93] and [O’M00]. We shall initially work quite generally, adding

61



more structure as it is required. We shall eventually be most interested in the theory of lattices over Ok, the maximal
order in a number field k. Note that these are not always PIDs, however, their localizations always are.
Definition 4.2.1. Let R be an integral domain and K be its field of fractions. By a lattice Λ over R we mean a
projective R-module of finite rank, together with a symmetric R-bilinear pairing:

bΛ : Λ× Λ→ K,

which induces a duality HomR(Λ,K) ∼= Λ ⊗R K. We shall sometimes denote bΛ(x, y) = (x, y) when the pairing bΛ
is understood. A lattice is said to be integral if (x, y) ∈ R, even if (x, x) ∈ 2R and unimodular if the pairing
induces an isomorphism HomR(Λ, R) ∼= Λ, or more generally a-modular if the pairing induces an isomorphism
HomR(Λ, R) ∼= a−1Λ (for a a projective R-module of rank 1, that is, an invertible fractional ideal of R). Notice that
a-modular is equivalent to having HomR(Λ, a) ∼= Λ by noting that:

HomR(Λ, a) ∼= a⊗R HomR(Λ, R) ∼= a⊗ a−1Λ ∼= Λ.

We will refer to a lattice as modular if there exists some a for which it is a-modular. Note that not all lattices are
modular.

We shall sometimes denote the bilinear form as bΛ(·, ·) when we need to specify the underlying lattice.
Remark. By requiring HomR(Λ,K) ∼= Λ ⊗R K we are explicitly requiring that all lattices be non-degenerate with
respect to the bilinear form bΛ. If the pairing on the ‘lattice’ might not induce an isomorphism the ‘lattice’ shall be
referred to as a module or submodule.

We will at times consider symmetric bilinear forms on an R-module M valued in another R-module M ′, that is,

(·, ·) : M ×M →M ′.

We may even consider such pairings when R is not an integral domain. These do not fit into our definition of lattices
though many notions remain valid. The most common examples of this would be either taking M ′ = R/I, for any
ideal I of R, or reducing all of R,M,M ′ by I.

We will also need the following notion in order to deal with certain complexities in characteristic 2.
Definition 4.2.2. Let R be a ring and let M ′ be an R-module. We define a quadratic module M over R (or
more precisely an M ′-valued quadratic module) to be a module M over R together with a function q : M → M ′

satisfying q(λx) = λ2q(x) for all x ∈M and λ ∈ R and such that

BM (x, y) := q(x+ y)− q(x)− q(y)

is a bilinear pairing. For a quadratic module M we define:

M⊥ := {x ∈M | BM (x, y) = 0 for all y ∈M} and

Rad(M) := {x ∈M⊥ | q(x) = 0}.

A quadratic module is said to be regular or non-degenerate if BM induces a duality with the dual module.
Remark. In the above, one typically takes M ′ = R or M ′ = K, the total ring of fractions or M ′ = R/I.
Notation 4.2.3. Given a lattice Λ, by qΛ or simply q we shall always mean:

qΛ(x) = bΛ (x, x) .

To a lattice we may also associate another bilinear pairing:

BΛ(x, y) := qΛ(x+ y)− qΛ(x)− qΛ(y).

Note well that BΛ(x, y) = 2bΛ(x, y) and that qΛ(x) = bΛ(x, x) as these conventions vary by author. Notice also
that in characteristic 2 one may not recover bΛ from qΛ as this would involve dividing by 2 whereas if 2 ∈ K× then
non-degenerate quadratic modules and lattices are equivalent.
Remark. For both lattices and quadratic modules L⊕M shall always mean an orthogonal direct sum.

This level of generality is too much for many of our purposes. Having the following additional constraints gives
major simplifications to the theory:

1. If Λ is free we may express (·, ·) by a matrix.
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2. If R is a principal ideal domain, the theory of modules simplifies. In particular, every lattice is free. We may
often replace R by its (completed) localizations to attain this.

3. The theory is simpler if 2 is not a zero divisor in R.
Note that some of the results which follow are true without some (or all) of the above constraints, however, for
simplicity of presentation we may sometimes assume them. Note that these assumptions hold when we work over Z,
Q, Zp for all p, Fp where p 6= 2, or the many finite ring extensions of these. These assumptions may fail for Dedekind
domains; however as our study of these is done almost entirely with their localizations this will not be an issue. We
will occasionally still need to work in characteristic 2 and it will be apparent when this is happening.
Definition 4.2.4. Assume that Λ is free and let X = {x1, . . . , xn} be a basis for Λ. We write:

A = AX = ((xi, xj))i,j

for the matrix corresponding to this lattice and choice of basis.
Definition 4.2.5. Given a lattice Λ we define the dual lattice to be:

Λ# = {x ∈ Λ⊗K | (x, y) ∈ R for all y ∈ Λ}

together with the induced pairing.
Definition 4.2.6. A submodule L ⊂ Λ is said to be primitive if KL ∩ Λ = L.

A collection of elements {x1, . . . , xm} is said to be primitive in Λ if the collection can be extended to a basis for
Λ.
Proposition 4.2.7. Suppose R is a PID, then a collection {x1, . . . , xm} is primitive if and only if 〈x1, . . . , xm〉R ⊂ Λ
is primitive.

Proof. The forward direction is clear. For the converse we set:

L = 〈x1, . . . , xm〉R

and consider the exact sequence:
1→ L→ Λ→ Λ/L→ 1.

Since L is primitive, Λ/L is torsion free, hence free. We may thus split the sequence and write:

Λ = L⊕ (Λ/L).

A choice of basis for Λ/L gives us the desired extension of the basis for L.

Definition 4.2.8. A submodule L ⊂ Λ is said to be isotropic if (·, ·) |L = 0. It is said to be anisotropic if it has no
isotropic submodules. A projective submodule is said to be pseudo-hyperbolic or if it has an isotropic submodule
of half its rank. A projective submodule is said to be hyperbolic if it is generated by two isotropic submodules.
Definition 4.2.9. Lattices Λ have the following invariants:
• For Λ projective, the rank rΛ of Λ as an R module.
• For Λ integral, the discriminant group DΛ = Λ#/Λ together with the induced pairing mapping into K/R.
• For Λ free, the discriminant δΛ = det(AX) ∈ K/(R×)2 for a choice of basis X.

If Λ is not free we have at our disposal the discriminant D(q) of Λ⊗K which is an element of K/(K×)2, and the
discriminant ideal which is the R ideal generated by det(AX) running over all maximal linearly independent
subsets X of Λ. Alternatively, for a projective module over a Dedekind domain, one may take the discriminant
ideal to be the product of the local discriminant ideals.
• For Λ integral, the level or stuffe of Λ is NΛ, the annihilator ideal of DΛ. More precisely:

NΛ = {λ ∈ R | λx ∈ Λ for all x ∈ Λ#}.

Over a PID this is the ‘minimal’ N such that NA−1
X is integral.

• Supposing Λ⊗K is isomorphic to the diagonal form (ai)i and denoting the Hilbert symbol by (·, ·)K , the Hasse
invariant is

H(Λ) = H(q) =
∏
i<j

(ai, aj)K ∈ H2(K, {±1}).

(See [Ser73, Ch. III] and [Ser79, Ch. XIV].)

63



• The Witt invariant, W (Λ) = W (q) is the class in H2(K, {±1}) of either the Clifford algebra or the even
Clifford algebra of Λ when the parity of rΛ is, respectively, even or odd.
• For each embedding R ↪→ R we have an associated signature (the dimension of any maximal isotropic R-

submodule of Λ⊗R R).
• The norm ideal NΛ is the R-ideal generated by {(x, x) | x ∈ Λ}.
• The scale ideal SΛ is the R-ideal generated by {(x, y) | x, y ∈ Λ}.

Note that NΛ ⊂ SΛ and 2SΛ ⊂ NΛ.
• The norm group nΛ is the group: {(x, x) | x ∈ Λ}+ 2SΛ, it is an additive subgroup of K.
• If R is Noetherian consider mΛ ⊂ nΛ the largest R-ideal contained in nΛ. Then for π an ideal of R, define the
π-weight ideal to be the ideal wΛ,π = πmΛ + 2SΛ. When we are working over a local ring we shall denote this
by wΛ as π is understood to be the unique maximal ideal.

Remark. It is clear that the above are all invariants as they are defined naturally. The extent to which these determine
a lattice depends largely on the setting. They are typically insufficient to characterize a lattice in the context in which
we are working.
Proposition 4.2.10. If X = {x1, . . . , xn} is a basis for Λ then X# = A−1

X X = {x#
1 , . . . , x

#
n } is a basis for Λ# with

bΛ(xi, x
#
j ) = δij and AX# = A−1

X .
This is a straight forward check.

Proposition 4.2.11. If L ⊂ Λ is isotropic then L′ = K · L ∩ Λ is isotropic and primitive.
This is clear.

Proposition 4.2.12. Suppose R is a PID. If L ⊂ Λ is pseudo-hyperbolic, then (−1)rank(L)/2δL is a square.
If L ⊂ Λ is isotropic, then there exists L ⊂ L′ ⊂ Λ with L′ pseudo-hyperbolic and primitive (L′ need not be an

orthogonal direct factor of Λ). Moreover, δL′ |δΛ.

Proof. Suppose L ⊂ Λ is isotropic and without loss of generality primitive. We wish to find a basis for Λ with respect
to which the matrix for the bilinear form is of the shape:( 0 A 0

At X Y
0 Y t Z

)
.

To do this, first select an arbitrary basis {ỹ1, . . . , ỹ`} for L and an extension {ỹ1, . . . , ỹ`, z̃1, . . . z̃m} to a basis for Λ.
Next, perform an invariant factor decomposition (see [Jac85, Thm. 3.8]) of the matrix:

(bλ (ỹi, z̃j))ij .

This corresponds to an elementary change of basis of both the span of {ỹ1, . . . , ỹ`} and the span of {z̃1, . . . , z̃m}.
The new bases {y1, . . . , y`} and {z1, . . . , zm} combine to provide one in which the bilinear form has the desired shape.

We now take L′ as the span of {y1, . . . , y`, z1, . . . , z`}. The assertion about discriminants is now a consequence of

elementary fact that the determinant of the block matrix
( 0 A 0
At X Y
0 Y t Z

)
is (−1)n det(A)2 det(Z), where A is n by n.

Remark. The above proof gives us slightly more information about what assumptions can be made about the shape
of the matrix for the bilinear form.

In some circumstances one may be able to obtain even more refined structure theorems. We have for example the
following claim:
Proposition 4.2.13. Over Z there exist two isomorphism classes of integral pseudo-hyperbolic lattices of dimension
2n with square free discriminants. Letting H be the hyperbolic quadratic module whose matrix is given by ( 0 1

1 0 ) and H ′

be the pseudo-hyperbolic quadratic module whose matrix is given by ( 0 1
1 1 ), then the isomorphism classes are precisely

Hn and Hn−1 ⊕H ′.
This is a straight forward check.

Proposition 4.2.14. Every unimodular sublattice L ⊂ Λ of an integral lattice is an orthogonal direct summand. More
generally, if SΛ = a then every a-modular sublattice L ⊂ Λ is an orthogonal direct summand.

Proof. We first give a concrete proof assuming R is a PID. In this case the second statement reduces to the first by
rescaling the form. We remark that L is primitive.
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Let X = {x1, . . . , xl} be a basis of L, and Y = {x1, . . . , xl, y1, . . . , yk} be an extension of X to a basis for Λ.

Write AY =

(
AX V
V t U

)
. Since A−1

X V is a matrix with entries in R we may use the change of basis matrix:

(
Id` −A−1

X V
0 Idk

)
.

This corresponds to a basis {x1, . . . , xl, ỹ1, . . . , ỹk} and we find Λ = L ⊥ 〈ỹ1, . . . , ỹk〉.
Working more generally, that is without assuming the lattice is free, given any z ∈ Λ the assumption that SΛ = a

implies bΛ(z, ·) ∈ HomR(Λ, a). It then follows that bΛ(z, ·)|L ∈ HomR(L, a). Now, by the a-modularity of L we have
HomR(L, a) ' L and thus bΛ(z, ·)|L ∈ HomR(L, a) ' L. We may therefore conclude that there exists x ∈ L with
bΛ(z − x, ·)|L = 0. It follows that z − x ∈ L⊥ and hence z = x+ (z − x) is a decomposition of Λ into L⊕ L⊥.

4.3 Lattices over p-adic Rings
Here we enter into the improved setting of having R a (complete) local ring whose maximal ideal is principal,

generated by π. More specifically we intend to work with a p-adic ring, by which we mean the maximal order of a
p-adic field (a finite extension of Qp). We shall denote by ν = νπ the π-adic valuation.

In this context we have the following important result to recall:
Theorem 4.3.1. A quadratic module over a p-adic field K is entirely determined by its rank, its discriminant and
its Hasse invariant.

See [O’M00, Thm 63:20].
Notation 4.3.2. For a, b ∈ R, with ab 6= 1, we shall denote by La,b the binary lattice whose bilinear form has matrix
( a 1

1 b ).
For 0 6= c ∈ R we shall denote by Uc the unary lattice whose bilinear form has matrix (c).
For a lattice L and an element r ∈ R we shall denote by rL the lattice whose underlying module is L but whose

bilinear form is r times that of L, that is, brL = rbL.

Lemma 4.3.3.
1. La,b = Uc1 ⊕ Uc2 if and only if one of a, b or 2 is in R×.
2. The discriminant of La,b is −(1− ab).
3. The Hasse invariant of La,b is (a, 1− ab)p = (b, 1− ab)p.
4. Let M be any integral lattice, suppose β = bM (x, x) for some x ∈ M and u ∈ R×, if La+u−1β,b is unimodular

then:
uLa,b ⊕M = uLa+u−1β,b ⊕M ′

for some lattice M ′. In the case b = 0 then uLa+u−1β,b is unimodular and moreover M ′ 'M .

Proof. For the first point, in the forward direction use the fact that every unimodular sublattice is a direct summand,
together with the determinant of the matrix. For the other direction, use the fact that if none of a,b or 2 is a unit,
then NLa,b 6= R and is unimodular whereas if Uc1 ⊕ Uc2 is unimodular then NUc1⊕Uc2 = R.

The second point is a direct calculation. For the third, notice that over K we have the change of basis:(
1 0
−a−1 1

)(
a 1
1 b

)(
1 −a−1

0 1

)
=

(
a 0
0 b− a−1

)
.

Thus the Hasse invariant is (a, b− a−1)p = (a, 1− ab)p (using that (a,−a)p = 1).
The argument for the forth point is [O’M00, 93:12]. If x, y is the basis for uLa,b and z ∈M satisfies bM (z, z) = β,

then the lattice spanned by x+z, y is isomorphic to uLa+u−1β,b, and as it is unimodular we have by Proposition 4.2.14
that it is a direct factor of uLa,b ⊕M . For the special case of b = 0, consider φ : M → uLa+u−1β,b ⊕M ′ given by
φ(u) = u− (u, z)y. One checks easily that this is an isometry, and that the image of M is in M ′. The existence of an
inverse map φ′(u) = u+ (u, z)y mapping M ′ to M implies φ is an isometry between M and M ′.

Lemma 4.3.4. Every lattice Λ over a p-adic ring R can be expressed as:

Λ = L⊕ Λ′,

where L has rank 1 or 2. Moreover, L can be taken to be a-modular for some a. Note that neither L nor Λ′ are unique.

Proof. Pick either x ∈ Λ such that qΛ(x)R = SΛ or x, y in Λ such that (x, y)R = SΛ. This is possible since as we are
working over a discrete valuation ring, and SΛ has generators {bΛ(xi, yi)}, the principle of domination tells us that
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there exists a single pair (xi, yi) with bΛ(xi, yi)R = SΛ. If for such a pair qΛ(xi)R = SΛ work only with xi, otherwise,
work with the pair (xi, yi).

In the first case, the lattice spanned by x is an SΛ-modular direct factor. In the second case, the lattice spanned
by x, y is an SΛ-modular direct factor. Here we are using that in the respective cases the matrix is of the form:

(πr) or

(
aπr+1 πr

πr bπr

)
,

where SΛ = πrR and a, b ∈ R and that these matrices give πr-modular lattices. The sublattice then splits as a direct
factor by Proposition 4.2.14.

Theorem 4.3.5 (Existence of Jordan decompositions). Every lattice Λ over a p-adic ring R can be expressed as:

Λ ' ⊕
i
Li,

where the Li are ai-modular, with the ai distinct. Such a decomposition is called a Jordan decomposition. Note
that such decompositions are not in general unique, but see Theorem 4.3.14.

Proof. This follows immediately by induction from the lemma above, and by grouping the factors which have the same
modularity.

Example. As an example, the above results and some straight forward computations allow one to check that every
lattice over Z2 is a direct sum of lattices of the form 2kUc and 2kLa,b for k ∈ Z, c ∈ Z×2 and a, b ∈ {2, 4, 6, 8}. See
Theorem 4.3.12 for a more thorough classification.

It should be remarked that in spite of the following “Witt type theorem,” a decomposition Λ = L1⊕K1 = L2⊕K2

with L1 ' L2 does not imply K1 ' K2.
Theorem 4.3.6 (Kneser). Let R be a local ring with unique maximal ideal p. Let L1, L2 ⊂ Λ be submodules of Λ and
F ⊂ Λ be a subset satisfying:

1. 1
2qΛ(F ) and bΛ (F,Λ) are both subsets of R,

2. Hom(L1, R),Hom(L2, R) ⊂ {bΛ(x, ·) | x ∈ F}, where bΛ(x, ·) is viewed as a map from Λ to R, and
3. σ : L1 → L2 an isometry such that σ(x)− x ∈ F for all x ∈ L1.

Then σ can be extended to an isometry of Λ which acts trivially on F⊥. Moreover, if F contains an element z such
that:

1. qΛ(z) ∈ 2R× and,
2. if the residue field is F2, then also (F, z) ⊂ p,

then σ is induced by products of reflections in elements of F .

Proof. See [Kit93, Thm 1.2.2] or [Kne02, Satz 4.3].
We may reduce to the case where we have the ‘moreover’ assumption as follows: adjoin a hyperplane H, spanned

by x, y, to Λ and R(x + y) ⊂ H to F , Rx to both L1 and L2 and extend σ by setting σ(x) = x. As (x + y)⊥ would
include x− y, the isometry which the theorem guarantees exists must be trivial on both x and x− y and hence y and
thus on H. Hence σ has a restriction to the original Λ , though no longer coming from reflections in F .

Now we suppose we satisfy the ‘moreover’ assumptions. First we claim that for all ` ∈ L1 there exists f ∈ F
such that 1

2q(f), (f, `), (f, σ(`)) ∈ R×. Indeed, let z1 be the element from the moreover statement, z2 be such that
(`, z2) ∈ R× and z3 be such that (σ(`), z3) ∈ R×, and if |R/π| 6= 2 suppose a2 6= 1 (mod π) then one of:

(σ(`)− `), z1, z2, z3, z1 + z2, z1 + z3, z2 + z3, z1 + z2 + z3, az1 + z2, az1 + z3, az1 + z2 + z3

satisfies the condition. One uses the fact that if a does not exist we have (x, F ) ⊂ π.
For an element y ∈ Λ with 1

2q(y) ∈ R× define the reflection in y as τy(`) = `− 2(y, `)q(y)−1r.
We proceed by induction on the rank of L1. Suppose the rank of L1 is 1 and that it is generated by `. There are

two cases. If we may take f = σ(`)− ` to be the element above, then we find:

τf (`) = σ(`).

Otherwise, let f be the element from above and set g = σ(`)− τf (`). One then computes that 1
2q(g) ∈ R× and

τg(τf (`)) = σ(`).
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This completes the rank 1 case.
Suppose L has rank r. Let ` ∈ L1 be a primitive element, and suppose f is the element guaranteed to exist as

above. Set L′1 = {y ∈ L1 | (y, f) = 0}. Since (f, `) ∈ R× then L′1 is primitive of rank r−1. By induction there exists τ

generated by reflections in F such that τ |L′1 = σ|L′1 . Now, taking instead τ−1σ for σ, F ∩L′1
⊥

for F and L1 = R`, we

find that we again satisfy the conditions of the theorem. Hence there exists τ ′ with τ ′(`) = τ−1σ(`). Since L′ ⊂ F⊥

we have τ ′|L′1 = Id. It follows that τ ◦ τ ′|L1
= σ.

Corollary 4.3.7. Suppose R is a p-adic ring. Let M1,M2 be integral R lattices and N1 = N2 unimodular lattices
with NN1

⊂ (2). Then N1 ⊕M1 ' N2 ⊕M2 implies that M1 'M2.

Proof. Identify Λ := N1⊕M1 with N2⊕M2 via any isomorphism. In the notation of the above theorem, take L1 = N1,
L2 = N2, and F = Λ. The map which identifies N1 and N2 thus extends to an isometry of Λ which necessarily maps
M1 = N⊥1 to N⊥2 = M2.

Lemma 4.3.8. For p 6= 2 every unimodular lattice Λ over a p-adic ring R with rank at least 3 has a hyperbolic
sublattice.

Proof. Using Hensel’s lemma and the existence of an isotropic vector mod π we conclude there exists an isotropic vector
in Λ. By Propositions 4.2.12 and 4.2.14 and the unimodularity of Λ we conclude that Λ has a pseudo-hyperbolic direct
factor. An easy calculation shows that since 2 is invertible all unimodular pseudo-hyperbolic lattices are hyperbolic.

Corollary 4.3.9. For p 6= 2 and a p-adic ring R, the isomorphism classes of unimodular lattices Λ over R are
classified by their rank and discriminant.

Proof. See [O’M00, 92:1].
By induction, we may show Λ = Hn⊕L, where L is unimodular and has rank 0,1 or 2. It then suffices to observe

that the discriminant classifies binary and unary unimodular forms when p 6= 2.

Lemma 4.3.10. Suppose p = 2, then the isomorphism classes of unimodular lattices Λ over R are determined by
their rank, discriminant, Hasse invariant and norm groups.

Proof. See [O’M00, 93:16].
We assume that L and K have the same rank, discriminant, Hasse invariant and norm groups. By Corollary 4.3.7

we may replace L and K by L⊕H and K ⊕H, respectively, so that we may also assume that qL(L) = qK(K) = nL.
We will show that:

L⊕HrankL = L⊕−L⊕ L = K ⊕−L⊕ L = K ⊕HrankL

and hence hyperbolic cancellation (Corollary 4.3.7) on HrankL will allow us to conclude K = L. Indeed, both K⊕−L
(respectively, L⊕−L) is pseudo-hyperbolic. Now using that q(K ⊕−L) ⊂ q(L) (respectively, q(L⊕−L) ⊂ q(L) and
q(L⊕−L) ⊂ q(K)) we may change the bases for K⊕−L⊕L, by Lemma 4.3.3 (4), so that K⊕−L⊕L = HrankL⊕L
. In the respective cases the same argument shows L⊕−L⊕ L = HrankL ⊕ L and K ⊕−L⊕ L = HrankL ⊕K. This
concludes the result.

Lemma 4.3.11. For a lattice L over a 2-adic ring letting aπt be an element of minimal valuation in nL we find:
nL = aπtR2 + wL.

Proof. See [O’M00, 93:3].
Certainly we have aπtR2 ⊂ nL, and by definition wL ⊂ nL, hence:

aπtR2 + wL ⊂ nL.

Conversely, any element z ∈ nL of valuation at least t has an expression of the form:

z = aπtx2 + aπt+1y2 (mod 2πt).

Since aπtx2, 2πt ∈ nL we have aπt+1y2 ∈ nL.
We claim πt+1y2z ∈ nL for all z ∈ R. Indeed, write πt+1y2z = aπtu2 + aπt+1y2v2 (mod 2πt) with u, v ∈ R. By

the subgroup structure of nL we find πt+1y2z ∈ nL.
We now claim aπty2z ∈ nL for all z. By solving the equation:

aπty2z = aπtv2 (mod πt+1)
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we see that as aπtv2 ∈ nL by the subgroup structure of nL we find πty2z ∈ nL. It follows that πty2 ⊂ mL . Therefore
πt+1y2z ∈ wL. This concludes the result.

Theorem 4.3.12. Let L be a unimodular lattice over a 2-adic ring R with uniformizer π. Fix α ∈ R× such that
δL = −(1 + απr) modulo (R×)2, such that furthermore either r is odd or r = ν(4). Fix also a ∈ R× such that
aπt ∈ qL(L) is an element of minimal valuation represented by L. Then wL = (πs), where r − t ≥ s ≥ t and s+ t is
odd or s = ν(2). Let ρ ∈ R/πR be such that x2 + x+ ρ is irreducible mod π.

Then L is isomorphic to precisely one of:

1. Hn ⊕
(
πs 1
1 0

)
⊕
(
aπt 1
1 −a−1απr−t

)
,

2. Hn ⊕
(
πs 1
1 4ρπ−s

)
⊕
(
aπt 1
1 −a−1(α− 4ρ)πr−t

)
,

3. Hn ⊕
(
πs 1
1 0

)
⊕ (−δL),

4. Hn ⊕
(
πs 1
1 4ρπ−s

)
⊕ (−(1− 4ρ)δL),

5.

(
aπt 1
1 −a−1απr−t

)
or

6. (−(1− απr)).

Proof. This is essentially the content of [O’M00, 93:18].
This is a consequence of Lemma 4.3.10. One only needs to observe that these examples cover all possible

combinations of ranks, discriminants, Hasse invariants and norm groups. Lemma 4.3.11 allows one to check we
have all of the possible norm groups. The observation that (1 + 4ρ, π)p = −1 allows one to check we have all possible
Hasse invariants.

Corollary 4.3.13. Every unimodular lattice Λ over a 2-adic ring R with rank at least 5 has a hyperbolic sublattice.
See also [O’M00, 93:18v].
It should be emphasized before stating the following result that Jordan decompositions over 2-adic rings are not

typically unique.

Theorem 4.3.14 (Uniqueness of Jordan decompositions). Let Λ =
r1
⊕
i=1
Li =

r2
⊕
j=1

Kj be two Jordan decomposition of

a lattice over a p-adic ring with Li being ai-modular and Kj being bj-modular, ai1 |ai2 for i1 < i2, and bj1 |bj2 for
j1 < j2. Then:

1. r1 = r2,
2. ai = bi,
3. rankLi = rankKi,
4. NLi = ai if and only if NKi = ai, and
5. if p 6= 2 then Li ' Ki.

Proof. See [O’M00, 91:9].
Let a ∈ R. Consider Λ(a) = {x ∈ Λ | (x,Λ) ⊂ (a)} = aΛ# ∩ Λ. Observe that forming (a) commutes with

orthogonal direct sums, and that for a modular lattice L(a) = L if and only if L is a-modular. Otherwise L(a) ⊂ πL.
It follows that the sublattices Li and Kj which are the (πr)-modular in the Jordan decomposition are characterized

modulo πr+1 by the reduction modulo π of 1
πr (L(πr)). In particular, the rank, discriminant, and whether or not the

diagonal contains a unit modulo π are determined. This completes the proof.

4.4 Local Densities
We now move from general theory to a more particular problem, that is, we now focus our attention on what are

called interchangeably representation densities, local densities or arithmetic volumes. Throughout this section we shall
continue to assume that R is a p-adic ring, with maximal ideal p. We shall denote by π a uniformizer and q = |R/pR|
the size of the residue field, which is finite by assumption. We shall fix an additive Haar measure on R, normalized so
that the volume of R is 1. In this context we continue to have that all lattices are free.
4.4.1 Notion of Local Densities

Fundamentally the notion of representation density has to do with assigning a volume to sets of the form:

Isom(Λ1,Λ2) = {φ ∈ HomR(Λ1,Λ2) | bΛ2(φ(x), φ(y)) = bΛ1(x, y)},

the isometric embeddings from Λ1 to Λ2. Such sets are typically infinite, so simply counting elements is insufficient.
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This problem can be approached both locally and globally and there are a number of different ways to formulate
the notion. The various definitions are typically, up to constants, equivalent. We take the following definition of local
density; for some the α definition is more natural.
Definition 4.4.1. Let L and M be lattices over a p-adic ring R, with bilinear forms bL, bM . Consider the map
FbL : HomR(M,L)→ Sym2(M∨) which takes the maps from M to L to the space of symmetric bilinear forms on M
given by (FbL(φ))(x, y) = bL(φ(x), φ(y)). Some references define the local density at R to be:

αR(bM , bL) = αR(M,L) =
1

2
lim

U→bM

∫
F−1
bL

(U)
dX∫

U
dT

.

Here dX =
∏
ij dxij and dT =

∏
i≤j dtij are the standard measures when viewing the spaces as matrix spaces with

respect to some chosen basis. The limit is being taken over the directed family of open subset U of Sym2(M∨)
containing bM . By [Han05, Lemma 2.2] this does not depend on the choice of integral basis.

We define the local density to be:

βR(M,L) = (q− rank(M)vπ(2))αR(M,L).

When R = Op one often denotes the local densities by βp rather than βR.
The above definition may seem quite unwieldy and difficult to compute. The following proposition gives a more

concrete interpretation of these values.
Proposition 4.4.2. Let R be a p-adic ring with residue field Fq and uniformizer π. Let M and N be two quadratic
modules over R of ranks m and n, respectively. Fix h ∈ Z sufficiently large so that πh−1qM (M#) ∈ (2) and
πh−1qN (N) ∈ (2), and let r, r′ ∈ Z be such that r, r′−ν(2) ≥ h. Denote ξr = (qr)m(m+1)/2−mn then define BR(M,N, r)
to be:

ξr · |{φ ∈ HomR(M,N/πrN) | bN (φ(x), φ(x)) = bM (x, x) (mod 2πr)}|

and define AR(M,N, r′) to be:

ξr′ ·
∣∣∣{φ ∈ HomR(M,N/πr

′
N) | bN (φ(x), φ(y)) = bM (x, y) (mod πr

′
)}
∣∣∣ .

These values are independent respectively of r and r′. Moreover,

βR(M,N) = BR(M,N, r) and αR(M,N) = AR(M,N, r′).

Proof. These results are reasonably well known, and can be deduced from [Han05, Lemma 3.2] and [Kit93, Lemmas
5.6.1 and 5.6.5] or from [Kne02, 15.3-5 and 33.5] or alternatively from the proof of [Kit88, Prop 1].

We first claim that our choice h is such that the isomorphism class of M is determined by the reduction modulo
r′ of the bilinear form. To this end, it suffices to show that this holds for any expression of M = ⊕Li, where the
Li are binary and unary modular lattices. Notice that if there exists a unary factor (aπt) (with ν(a) = 0) then by
definition r′ ≥ 2ν(2) + t + 1. Hence, for unary lattices we can determine a modulo 4π, and hence we can determine
the isomorphism class. Next, notice that if there exists a binary factor πt

(
aπs 1

1 bπu
)

(with ν(a), ν(b) = 0, and s, u ≥ 1)

then now by definition r′ ≥ 2ν(2)−min(s, u)+ t+1 and hence we can determine the discriminant of
(
aπs 1

1 bπu
)

modulo
4π, the Hasse invariant and the norm group, and hence the isomorphism class.

We now show that AR(M,N, r′) is independent of r′. Let bM,i be a set of bilinear forms on M whose reductions

modulo πr
′+1 forms a complete set of representatives of bilinear forms modulo πr

′+1 (up to equality) whose reduction
modulo πr

′
equals bM . There are precisely qm(m+1)/2 such bM,i. Let Mi denote the lattice M with quadratic form

bM,i.

We claim AR(Mi, N, r
′ + 1) is independent of i. It suffices to show that GL(M/πr

′+1M) acts transitively on the
bM,i, or equivalently that Mi and M are isomorphic as lattices. This follows since the isomorphism class of M is

determined by its reduction modulo πr
′
. The value AR(Mi, N, r

′ + 1) is therefore independent of i. It follows from
the fact that the map:

ti{φ ∈ HomR(Mi, N/π
r′+1N) | bN (φ(x), φ(y)) = bMi(x, y) (mod πr

′+1)}
↓

{φ ∈ HomR(M,N/πr
′
N) | bN (φ(x), φ(y)) = bM (x, y) (mod πr

′
)}
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is qmn to 1 we may now conclude that AR(M,N, r′) = AR(M,N, r′ + 1) and is thus independent of r′.
A similar argument covers the case of BR(M,N, r).
Next, we cover the claim that αR(M,N) = AR(M,N, r′). For the integral definition one may take for U those

sets of the form bM + πr
′
Sym2(M∨) as these form a fundamental neighbourhood system. For such U the collection

F−1
bL

(U) becomes precisely the maps which reduce modulo πr
′

to those contributing in the definition of AR(M,N, r′).

The volume of U is then qr
′mn whereas the volume of F−1

bL
(U) is precisely AR(M,N, r′)qr

′m(m+1)/2. From this we
conclude the result.

The difference between the definition of AR(M,N, r′) and BR(M,N, r′) is entirely captured in a slight change in
flexibility on the diagonal. This leads to a difference of a factor of q− rank(M)vπ(2) between the two terms. This allows
us to conclude that βR(M,N) = BR(M,N, r). Notice in particular that an element of the set defining BR(M,N, r)
determines an element of the set defining AR(M,N, r − ν(2)) and that this mapping is qrank(M)vπ(2) to 1.

Remark. It can be useful to think of the local density as counting the number of elements of Isom(M,N), or of it as
being the probability that a linear map is in Isom(M,N) (even though it is not literally either of those things, it is a
rescaling of these numbers when one thinks of L/πr for large r).
Proposition 4.4.3. Suppose that L = L1 ⊕ L2 and the following hypothesis is satisfied:

L1 ⊕ L2 'M1 ⊕M2 and L1 'M1 implies L2 'M2.

Then for any lattice L3 we have the following formula:

βR(L1 ⊕ L3, L) = βR(L1, L)βR(L3, L2).

Proof. This follows immediately from the description in terms of counting isometries and book-keeping the rescaling
constants.

Remark. This type of ‘cancellation law’ does not hold in general, nonetheless, one can use cases where it does hold
(see for example Corollary 4.3.7) as a way to inductively prove formulas for representation densities.
4.4.2 Computing Local Densities

Computing local densities is in general considered to be highly technical. The resulting formulas become quite
complicated in the general case. In spite of this, in this section we will compute the local densities βp(L,L) for an
arbitrary lattice over an arbitrary p-adic ring. The combinatorics behind actually carrying out the computation in any
given case will require detailed understanding of the isomorphism class of the given lattice. In particular one needs to
be able to compute the set of all possible Jordan decompositions. We will thus not present complete formulas for this
in the most general cases. Instead, we give a reduction formula in terms of these combinatorics and formulas for all
the terms that can appear.

The general structure of this section is as follows:
1. Reduce the problem for (πt)-modular lattices to unimodular lattices. See in particular Proposition 4.4.4.
2. Reduce the problem for unimodular lattices to the special case of certain lattices of rank at most 4, see Theorem

4.4.11.
3. Compute the representation density for these special cases. This is done in a series of lemmas culminating in

Theorem 4.4.18.
4. Reduce the general problem for an arbitrary lattice to the combinatorial problem of understanding all the Jordan

decompositions together with the problem for modular lattices. See Theorem 4.4.28.

� Rescaling
Our first step is an elementary lemma which allows us to compute the local density of rescaled lattices.

Proposition 4.4.4. Let R be a p-adic ring with field of fractions K. Let M and L be lattices over R and c ∈ K×.
The following formula holds:

βR(M,L) = |c|m(m+1)/2
π βR(cM, cL),

where m = rank(M).

Proof. This is an elementary computation, see [Han05, Lemma 3.1].

As a consequence of the above proposition, it is possible to compute βR(L,L) in the case of a-modular lattices
simply by treating the case of unimodular lattices.
Remark. There is no reasonable formula for βR(cM,L) or βR(M, cL) in terms of βR(M,L) unless we make further
assumptions. In particular some of these could be 0 while the others are not.
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� Unimodular Lattices
We now discuss the problem of computing the local density βR(L,L) for a unimodular lattice.

Lemma 4.4.5. Suppose L is any unimodular lattice and L(e) is any even unimodular lattice. The following formula
holds:

βR(L(e)⊕ L,L(e)⊕ L) = βR(L(e), L(e)⊕ L) · βR(L,L).

Proof. This follows immediately from Corollary 4.3.7 and Proposition 4.4.3.

Lemma 4.4.6. Suppose L is a unimodular lattice and L(e) is any even unimodular lattice of rank 2n. Set Λ = L⊕L(e)
then define:

L(2) := {x ∈ L | (x, x) ∈ 2R} and Λ(2) := {x ∈ Λ | (x, x) ∈ 2R}.

Then L(2) and Λ(2) are lattices, Λ(2) = L(e)⊕ L(2), and:

βR(L(e),Λ) = [L : L(2)]−2nβR(L(e),Λ(2)).

Proof. Denote by ξr = (qr)n−2n2−2n`. Now pick r sufficiently large so that πrL ⊂ L(2). It follows that βR(L(e),Λ) is
given by:

ξr · |{φ ∈ HomR(L(e),Λ/πrΛ) | q(x) = q(φ(x)) (mod 2πr)}| ,

and βR(L(e),Λ(2)) is given by:

ξr ·
∣∣∣{φ ∈ HomR(L(e),Λ(2)/πr(Λ(2))) | q(x) = q(φ(x)) (mod 2πr)}

∣∣∣ .
Then because L(e) is even, it is clear that βR(L(e),Λ) can be computed as:

ξr ·
∣∣∣{φ ∈ HomR(L(e),Λ(2)/πrΛ) | q(x) = q(φ(x)) (mod 2πr)}

∣∣∣ .
For each element φ ∈ HomR(L(e),Λ(2)/πrΛ), there are precisely [L : L(2)]2n many extensions of φ to a map in
HomR(L(e),Λ(2)/πrΛ(2)), all of which automatically satisfy q(x) = q(φ(x)) (mod 2πr) as that condition was already
well-defined. Comparing formulas completes the proof.

Lemma 4.4.7. Suppose L is a unimodular lattice of rank ` and L(e) is any even unimodular lattice of rank 2n.
Define Λ, L(2) and Λ(2) as above. Consider the vector spaces V1 = L(e)/πL(e) and V2 = Λ(2)/πΛ(2) together with
the quadratic form Q̃i(x) = 1

2 (x, x) (mod π) for their respective pairings valued in R/πR. Then the local density

βR(L(e),Λ(2)) is:

qn−2n2−2n`
∣∣∣{σ : V1 → V2 | Q̃1(x) = Q̃2(σ(x)) for all x}

∣∣∣ .
Proof. Firstly we observe by Proposition 4.4.2 that βR(L(e),Λ(2)) is:

qn−2n2−2n`
∣∣∣{σ : L(e)→ Λ(2)/πΛ(2) | q(x) = q(σ(x)) (mod 2π)}

∣∣∣ .
Secondly, we observe that:∣∣∣{σ : L(e)→ Λ(2)/πΛ(2) | q(x) = q(σ(x)) (mod 2π)}

∣∣∣ =∣∣∣{σ : V1 → V2 | Q̃1(x) = Q̃2(σ(x))}
∣∣∣ .

The result then follows immediately.

Remark. The space V2 may not be a regular quadratic module.
Definition 4.4.8. For a regular quadratic module V of dimension 2n we define:

χ(V ) =

{
1 V ' Hn and n > 0

−1 otherwise.

Lemma 4.4.9. Every quadratic module W over a field of characteristic 2 decomposes as:

W0 ⊕W ′ ⊕ Rad(W )
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with W0 a maximal regular sublattice and W⊥ = W ′ ⊕ Rad(W ). Note that the isomorphism class of W0 is unique if
and only if W⊥ = Rad(W ).

See [Kit93, Thm 1.2.1 and Ex. 1.2.2].
Lemma 4.4.10. Suppose V is a (non-trivial) regular quadratic module represented by W , that is, for which there
exists at least one isometry from V into W . Write W = W0 ⊕W⊥ as in Lemma 4.4.9 and set v = dim(V ) and
w = dim(W0). The number of isometries from V into W is:

qv dim(W )−v(v+1)/2

 w/2−1∏
e=(w−v)/2+1

(1− q−2e)

 (1− χ(W0)q−w/2)ξ,

where ξ is given by:

ξ =

{
1 + χ(V ⊕−W0)q(v−w)/2 W⊥ = Rad(W )

1 + χ(W0)q−w/2 W⊥ 6= Rad(W ).

See [Kit93, Prop 1.3.3].
Remark. Notice that the above formula, which appears to depend on a choice of W0 in W , does so only when
W⊥ = Rad(W ).
Theorem 4.4.11. Consider a unimodular lattice Λ. Then Λ has a decomposition Λ = L(e) ⊕ L, where L(e) is
a maximal even dimensional even unimodular sublattice of Λ and L has rank at most 4. Let ` = rank(L) and
2n = rank(L(e)). Then:

βR(Λ,Λ) = [L : L(2)]−2nξβR(L,L)

n∏
e=1

(1− q−2e),

where:

ξ =

{
2(1 + χ(L(e))q−n)−1 L(e) non-trivial and independent of choices

1 otherwise.

Proof. Such a decomposition exists by Theorem 4.3.12. Lemma 4.4.5 gives us the formula:

βR(L(e)⊕ L,L(e)⊕ L) = βR(L(e), L(e)⊕ L) · βR(L,L).

Lemma 4.4.6 allows us to evaluate:

βR(L(e), L(e)⊕ L) = [L : L(2)]−2nβR(L(e), L(e)⊕ L(2)).

Lemma 4.4.7 then reduces the computation of βR(L(e), L(e)⊕ L(2)) to a computation over the residue field. Finally,
Lemma 4.4.10 gives the precise formula for this computation. Combining the results allows us to conclude the
theorem.

Remark. If L(e) is as above, then one has χ(L(e)) = (π, (−1)n/2D(L(e)))p.
Corollary 4.4.12. Suppose p 6= 2 and maintain the notation of Theorem 4.4.11, then:

βR(Λ,Λ) = 2

n∏
e=1

(1− q−2e)

{
(1 + χ(L(e))q−n)−1 ` = 0

1 ` = 1.

Proof. When p 6= 2 all lattices are even and hence we have that L is either 0 or 1-dimensional. The result now follows
immediately from the theorem and the observation that for a 1-dimensional lattice the representation density is 2.

� Unimodular Lattices of Rank at Most 4
We are now left only to consider the case where the residue characteristic is 2. Theorem 4.4.11 reduces this case

to that of computing βR(L,L) and of understanding L(2), in the case of L unimodular of rank at most 4 with no even
unimodular factors. Such low rank unimodular lattices with no even unimodular factors are precisely those appearing
as L in Theorem 4.4.11. We first discuss the problems of understanding L(2).
Proposition 4.4.13. Consider L a unimodular lattice of rank at most 4 over a 2-adic ring with no nontrivial even
unimodular factors. Denote by W = L(2)/πL(2) with the induced form Q̃(x) = 1

2 (x, x) (mod π). Then we have the
following cases:
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• Case n = 4. Write L =
(
aπt 1
1 cπr−t

)
⊕
(
πs 1
1 4bπ−s

)
with t < s < r − t, t+ s is odd, and either r odd or r = ν(4).

Then Rad(W ) 6= W⊥. Moreover,

logq([L : L(2)]) = ν(2)− (s+ t− 1)/2.

• Case n = 3. Write L =
(
πs 1
1 bπν(4)−s

)
⊕ (d) with ν(2) > s > 0 and s odd. Then Rad(W ) 6= W⊥. Moreover,

logq([L : L(2)]) = ν(2)− (s− 1)/2.

• Case n = 2, Write L with matrix
(
aπt 1
1 cπr−t

)
with either r > t odd or r = ν(4). Then Rad(W ) = W⊥ unless

r − t ≤ ν(2) or ν(2)− t is even. Moreover,

logq([L : L(2)]) =

{⌈
ν(2)−t

2

⌉
r − t ≥ ν(2),

ν(2)− (r − 1)/2 otherwise.

• Case n = 1 Then Rad(W ) = W⊥ unless ν(2) is even. Moreover,

logq([L : L(2)]) =
⌈
ν(2)

2

⌉
.

Proof. In each case we will denote the basis with respect to which the matrix is given by {~x1, . . . , ~xn}.
The argument shall use the following observation. If x, y ∈ L are such that νπ(q(x)) is odd and νπ(q(y)) is even,

then since:
q(ηx+ θy) = η2q(x) + θ2q(y) (mod 2),

the only way to have νπ(q(ηx+ θy)) ≥ νπ(2) is to have both 2νπ(η) + νπ(q(x)) ≥ νπ(2) and 2νπ(θ) + νπ(q(y)) ≥ νπ(2).
The observation allows us to easily compute bases for the following three cases. In the case of n = 1 it is clear

that a basis for L(2) is:
{πdνπ(2)/2e~x1}.

In the case of n = 2 a basis for L(2) is:

{πd(νπ(2)−t)/2e~x1, π
max(0,d(νπ(2)−(r−t))/2e)~x2}.

In the case of n = 3 a basis for L(2) is:

{πd(νπ(2)−s)/2e~x1, ~x2, π
dνπ(2)/2e~x3}.

For the case of n = 4, we can eliminate some of the conditions by using that t, s ≤ r − t. We do this by fixing η
and θ so that:

η2aπt + θ2πs = cπr−t (mod 2).

Now a basis for L(2) is:
{πd(νπ(2)−t)/2e~x1, η~x1 + ~x2 + θ~x3, π

d(νπ(2)−s)/2e~x3, ~x4}.

It is now an easy calculation to determine [L : L(2)]. Moreover, it is apparent that W⊥ = W and thus Rad(W ) =
W⊥ if and only if Q̃ is trivial. This is easily checked on the bases we have given.

We now discuss the problem of computing βR(L,L) for unimodular lattices L of rank at most 4 with no even
unimodular factors. The general strategy is as follows:

1. Describe a constructive process for enumerating and counting all choices of basis that give a bilinear form that
‘looks like’ the original.

2. Show that the number of ways of obtaining each possible form that ‘looks like’ the original is the same.
3. Count the number of possible forms that ‘look like’ the original.
4. Obtain the result.

The above is made more precise in the following proofs.
Lemma 4.4.14. Suppose L is a unimodular lattice of rank 1. Then:

βR(L,L) = 2.
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This case is a simple check.

Lemma 4.4.15. Suppose L is the unimodular lattice of rank 2 over a 2-adic ring represented by

(
aπt 1
1 cπr−t

)
with

a, c ∈ R×, 2t < r and either r < ν(4) odd or r = ν(4). Then:

βR(L,L) =

{
4q(r−1)/2−ν(2) r − t ≤ ν(2)

2q−d(ν(2)−t)/2e ν(2) < r − t.

Proof. By Proposition 4.4.2 we need to count the elements in the set:

Φ = {φ : L→ L/πν(2)−t+1L | qL(φ(x)) = qL(x) (mod πν(4)−t+1)}.

Consider the following sets:

X = {~x ∈ L/πν(2)−t+1L | qL(~x) = aπt (mod πν(4)−t+1)},
Y~x = {~y ∈ L/πν(2)−t+1L | (~x, ~y) = 1 (mod πν(2)−t+1), ν(q(~y)) = r − t}, and

Ỹ = {qL(~y) (mod πν(4)−t+1) | ~y ∈ Y~x|, ~x ∈ X}.

We claim that |Y~x| is independent of the choice of ~x ∈ X. Indeed, letting ~x0 and ~y0 be the original basis it is
clear that:

Y~x = {(~x, (~x, ~y′)−1~y′) | ~y′ = (xπd(r−2t)/2e~x0 + ~y0)},

where x runs over elements of R/πν(2)−t+1−d(r−2t)/2eR. If follows that:

|Y~x| = qν(2)+1−dr/2e.

We next compute
∣∣∣Ỹ ∣∣∣. The values of qL(~y) that can appear are precisely those such that:

1− aqL(~y)πt = 1− acπr (mod (R×)2)

as these are the values that give isomorphic quadratic forms. This is precisely the same as the number of elements
modulo πν(4)+1 that are squares, and congruent to 1 modulo πr. We thus have:∣∣∣Ỹ ∣∣∣ =

1

2
qν(2)+1−dr/2e.

We now compute |X|. We are counting solutions for x, y (mod πν(2)−t+1) of:

aπtx2 + 2xy + cπr−ty2 = aπt (mod πν(4)−t+1).

We make the substitution x = 1 + x and this becomes:

aπtx2 + 2aπtx+ 2y + 2xy + cπr−ty2 = 0 (mod πν(4)−t+1).

By inspecting the valuations of monomials that result from such a switch (of x = x + 1), in particular the parity of
their valuations, it is apparent that we have:

x = 0 (mod πmax(ν(2)−(r−1)/2,d(ν(2)−t)/2e)) and

y = 0 (mod πmax(ν(2)+t−r,ν(2)+t)),

where the first terms are maximal if and only if ν(2) ≥ r − t. If we perform the substitutions:

x = πmax(ν(2)−(r−1)/2,d(ν(2)−t)/2e)x′ and y = πmax(ν(2)+t−r,0)y′

the equation becomes:

aπν(2)+δx2 + 2y + 2πP (x, y) = 0 r − t > ν(2), or

2y + 2cy2 + 2πP (x, y) = 0 r − t ≤ ν(2)
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for some polynomial P and δ ∈ {0, 1}. (Notice the only way we could have had both an x2 and y2 term was if
r − t = t = ν(2) but we have excluded that case from consideration.) We observe that by dividing by 2 we may solve
for y in terms of x. As the equation is non-singular, we may use Hensel’s lemma to find solutions and the total number
of solutions is equal to the number of solutions modulo π. There are precisely 2 solutions modulo π if ν(2) ≥ r − t
and 1 solution otherwise. We thus find:

|X| =

{
2q(r−t−t−1)/2+1 ν(2) ≥ r − t
qb(ν(2)−t)/2c+1 otherwise.

The set Φ corresponds precisely to the fibre of

{(~x, ~y) | ~x ∈ X, ~y ∈ Y~x}

over cπr−t ∈ Ỹ . The automorphism group of L/πν(2)−t+1L acts simply transitively on this fibre. However, noting
that the original choice of cπr−t is arbitrary, the automorphism group acts simply transitively on each fibre of:

{(~x, ~y) | ~x ∈ X, ~y ∈ Y~x}

over Ỹ .
It thus follows that:

|Φ| = |X| |Y~x|∣∣∣Ỹ ∣∣∣ .

Thus we find:

|Φ| =

{
4q(r−t−t−1)/2+1 r − t ≤ ν(2)

2qb(ν(2)−t)/2c+1 ν(2) < r − t.

Combining terms completes the result.

Lemma 4.4.16. Suppose L = Lπt,bπν(4)−t ⊕ U−d is a unimodular lattice of rank 3 over a 2-adic ring with t < ν(2)
odd and b, d ∈ R×, then:

βR(L,L) = 4q(1−t)/2.

Proof. By Proposition 4.4.2 we need to count elements in the set:

Φ = {φ : L→ L/πν(2)+1L | qL(φ(x)) = qL(x) (mod πν(4)+1)}.

As in the previous lemma consider the following sets:

X = {~x ∈ L/πν(4)+1L | qL(~x) = πt (mod πν(4)+1)},
Y~x = {~y ∈ L/πν(2)+1L | (~x, ~y) = 1 (mod πν(2)+1), ν(qL(~y)) = ν(4)},
Ỹ = {qL(~y) (mod πν(4)+1) | ~y ∈ Y~x, ~x ∈ X},

Z~x,~y = {~z ∈ 〈~x, ~y〉⊥/πν(2)+1 | qL(~z) = −d (mod πν(4)+1)}.

We claim that |Y~x| is independent of ~x ∈ X. Indeed, letting ~x0, ~y0, ~z0 be the original basis it is clear for parity
reasons that:

Y~x = {(~x, (~x, ~y′)~y′) | ~y′ = xπν(2)−t~x0 + ~y0 + zπν(2)−(t−1)/2~z0},

where x ∈ R/πt+1R and z ∈ R/π(t−1)/2+1R. We thus find:

|Y~x| = qt+(t−1)/2+2.

Next we compute
∣∣∣Ỹ ∣∣∣ = 1

2q. The argument is identical to the previous lemma, except we note that the discriminant

of this block is well-defined modulo squares because it controls the Hasse invariant of the form.
Now |Z~x,~y| = 2 independently of ~x, ~y. This follows as the orthogonal complement is isomorphic to U−d by necessity

(again because the Hasse invariant controls the discriminant).
We now compute |X|. We are counting solutions for x, y, z (mod πν(2)+1) of:

πtx2 + 2xy + πν(4)−ty2 + cz2 = πt (mod πν(4)+1).
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It is clear that we may replace z by πdν(2)/2ez and get:

x2 + πν(2)−txy + bπν(4)−2ty2 + cπν(2)+2dν(2)/2e−tz2 = 1 (mod πν(4)−t+1).

We now replace x by 1 + πd(ν(2)−t)/2ex and the expression modulo πν(4)−t+1 becomes:

2πd(ν(2)−t)/2ex+ π2d(ν(2)−t)/2ex2 + πν(2)−ty+

πd3(ν(2)−t)/2exy + bπν(4)−2ty2 + cπ2dν(2)/2e−tz2 = 0.

This reduces to:

2πδx+ πδx2 + y + πδ+ν(2)−txy + bπν(2)−ty2 + cπ1−δz2 = 0 (mod πν(2)+1),

where δ =

{
0 ν(2) odd

1 otherwise.

As in the previous case, this equation is non-singular in y, hence, for all values of z, x we may find a unique solution
for y. It follows that:

|X| = qbν(2)/2c+b(ν(2)−t)/2c−t+2 = qν(2)−(t+1)/2−t+2.

As in the previous lemma it follows that:

|Φ| = 2qt+(t−1)/2+1 |X| |Y~x| |Z~x,~y|
∣∣∣Ỹ ∣∣∣−1

.

We may thus conclude that |Φ| = 4q3ν(2)−3t−(t−1)/2+3. Combining terms completes the result.

Lemma 4.4.17. Suppose L = Lπs,bπν(4)−s ⊕Laπt,cπr−t is a unimodular lattice of dimension 4 over a 2-adic ring with
t < s < ν(2), a, b, c ∈ R×, s− t odd, and r < ν(4) odd or r = ν(4). In this situation:

βR(L,L) = 4q−3ν(2)+2t−2−(r−t−s)/2

{
q(r−t−t−1)/2+1 r − t ≤ ν(2)

qb(ν(2)−t)/2c+1 ν(2) ≤ r − t.

Proof. We make the following definitions:

Φ = {g ∈ GL(L/πν(4)−t+1L) | gtAg =
(
πs 1
1 bπν(4)−s

)
⊕
(
aπt 1
1 cπr−t

)
},

X = {~x ∈ L/πν(2)−t+1L | qL(x) = πs (mod ν(4)− t+ 1)},
Y~x = {~y ∈ L/πν(2)−t+1L | (~x, ~y) = 1 (mod πν(2)−t+1), ν(qL(~y)) ≥ ν(4)− s},
Ỹ = {qL(~y) ∈ R/πν(4)−t+1R | ~y ∈ Y~x, ~x ∈ X},

Z~x,~y = {(~z, ~w) ∈ 〈~x, ~y〉⊥/πν(2)−t+1 | (~z, ~w) = 1 (mod πν(2)−t+1), ν(qL(~z)) = t},
Z̃~x,~y = {(qL(~z), qL(~w)) ∈ (R/πν(4)−t+1R)2 | (~z, ~w) ∈ Z~x,~y},
Ẑỹ = {Λ a lattice modulo πν(4)−t+1 up to isomorphism | Lπs,ỹ ⊕ Λ ' L}.

In the above we are taking ỹ ∈ Ỹ .
Our first claim is that |Y~x| = qν(2)−3t+3+s+(s+t−1)/2 and that this is independent of ~x ∈ X. Indeed, we can

compute its value as follows:
Y~x = {(~x, ~y′)−1~y′ | ν(qL(~y′)) = ν(4)− s}.

Thus its size is the number of solutions to:

πsx2 + 2x+ aπtz2 + 2zw + cπr−tw2 = 0 (mod πν(4)−s),

where x, z, w are taken in R/πν(2)−t+1R. In the event that r − t > ν(4)− s then for parity reasons we must have:

x = 0 (mod πν(2)−s) and z = 0 (mod πν(2)−(s+t−1)/2).
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One finds then that there are no further conditions and thus counting solutions we find:

|Y~x| = qν(2)−3t+3+s+(s+t−1)/2.

Otherwise we suppose r − t ≤ ν(4)− s. Next we may choose η, ε such that:

η2c+ ε2aπ = 1.

For parity reasons we again find:

x = 0 (mod π(r−t−s)/2) and z = 0 (mod π(r+1)/2−t).

We may thus substitute:

x = π(r−t−s)/2x′ and w = ηx′ + w′ and z = π(r+1)/2−t(εx′ + z).

The whole expression modulo πν(4)−s then becomes:

2π(r−t−s)/2x+ πr−t+1z2 + πr−tw2 + πν(2)+(r−t−s)/2+1P (x,w, z) = 0

for some polynomial P . It is now apparent that:

z = 0 (mod πd(ν(2)−(3r−3t−s)/2−1)/2e) and w = 0 (mod πd(ν(2)−(3r−3t−s)/2)/2e)

and that x is determined modulo πν(2)−s−(r−t−s)/2 by the other parameters. One finds then that there are no further
conditions and thus counting solutions we find:

|Y~x| = qν(2)−3t+3+s+(s+t−1)/2.

Next we compute
∣∣∣Ỹ ∣∣∣. Indeed, so long as there exist values α, γ ∈ R× such that:

L ' Lπs,βπν(4)−s ⊕ Lαπt,γπr−t

then β ∈ Ỹ . The two conditions:

nL = αR2 + πs, and

H(L) = (α, δL)(πt, δL)(πs+t, 1− βπν(4))

can be solved for all β if r − t ≤ ν(4) − s. If however, r − t > ν(4) − s then, since (α, δL) cannot depend on α, only
half of the potential values for β will work. The other condition:

δL = (1− αγπr)(1− βπν(4)) (mod R2)

can always be solved by γ. It follows that:

∣∣∣Ỹ ∣∣∣ = qs−t+1

{
1
2 r − t > ν(4)− s
1 otherwise.

We now claim that
∣∣∣Z̃~x,~y∣∣∣ is independent of ~x ∈ X and ~y ∈ Y~x. Indeed there are three conditions for (α, γ) ∈ Z̃~x,~y.

The first condition is:
H(L) = (α, δL)(πt, δL)(πs+t, 1− qL(~y)πν(4)).

This condition cannot be unsatisfiable. Hence, it is either imposing a condition (independently of ~y), or is not imposing
a condition (independently of ~y). The second condition is:

nL = αR2 + πs.
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This condition is independent of ~y. The final condition is:

δL = (1− αγπr)(1− qL(~y)πν(4)) (mod R2).

For each α satisfying the first two conditions we are imposing a condition on the variable γ. The number of values for
γ satisfying the condition is independent of ~y.

Now, we claim that |Z~x,~y| is independent of ~x ∈ X and ~y ∈ Y~x. Indeed, the value of |Z~x,~y| is precisely∣∣Aut(〈~x, ~y〉⊥/πν(4)−t+1)
∣∣ ∣∣∣Z̃~x,~y∣∣∣. Our computations in Lemma 4.4.15 show this depends only on t and r. Explicitly,

the value is: ∣∣∣Aut(〈~x, ~y〉⊥/πν(4)−t+1)
∣∣∣ =

{
4q(r−t−t−1)/2+1 r − t ≤ ν(2)

2qb(ν(2)−t)/2c+1 ν(2) < r − t.

Next, we claim that
∣∣∣Ẑỹ∣∣∣ is independent of ỹ ∈ Ỹ . Equivalence classes of lattices Λ ∈ Ẑỹ have representatives of

the form Lα,γ where (α, γ) ∈ Z̃~x,~y for some ~x ∈ X, ~y ∈ Y~x. We may thus represent Λ by (α, γ). Now, as the Hasse

invariant and discriminant of Λ ∈ Ẑỹ are determined by ỹ and L, the only freedom to modify Λ is picking its norm

generator. In terms of (α, γ) this amount to fixing the square class of α module πr−2t. The first constraint on the
square class of α is that it must give the norm generator of L module πs. This determines the square class of α modulo
πs−t. This leaves us with precisely:

q(r−t−s)/2

many options for such square classes. The only other constraint on α is that it must give the correct Hasse invariant.
As above, the Hasse invariant depends on α through (α, δL). Thus, it follows that:

∣∣∣Ẑỹ∣∣∣ = q(r−t−s)/2

{
1
2 r − t ≤ ν(4)− s
1 otherwise.

We now compute |X|. We are solving for x, y, z, w ∈ R/πν(2)−t+1R in the following equation modulo πν(4)−t+1:

πsx2 + 2xy + bπν(4)−sy2 + aπtz2 + 2zw + cπr−tw2 = πs.

Pick η, ε such that η2 + πaε2 = c (mod πν(2)). We may then make the following substitutions:

x = 1 + ηπd(r−t−s)/2ew + x and z = επd(r+1)/2e−tw + z.

The equation then becomes:
πsx2 + 2y + aπtz2 + 2zw + πν(2)+1P (x, y, z, w) = 0

for some polynomial P . For parity reasons we now see that:

x = 0 (mod πd(ν(2)−s)/2e) and z = 0 (mod πd(ν(2)−t)/2e).

This equation is now solvable in y, and determines y modulo πν(2)−t+1. Counting solutions, we find that there are:

|X| = qν(4)−3t+3+(s+t−1)/2.

We now observe that:

|Φ| = |X| |Y~x| |Z~x,~y|
∣∣∣Ỹ ∣∣∣−1 ∣∣∣Z̃~x,~y∣∣∣−1 ∣∣∣Ẑỹ∣∣∣−1

.

To see this, consider the map:

{(~x, ~y, ~z, ~w) | ~x ∈ X, ~y ∈ Y~x, (~z, ~w) ∈ Z~x,~y} → (R/πv(4)−t+1R)3

given by (~x, ~y, ~z, ~w) 7→ (qL(~y), qL(~z), qL(~w)) and observe that |Φ| is precisely the size of each fibre. We thus must show
that the size of the image is: ∣∣∣Ỹ ∣∣∣ ∣∣∣Z̃~x,~y∣∣∣ ∣∣∣Ẑỹ∣∣∣ .
The image of this map is precisely:

{(ỹ, z̃, w̃) | ỹ ∈ Ỹ , (z̃, w̃) ∈ Ẑỹ}.
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This set is naturally fibred over:
{(ỹ, (α, γ)) | ỹ ∈ Ỹ , (α, γ) ∈ Ẑỹ}.

Moreover, the size of the fibre over (ỹ, (α, γ)) is precisely
∣∣∣Z̃~x,~y∣∣∣ where ~x ∈ X and ~y ∈ Y~x are any vectors such that

(α, γ) ∈ Z̃~x,~y. From this the claim about |Φ| follows immediately.
We, therefore, have that:

∣∣∣Aut(L/πν(4)−t+1L)
∣∣∣ = 4q3ν(2)−4t+4−(r−t−s)/2

{
q(r−t−t−1)/2+1 r − t ≤ ν(2)

qb(ν(2)−t)/2c+1 ν(2) ≤ r − t

Combining terms gives the desired result.

The above lemmas cover the final few cases we needed to completely solve the problem of computing local densities
for unimodular lattices over 2-adic rings. By combining the results we get the following theorem:
Theorem 4.4.18. Consider a unimodular lattice L of rank at most 4 over a 2-adic ring R with no even unimodular
factors. Let π be a uniformizer of R and q = |R/πR|. Recall that L(2) = {x ∈ L | (x, x) ∈ 2R}. Denote by W the
quadratic module L(2)/πL(2) with the induced form Q̃(x) = 1

2 (x, x) (mod π). Then:

• Case n = 4. Write L =
(
aπt 1
1 cπr−t

)
⊕
(
πs 1
1 4bπ−s

)
with t < s < r − t, t+ s is odd, and either r odd or r = ν(4).

Then Rad(W ) 6= W⊥. Moreover, [L : L(2)] = qν(2)−(s+t−1)/2 and the local density is:

βR(L,L) = 4q−3ν(2)+2t−2−(r−t−s)/2

{
q(r−t−t−1)/2+1 r − t ≤ ν(2)

qb(ν(2)−t)/2c+1 ν(2) ≤ r − t

• Case n = 3. Write L =
(
πs 1
1 bπν(4)−s

)
⊕ (d) with ν(2) > s > 0 and s odd.

Then Rad(W ) 6= W⊥. Moreover, [L : L(2)] = qν(2)−(s−1)/2 and the local density is:

βR(L,L) = 4q(1−t)/2.

• Case n = 2. Write L with matrix
(
aπt 1
1 cπr−t

)
with either r > t odd or r = ν(4).

Then Rad(W ) = W⊥ unless r − t ≤ ν(2) or ν(2)− t is even.

Moreover, [L : L(2)] =

q
⌈
ν(2)−t

2

⌉
r − t ≥ ν(2)

qν(2)−(r−1)/2 otherwise
and the local density is:

βR(L,L) =

{
4q(r−1)/2−ν(2) r − t ≤ ν(2)

2q−d(ν(2)−t)/2e ν(2) < r − t.

• Case n = 1. Then Rad(W ) = W⊥ unless ν(2) is even.

Moreover, [L : L(2)] = q

⌈
ν(2)

2

⌉
and the local density is:

βR(L,L) = 2.

� The Case of Zp
Of course things are much simpler over Zp, or any p-adic ring except for 2-adic rings which are ramified over Z2.

In such cases there are in fact only a small number of possibilities for unimodular lattices L with no even unimodular
factors. In this context one can recover the results in Kitaoka’s book which give formulas for the local densities of
unimodular lattices over Zp.
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Theorem 4.4.19. Let L be a unimodular Zp-lattice. Let L(e) be any maximal unimodular (even dimensional) even
sublattice of L. We then have a decomposition L = L(e)⊕ L(o). Let n = rank(L) and n(e) = rank(L(e)) and set:

t =

{
0 L is even

n− 2 L is odd,

E =

{
(1 + χ(L(e))p−n(e)/2) χ(L(e)) is independent of choice of L(e),

1 otherwise;
and

P =

⌊
ni(e)

2

⌋∏
j=1

(1− p−2j).

Note that for p = 2 the isomorphism class of lattice L(e), and hence χ(L(e)), depends on a choice if and only if
rank(L(o)) = 2 and the discriminant satisfies δL(o) = 1 (mod 4), whereas for p 6= 2 one has L(e) depends on a choice
if and only if the rank of L is odd.

Then the local density is:
βp(L,L) = 2p−tPE−1.

Proof. This is the effect of carrying out the computations of [Kit93, Thm 5.6.3] for a single unimodular Jordan block.
Notice that we have renormalized E and that this is accounted for by t.

We now compare to our results. For the case p 6= 2 we are comparing to Corollary 4.4.12 and it suffices to observe
the equivalence between the condition χ(L(e)) is independent of choice of L(e) and the statement that the rank of
L is odd. Indeed, any quadratic form in 3 variables over Zp with p 6= 2 represents both a hyperplane, and a two
dimensional unimodular lattice which is not a hyperplane. Hence when the rank of L is odd, when picking L(e) we
may make either of these choices so that L(e) depends on choice. When the rank L is even L = L(e) and there is no
choice.

For the case p = 2 we must apply Theorem 4.4.11 and Theorem 4.4.18. Theorem 4.4.11 gives us the formula:

βp(L,L) = [L : L(2)]−n(e)ξβR(L(o), L(o))

n∏
e=1

(1− q−2e),

where:

ξ =

{
2(1 + χ(L(e))q−n)−1 L(e) non-trivial and independent of choices

1 otherwise.

The first thing to observe is that over Z2 the classification of unimodular lattices (Theorem 4.3.12) implies that L(o)
has rank 0, 1 or 2. In the case of rank 0 the result is immediate as L = L(2) and there are no choices. In the case of
rank 1 Theorem 4.4.18 gives us that [L : L(2)] = 2, βR(L(o), L(o)) = 2 and χ(L(e)) is always independent of choices.
The factors then combine to give the desired formula.

Finally , in the case of rank 2, we first observe that in Theorem 4.4.18 the constant r is 1 if δq = 1 (mod 4) and
2 otherwise whereas the constant t must be 0. Consequently the theorem gives us that [L : L(2)] = 2,

βR(L(o), L(o)) =

{
2 δq = 1 (mod 4)

1 δq = 3 (mod 4).

and finally χ(L(e)) is independent of choices unless δq = 1 (mod 4). It is now an easy check to compare the resulting
formulas.

Corollary 4.4.20. The local density of a unimodular lattice for a non-dyadic p-adic ring is determined entirely by its
rank and discriminant mod π.

The local density of a unimodular lattice for a dyadic p-adic ring is determined entirely by its rank, discriminant
mod 4, Hasse invariant and norm group.

Proof. Over Zp this is apparent from the formulas above, though the result holds more generally. Indeed, for the non-
dyadic case this information determines the lattice. In the dyadic case, this follows by inspection of the computation
we performed.

80



Concretely over Z2 one can compute that χ = 0 when n − n(e) = 2 and D = (−1)n(e)/2 (mod 4) otherwise χ is
given by:

χ =

{
(−1,−1)n(e)(n(e)−2)/8H n = n(e)

((−1)n(e)/2, (−1)n(e)/2D)(−1,−1)n(e)(n(e)−2)/8H otherwise.

This is based on the observation that in the first case the isomorphism class is not well defined, and in the latter two
cases the Hasse invariant of the odd part is trivial, hence we can easily compute the Hasse invariant of L(e). Noting
that ( 0 1

1 0 ) and ( 2 1
1 2 ) have different Hasse invariants allows us to distinguish them in this way.

� General Lattices - Jordan Decompositions
Computing local densities is equivalent to computing |Aut(L/πrL)| which can be done indirectly by computing

the probability that a randomly chosen element of GL(L/πrL) preserves the quadratic form on L. Once one is working
in the realm of probabilities, it is natural to use conditional probabilities that are easier to compute to arrive at a
solution. This is the approach we shall take.

We shall use the following notation.
Notation 4.4.21. Let R be a p-adic ring, with uniformizer π and |R/π| = q. Suppose L is a lattice over R.

By a Jordan decomposition I of L we mean a decomposition:

L = ⊕LIi ,

where the LIi are modular and ordered by valuations of their scale ideals. Two Jordan decompositions, I and J , are
considered isomorphic if LIi ' LJi for all i. We will denote by JDL the set of all Jordan decompositions of L up to
isomorphism.

We fix r sufficiently large so that the isomorphism classes of all of the LJi are determined by their reductions
modulo πr.

We shall say a matrix A which represents the quadratic form on L is in the Jordan form I ∈ JDL (modulo
πr) if A has a block diagonal decomposition ⊕Ai, where the Ai represent modular lattices in ascending order and Ai
represents LIi for some choice of basis for each i.
Lemma 4.4.22. Let A be any matrix representation for L. Then the probability that for g ∈ GL(L/πrL) the matrix
gtAg is in Jordan form (modulo πr) is:

PJD,r = |GL(L/πrL)|−1

(∏
i

∣∣GL(LIi /π
rLIi )

∣∣) qw,
where w =

∑
i

(2r − i)ni
∑
j>i

nj.

Proof. The proof is an inductive exercise in book keeping. We first count the number of ways of finding a minimal
modular block. In order to pick a set of vectors which will span a minimally modular block one needs to select a
GL(LIi /π

rLIi ) combination of the vectors that were in the original minimally modular block. One can then give an
arbitrary contribution from the vectors which were complementary to the minimal modular block. This arbitrary
choice contributes a factor of qrni

∑
j>i nj .

We then must proceed inductively on the space which is orthogonally complementary. The degree of freedom in
picking an orthogonally complementary space (modulo πr) is precisely q(r−i)ni

∑
j>i nj .

Taking products of number of choices at each inductive steps gives us the result.

Definition 4.4.23. Let I ∈ JDL. Suppose that g ∈ GL(L/πrL) is chosen at random. Suppose gtAg is in Jordan form
(modulo πr). Denote the conditional probability that the Jordan form J of gtAg is equal to I as Jordan decompositions
(modulo πr) as given that gtAg is in Jordan form (modulo πr) as:

PI=J,r.

Lemma 4.4.24. Let A be any matrix representation for L. Let I ∈ JDL. Fix a matrix AI representing the Jordan
form I. Define Peq,I,r to be the conditional probability that an element g ∈ GL(L/πrL), for which the matrix gtAg is
in Jordan form I (modulo πr), will have gtAg = AI mod πr. Then the conditional probability Peq,I,r can be computed
as:

Peq,I,r =
∏
i

∣∣Aut(LIi /π
rLIi )

∣∣∣∣GL(LIi /π
rLIi )

∣∣ .
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Proof. The set of possible values of gtAg is acted upon by
∏
i GL(LIi /π

rLIi ) with the size of the stabilizer being∣∣∏
i Aut(LIi /L

I
i π

r)
∣∣. In particular, then the probability that we get any given representative is

∏
i
|Aut(LIi /L

I
iπ
r)|

|GL(LIi /π
rLIi )| .

Lemma 4.4.25. Let A be any matrix representation for L. Let I ∈ JDL. Fix a matrix AI representing the Jordan
form I. The absolute probability that an element g ∈ GL(L/πrL) gives gtAg = AI mod πr is:

PAut,L,r = PJD,rPI=J,rPeq,I,r.

Proof. This is a trivial statement in conditional probabilities.

Remark. Notice that PAut,L,r and PJD,r are independent of the choice of I while PI=J,r and Peq,I,r depend on the
choice.
Lemma 4.4.26. With all the notation as above, we have the formula:

PAut,L,r = PJD,r

( ∑
I∈JDL

P−1
eq,I,r

)−1

.

Proof. By observing that Peq,I,r 6= 0 for all I we may write:

PAut,L,rP
−1
eq,I,r = PJD,rPI=J,r.

By summing over I ∈ JD we obtain:

PAut,L,r

∑
I∈JD

P−1
eq,I,r = PJD,r

∑
I∈JD

PI=J,r.

Since
∑

I∈JD
PI=J,r = 1 we obtain the result.

Lemma 4.4.27. Suppose L is a lattice of rank ` then:

βR(L,L) = q`vπ(2)+r`(1−`)/2 |GL(L/πrL)|PAut,L,r.

Proof. This is immediate from Proposition 4.4.2 and the definition of the probability.

Combining the above lemmas we arrive at the following very general theorem.
Theorem 4.4.28. With the notation as above we have:

βR(L,L) = qw

( ∑
I∈JD

∏
i

βR(LIi , L
I
i )
−1

)−1

= qw̃

( ∑
I∈JD

∏
i

βR(L̃Ii , L̃
I
i )
−1

)−1

,

where L̃Ii is the unimodular rescaling of LIi and w, w̃ are given by:

w =
∑
i

ini(
∑
j>i

nj) and

w̃ = w +
∑
i

(ni(ni + 1)/2).

Proof. This is a direct calculation. The only tricky part is the book-keeping on the exponents of q.

Remark. In order to use this theorem to derive specific formulas for a given lattice one must understand the set
JDL. For a non-dyadic ring there is a unique Jordan decomposition. The problem is thus fully solved in this case.

For the dyadic case it is worth remembering that most of the factors involved in the formula of local density for
a unimodular lattice do not depend on the isomorphism class. Hence there are many terms which can be factored
out of the sum appearing in the formula above. Moreover, whenever there is dependence on the isomorphism class
through χ(Li(e)) it is typically symmetric and cancels out. Both of these phenomena can be seen in the structure of
the formulas over Z2 in the next theorem.

We now state the formulas from Kitaoka’s book for Zp explicitly as they will be of use.
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Theorem 4.4.29 (Kitaoka). Let L be a Zp-lattice. Let L = ⊕iLi, where the Li are non-trivial pai-modular lattices
with distinct ai. Let Li(e) be any maximal even dimensional unimodular even sublattice such that we may write
Li = Li(e)⊕ Li(o). Define the following values:

ni = rank(Li),

ni(e) = rank(Li(e)),

s = |{i | ni 6= 0}| ,

w =
∑
i

aini

(ni + 1)/2 +
∑
aj>ai

nj

 ,

and set

χ(i) =



0 ni = 0

0 p 6= 2 and ni odd

0 p = 2 and one of ai − 1, ai + 1 blocks is odd

0 p = 2, Li odd , ni even and D(Li) 6= (−1)ni/2 (mod 4)

χ(Li(e)) otherwise.

For p 6= 2 set t = 0 and u = 0, if p = 2 set:

t =
∑
i



0 Li = 0 and ai − 1, ai + 1 blocks are even

−1 Li = 0, one of ai − 1, ai + 1 blocks is odd

0 Li 6= 0 is even

0 Li is odd ai + 1 block is even

1 Li is odd ai + 1 block is odd,

and

u =
∑
i

{
ni Li is odd

0 otherwise.

Finally set:

Ei = 1 + χ(i)p−ni(e)/2 and P (m) =

m∏
j=1

(1− p−2j).

Then we have the following formula for the local density:

βp(L,L) = 2s−tpw−u
∏
i

P
(⌊

ni(e)
2

⌋)
E−1
i .

Proof. This is only a slight modification of [Kit93, Thm 5.6.3], we have adjusted the definition of E, introduced the
value u and modified t accordingly.

Remark. The proof of Kitaoka is not in the spirit of the probabilistic argument we gave above. We will not fully
derive this result from our previous result; we will, however, explain why the formula is in the shape one should expect.

The first thing to notice is that the only way to have multiple Jordan decompositions is to have Jordan blocks
which are odd. This explains why conditions on the presence of odd Jordan blocks appear in the theorem.

The next thing to notice is that having a different isomorphism class for one Jordan block does not change which
formulas can appear for other Jordan blocks, even though it may change which precise isomorphism classes can occur.
The effect of this is that the sum over Jordan decompositions can be factored as a product of sums over the formulas
that appear for each Jordan block. The observation that (1 + q−e) + (1 − q−e) = 2 then accounts for some of the
factors of 2 which appear in the formulas. The conditions in the definition of t account mostly for these extra powers

of 2, as well as the number of Jordan decompositions. The parameter u accounts mostly for [Li : L
(2)
i ]−ni .

The following corollaries are useful for computing explicitly local densities in special cases. They eliminate the
need to explicitly find all the invariants of the Jordan blocks.
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Corollary 4.4.30. Suppose p 6= 2 and Lp is a Zp-lattice with exactly 2 Jordan blocks which are pj , pj+1 modular and
of dimension nj , nj+1, respectively. Then the Local density of Lp is determined entirely by the ranks of the blocks, and
the discriminant D and Hasse invariant H of Lp.

In particular the local density is:

4qj(nj+nj+1)(nj+nj+1+1)/2+nj+1(nj+1+1)/2

bnj/2c∏
i=1

(1− q−2i)

bnj+1/2c∏
i=1

(1− q−2i)ξ,

where:

ξ =


(1 + χ(j)qnj/2)−1(1 + χ(j + 1)qnj+1/2)−1 nj , nj+1 even

(1 + χ(j)qnj/2)−1 nj even and nj+1 odd

(1 + χ(j + 1)qnj+1/2)−1 nj odd and nj+1 even

1 otherwise.

One can compute χ(i) as:

χ(i) =


0 ni odd

(p,−1)
(i+1)(nj+nj+1)/2
p (p,D)i+1

p H both blocks even

(p,−1)
(i+1)(nj+nj+1−1)/2
p H otherwise.

Proof. One only needs to check that the computations for χ(i) are accurate, otherwise this is simply evaluating the
Theorem 4.4.29 in this case. Checking χ is simply a matter of computing the Hasse invariant for a diagonal form and
its rescaling by p. Then by observing the dependence on the discriminant of each block in the various cases we may
conclude the result.

Corollary 4.4.31. Suppose p = 2 and Lp is a Zp-lattice with exactly 2 Jordan blocks which are pj , pj+1 modular and
of dimension nj , nj+1, respectively. Then the Local density of Lp is determined entirely by the ranks and parities of
the blocks and the discriminant and Hasse invariants of Lp. Note that a method for computing the local densities is
made explicit in the proof.

Proof. We shall denote by D and H the discriminant and Hasse invariant of Lp and by Di and Hi the discriminant
and Hasse invariants of the ith modular block. We shall, as necessary, compute these in order to make implicit use of
Corollary 4.4.20. Set:

w = j(nj + nj+1)(nj + nj + 1)/2 + nj+1(nj+1 + 1)/2.

There are 4 cases to consider depending on the parities of the blocks.
1. Both the pj and pj+1 blocks are odd.

There are at least 4 and potentially more Jordan decompositions. Importantly, each ‘formula’ appears equally
often so that the sums resolve cleanly and are independent of the isomorphism classes of blocks.
One can check that Kitaoka’s formula (Theorem 4.4.29) is independent of the isomorphism class of the blocks
and depends only on dimension. In particular the local density is:

2w+n+5

nj(e)/2∏
i=1

(1− p−2i)

nj+1(e)/2∏
i=1

(1− p−2i).

2. The pj block is odd and the pj+1 block is even.
In this case there are 2 Jordan decompositions. The formula for exactly one of the two blocks changes, cancelling
its contribution. We only need to know the contribution of the other block.
Without loss of generality the pj+1 block is hyperbolic. Thus the pj+1 block has determinant (−1)nj+1/2 and
Hasse invariant (−1,−1)`(`+2)/8. We can thus determine both the determinant and Hasse invariant of the pj

block. The determinant is (−1)nj+1/2D and the Hasse invariant is:

(−1,−1)nj+1(nj+1+2)/8+nj+1/2(−1, D)nj+1/2.
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Consequently, Corollary 4.4.20 tells us that χ(j) = 0 if nj − nj(e) = 2 and D = (−1)(nj(e)+nj+1)/2 (mod 4), and
that otherwise χ(j) is give by:

(2, D)
j(nj+nj+1−1)
2 (−1,−1)(nj+1+nj(e))(nj+1+nj(e)+2)/8(D,−1)

(nj+1+nj(e))/2
2 H.

Therefore, the local density can be explicitly computed as:

2w+nj+3(1 + χ(j)pnj(e)/2)−1

nj(e)/2∏
i=1

(1− p−2i)

nj+1(e)/2∏
i=1

(1− p−2i).

3. The pj block is even and the pj+1 block is odd.
In this case there are 2 Jordan decompositions. The formula for exactly one of the two blocks changes cancelling
its contribution. We only need to know the contribution of the other block.
Without loss of generality the pj block is hyperbolic. Thus this block has determinant (−1)` and Hasse invariant
(−1)`/2. We can thus determine both the determinant and Hasse invariant of the pj+1 block. Consequently,
Corollary 4.4.20 tells us that χ(j + 1) = 0 if nj+1 − nj+1(e) = 2 and D = (−1)(nj+1(e)+nj)/2 (mod 4), otherwise
χ(j + 1) is:

(2, D)(j+1)(nj+nj+1−1)(−1,−1)(nj+nj+1(e))(nj+nj+1(e)+2)/8(D,−1)
(nj+nj+1(e))/2
2 H.

Therefore, the local density can be explicitly computed as:

2w+nj+1+3(1 + χ(j + 1)pnj+1(e)/2)−1

nj(e)/2∏
i=1

(1− p−2i)

nj+1(e)/2∏
i=1

(1− p−2i).

4. Both the pj and pj+1 blocks are even.
In this case there is a unique Jordan decomposition and the discriminants of the unimodular blocks are (−1)nj/2

mod 4. As χ(i) = (2, Di)2, the goal is to solve for (2, Di)2. We have that:

1 = (Dj , Dj+1), and Hi = (2, Di)(−1,−1)ni(ni+2)/8.

It follows that:

H = HjHj+1(Dj , Dj+1)2(2, Dj)
j+1
2 (2, Dj+1)j2

= (−1,−1)
n(n+2)/8
2 (2, Dj)

j+1
2 (2, Dj+1)j2.

Thus we may solve:

χ(i) = (−1,−1)
n(n+2)/8
2 (2, D)i2H.

Therefore the local density can be explicitly computed as:

2w+2(1 + χ(j)pnj(e)/2)−1(1 + χ(j + 1)pnj+1(e)/2)−1

nj(e)/2∏
i=1

(1− p−2i)

nj+1(e)/2∏
i=1

(1− p−2i).

4.5 Transfer of Lattices
Let R1 ⊂ R2 be a finite extension of rings. Given a quadratic module (LR2 , qR2) over R2, one can construct a

quadratic module (LR1 , qR1) over R1 by viewing LR2 as a module over R1 and taking qR1(x) = TrR2/R1
(qR2(x)). We

shall refer to this as transfer.
The purpose of this section is to study properties of this process over p-adic rings. We are particularly interested

in the transfer of Hermitian lattices, that is, quadratic forms of the form:

qR2
(x) = 1

2 TrR3/R2
(λxσ(x)) = λxσ(x),

where x ∈ R3 a quadratic extension of R2, σ the nontrivial automorphism of R3/R2, and λ is a unit in the fraction
field of R2. The subsection of this section are organized as follows:

(4.5.1) We give some basic results about trace forms for local fields.
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(4.5.2) We compute invariants for the forms qR1 .
(4.5.3) We describe Jordan decompositions when p 6= 2 for both unary and binary forms.
(4.5.4) We describe Jordan decompositions when p = 2 for both unary and binary forms.

In the following section we shall use these results to compute local densities for Hermitian lattices over Q.
4.5.1 Trace Forms for Local Fields

The next few lemmas are important for various computations.
Lemma 4.5.1 (Euler). Let L = F (z) be a finite separable extension of F of degree m with fz(x) ∈ OF [x] the minimal
(monic) polynomial of z. We then have:

TrL/F

(
z`

f ′z(z)

)
=

{
1 ` = m− 1

0 0 ≤ ` < m− 1.

See [Ser79, III.6 Lemma 2].
Lemma 4.5.2. Let L/F be a totally ramified extension of local fields of degree m. Let z = πL be a uniformizer
of OL and fz(x) be the minimal (monic) polynomial of z. Then fz is an Eisenstein polynomial and the collection
1, z, z2, . . . , zm−1 is an OF -basis of OL and NL/F (z) is a uniformizer of F .

See [Ser79, Prop I.6.18].
Lemma 4.5.3. Let L/F be a totally ramified extension of local fields of degree m. Let z = πL be a uniformizer of OL
and fz(x) be the minimal (monic) polynomial of z. Then for 0 ≤ ` ≤ m− 1 and k any integer, we have:

νF

(
TrL/F

(
zkm+`

f ′z(z)

))
≥ k.

Moreover, this is an equality if ` = m− 1.

Proof. As πF = NL/F (z) is a uniformizer of F we write zm = uπF . We see that:

TrL/F

(
zkm+`

f ′z(z)

)
= πkF TrL/F

(
ukz`

f ′z(z)

)
.

As ukz` ∈ OL write:

ukz` =

m−1∑
i=0

aiz
i,

with ai ∈ OF . Then:

TrL/F

(
ukz`

f ′z(z)

)
= am−1 ∈ OF .

The result follows immediately.
To show we have an equality if ` = m− 1 write:

uk =

m−1∑
i=0

aiz
i.

Then we compute that:

TrL/F

(
ukz`

f ′z(z)

)
=

m−1∑
i=0

ai TrL/F

(
zm−1+i

f ′z(z)

)
= a0 (mod πF ).

As vL(u) = 0 it follows that vF (a0) = 0, which concludes the result.

Example. We have the following special cases of the above. Write the minimal monic polynomial fz of z as fz(X) =∑
i aiX

i. Then:

TrL/F

(
z`

f ′z(z)

)
=


−am−1 ` = m

a2
m−1 − am−2 ` = m+ 1

1/a0 ` = −1

a1/a
2
0 ` = −2.

The results for other powers can also be computed directly from the coefficients.
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4.5.2 Invariants of qR1

The most basic of questions is to understand the standard invariants of the quadratic modules which result from
transfer.

The following Lemma is immediate.
Lemma 4.5.4. Transfer commutes with orthogonal direct sums.

� Discriminants and Hasse Invariants
Proposition 4.5.5 (Discriminants). Let R2/R1 be an extension of p-adic rings or orders in number fields. Suppose
L is an R2-lattice (and hence also an R1-lattice) which is free over R2 with quadratic form qR2

. Suppose that R2 is
free over R1. Consider the form qR1

(y) = TrR2/R1
(qR2

(y)) as a quadratic form on L viewed as an R1-lattice. Then:

δqR1
= NR2/R1

(δqR2
)δnR2/R1

,

where δR2/R1
is the usual discriminant relative to the trace form.

Proof. If qR1 is diagonalizable then by multiplicitivity of determinants and norms we may reduce the problem to
studying the unary case. In this setting we have the usual argument (see Lemma 3.3.1). The argument works
integrally. Note that in the argument cited one can use {z`}, any basis for the ring of integers, and this basis need
not be a power basis {z`}.

More generally we need to work with lattices which may not be diagonalizable. Consider L′ ⊂ L a free diagonal-
izable lattice in the same quadratic module. There exists a basis for L and a matrix M = diag(a1, . . . , an)U , where
ai ∈ R×2 and U is an upper triangular unipotent matrix with respect to which L′ = ML. The discriminant of L′ differs
from that of L by

∏n
i a

2
i .

Fix a basis for R2 over R1. For x ∈ R2 let (x) denote the matrix for x acting on R2 as an R1-module in this basis.
Passing to R1 the matrix which realizes L′ as a submodule can be taken to have a block decomposition M ′ =

diag((a1), . . . , (an))U ′, where U ′ is the matrix whose blocks are (Uij). The determinant of (ai) = NR2/R1
(ai), and

hence the determinant of this change of basis becomes the norm of the original change of basis. We thus relate δL,qR1
,

δL,qR2
, δL′,qR2

and δL′,qR1
by

δL,qR1
= NR2/R1

(∏
i

ai

)
δL′,qR1

= NR2/R1

(∏
i

ai

)
NR2/R1

(
δL′,qR2

)
δnR2/R1

= NR2/R1

(
δL,qR2

)
δnR2/R1

.

The formula thus holds for L.

Theorem 4.5.6 (Hasse Invariants). Let R2/R1 be an extension of p-adic rings. Let L be an R2-lattice of rank n with
quadratic form qR2 . Denote by QR2/R1,λ(x) = TrR2/R1

(λx2) and by d = NR2/R1
(D(qR2)). We will consider the form

qR1 = TrR2/R1
(qR2). Continue to denote (·, ·)R1 the Hilbert symbol. We have the following results:

1. The form qR1
has Hasse invariant:

HR1(qR1) = HR1(QR2/R1,1)n+1HR1
(QR2/R1,D(qR2

))(δR2/R1
, d)n+1

R1
HR2

(qR2
).

We view these all as being in the same cohomology group H2(K1, {±1}) by identifying the different groups with
{±1} or equivalently via corestriction, which is injective for local fields.

2. If p 6= 2 and the extension R2/R1 is unramified, then:

HR1(qR1) = HR2(qR2)(πR1 , (−1)n(n−1)/2δR2/R1
d)
vR2

(D(qR2
))

R1
.

3. Consider the case p 6= 2, u ∈ R×1 and R2/R1 is totally ramified. Let λ =
πkR2

uf ′(πR2
)π`R2

, where f is the minimal

polynomial of πR2 . The form QR2/R1,λ has Hasse invariant:

HR1(QR2/R1,λ) = (πR1 , u)
n(n−`)
R1

(πR1 ,−1)
k(n2(n−1)/2+`2(1−n))−`(n−`)(n−`−1)/2
R1

.
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4. Suppose p = 2 and the extension is Galois. The form Q(x) = TrR2/R1
(x2) has Hasse invariant:

HR1(Q) =



(−1,−1)(n
2−1)/8 n = 1 (mod 2)

(δR2/R1
, (−1)(n+2)/4)R1 n = 2 (mod 4)

1 n = 0 (mod 4) and − 1 ∈ R2
2

(−1,−1)R1(2, δR2/R1
)R1 n = 4 (mod 8),−1 ∈ NR2/R1

(R2)

−(−1,−1)R1(2, δR2/R1
)R1 n = 4 (mod 8),−1 /∈ NR2/R1

(R2)

(2, δR2/R1
)R1 otherwise.

The first and fourth statements are [Epk89, Lemma 1 and Theorem 1], respectively; the second and third are
Lemmas 3.4.1 and 3.4.3 , respectively.
Remark. The above theorem fails to provide a complete description of how to compute Hasse invariants for certain
dyadic fields. This is remedied for binary forms of the following special type.
Theorem 4.5.7. Suppose R3 is a p-adic ring with an involution σ. Let z ∈ R2 = Rσ3 be such that

√
z generates R3[ 1

p ]

as a R1[ 1
p ]-algebra (note that by Proposition 3.3.5 such a z exists). View R3 as a binary R2-lattice with quadratic

form:
qR2(x+ y

√
z) = λ((x+ y

√
z)σ(x+ y

√
z)) = λx2 − zλy2

so that D(qR2
) = −z and H(qR2

) = (λ, z). Let f be the minimal monic polynomial for z over R1 and m = [R2 : R1].
Then:

H(qR1) = CorR2/R1
((z,−λf ′z(z))R2) · (NR2/R1

(z),−1)m−1
R1

· (−1,−1)
m(m−1)/2
R1

.

See Theorem 3.3.8.

� Modularity
Proposition 4.5.8. Suppose that R2/R1 is an unramified extension of p-adic rings and that L is a πr-modular R2-
lattice with quadratic form qR2

. Then L is also πr-modular as an R1-lattice. Moreover, the valuation of the norm
ideal NL and scale ideal SL are unchanged. In particular, Jordan decompositions are taken to Jordan decompositions.

Proof. It is clear that we have:

NL/R1
= TrR2/R1

(NL/R2
) and SL/R1

= TrR2/R1
(SL/R2

).

Indeed, picking an element x ∈ L, where ν(qR2
(x)) is minimal write qR2

(x) = uπt with π a uniformizer of R1 and u a
unit. Then qR1

(ax) = πt TrR2/R1
(ua2). For p 6= 2 the unimodularity TrR2/R1

(ua2) implies that there exists a ∈ R2 for
which this is a unit. For p = 2 notice that a 7→ TrR2/R1

(ua2) is surjective on the residue field. The claim for NL/R1

follows immediately, the proof for SL/R1
is similar.

The question of πr modularity now follows from the observation that L is πr-modular if and only if SL = (πr)
and SL# = (π−r).

With the above result in hand, we shall for the time being restrict to the case of totally ramified extensions. We
introduce some notation before proceeding.

Let R2/R1 be a totally ramified extension of p-adic rings of degree m. Let πR2 be a uniformizer of R2 and set
πR1

= NR2/R1
(πR2

) to be a uniformizer of R1. Let f(X) = fπR2
(X) be the minimal monic polynomial of πR2

over

R1. Suppose u1 ∈ R×1 , u2 ∈ R×2 , v ∈ R×2 , 0 ≤ ` ≤ m, k ∈ Z, set u = u1u2 and set:

λ =
πkR1

u1u2v2π`R2
f ′(πR2

)
.

We remark that if the residue characteristic is not 2, then for any given λ in the fraction field of R2 there exists
(non-unique) corresponding values for u1, v, `, k with u2 = 1. Now denote by qR2(x) the R2-quadratic form on R2

given by λx2, and by qR1(x) the R1-quadratic form on R2 given by qR1(x) = TrR2/R1
(λx2). Consider:

M1 = span{v, . . . , vπ`−1
R2
} and M2 = span{uvπ`R2

, . . . , uvπm−1
R2
}

as quadratic submodules of R2. These submodules will play important roles in the construction of Jordan decompo-
sitions.
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4.5.3 Transfer Over Non-Dyadic p-adic Rings
The case of p 6= 2 is simpler for both unary and Hermitian forms. We thus present the results for this case

separately. We assume in this section that the constant u2, as introduced above, is 1. The important feature we will
show is that in both the unary and binary cases we know that there are at most two Jordan blocks and that their
modularity differs by a power of πR1

. We may thus completely recover the invariants of the blocks as in Corollary
4.4.30.
Theorem 4.5.9. Suppose R2/R1 is a totally ramified extension of p-adic fields for p 6= 2. Let λ, qR1 , M1 and M2 be
as above. Then R2 = M1⊕M2 is a Jordan decomposition with M1 and M2 being, respectively, πk−1

R1
and πkR1

modular.

Moreover, the discriminants of 1

πk−1
R1

qR1
|M1

and 1
πkR1

qR1
|M2

are, respectively:

D

(
1

πk−1
R1

qR1
|M1

)
= (−1)`(`+1)/2−m`u−` and

D

(
1

πkR1

qR1 |M2

)
= (−1)(m−`)(m−`−1)/2um−`.

See Lemma 3.4.3.
In addition to the above notation, suppose that R3/R2 is a quadratic extension with involution σ. Fix w a

non-square element of R×1 . Writing x = x1 + x2

√
δR3/R2

consider the quadratic form on R3 given by:

qR3/R1
(x) = 1

2 TrR3/R1
(λxσ(x)) ' TrR2/R1

(λx2
1)− TrR2/R1

(λδR3/R2
x2

2).

Then set λ′ = λδR3/R2
, k′ = k, u′2 = 1 and choose u′1, v

′, `′ so that λ′ =
πkR1

u′v′2π`
′
R2
f ′(πR2

)
. Let q′R1

,M ′i be defined

similarly to qR1 ,Mi using λ′ instead of λ so that qR3/R1
(x) = qR1(x1) − q′R1

(x2). Now define Ni = Mi ⊕ −M ′i and

Ñ1 = 1

πk−1
R1

N1 and Ñ2 = 1
πkR1

N2 their unimodular rescalings.

Theorem 4.5.10. The orthogonal decomposition R3 = N1 ⊕ N2 is a Jordan decomposition for R3 with the form
qR3/R1

. The sublattices N1 and N2 are, respectively, πk−1
R1

and πkR1
-modular. Moreover:

1. If δE/R2
= w then D(Ñ1) = (−1)−`w−` and D(Ñ2) = (−1)`−mw`−m.

2. If δE/R2
= πR2 then D(Ñ1) = (−1)m+1u and D(Ñ2) = −u.

3. If δE/R2
= wπR2

then D(Ñ1) = (−1)m−1uw1−` and D(Ñ2) = −uw`−m+1.

4. If δE/R2
= 1, then D(Ñ1) = (−1)−` and D(Ñ2) = (−1)`−m.

See Lemma 3.4.4.
4.5.4 Transfer Over Dyadic Rings

The case of p = 2 is more complex for a variety of reasons, the failure of diagonalizability being the most
prominent. The goal of this section is to attain results on Jordan decompositions similar to those of the previous
section keeping track of the additional information about norm ideals. In order to account for non-diagonalizability,
we must consider both unary and binary lattices.

As before we set λ =
πkR1

u1u2v2f ′(πR2
)π`R2

with u1 ∈ R×1 , u2, v ∈ R×2 , 0 ≤ ` ≤ m, k ∈ Z and let f(X) be the minimal

monic polynomial of πR2
. Consider:

M1 = span{v, . . . , vπ`−1
R2
} and M2 = span{uvπ`R2

, . . . , uvπm−1
R2
},

as quadratic submodules of R2. Note that we may no longer assume that u2 = 1.
Proposition 4.5.11 (Unary Forms). Let qR2

(x) = λx2 and set:

qR1 = TrR2/R1
(qR2).

Then R2 = M1 ⊕M2 is a Jordan decomposition with M1 and M2 being, respectively, πk−1
R1

and πkR1
-modular. They

differ in modularity by a multiple of πR1
, hence their discriminants may depend on the choice of Jordan decomposition.

Set M̃1 = 1

πk−1
R1

M1 and M̃2 = 1
πkR1

M2. We can in general only say if N
M̃i

is R1. We have the following cases:

• N
M̃1
⊂ (πR1

) if ` is even and u2
∼= πR1

πmR2

(mod R2
2π

`
R2

). Otherwise N
M̃1

= R1.

• N
M̃2
⊂ (πR1) if m− ` is even and u2

∼= 1 (mod R2πm−`R2
). Otherwise N

M̃2
= R1.
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Proof. One easily checks by Lemma 4.5.1 that M1 ⊥M2.
Moreover, the matrix for M1 is of the form (aij)i,j , where the aij satisfy:

1. ai1j1 = ai2j2 whenever i1 + j1 = i2 + j2.
2. vR1

(ai,`−i) = k − 1.
3. vR1

(ai,j) > k − 1 whenever i+ j > `.

4. If ` is even and u2
∼=

πmR2

πR1
(mod R2

2π
`
R2

), then vR1
(aii) > k−1 for all i. Otherwise there exists i with ν(aii) = k−1.

The first statement is immediate, the second and third follow from Lemma 4.5.3. The last statement is seen as follows.
Firstly, the statement depends only on the square class of u2. This is true even though modifying u2 changes the basis
as the conclusion about the norm groups we are making is independent of choice of Jordan decomposition. We may
thus choose to write:

u2 = 1 + c1πR2 + c3π
3
R2

+ · · · (mod π`R2
)

with ci ∈ R1. Now by taking x = π
(`−i)/2
R2

and setting TrR2/R1
(λx2) = 0 (mod πkR1

) we can solve for ci mod πR1
in

terms of cj with j < i (the equations involve the coefficients of f but these are constant). Explicitly we are solving:

ci = πR1
(TrR2/R1

(π−1−i) +
∑
j<i

cj TrR2/R1
(πj−i−1)) (mod πR1

).

Lemma 4.5.3 tells us that the right hand side makes sense. As this is solvable we conclude that up to squares there
is a unique value of u2 modulo π`R2

which makes all values of the quadratic form be contained in πR1R1. Observing
that u2 = πR2

/πmR1
does this allows us to conclude the result.

The matrix for M2 is of the form (bij)i,j , where the bij satisfy:
1. bi1j1 = bi2j2 whenever i1 + j1 = i2 + j2.
2. vR1(bi,m−`−i) = k.
3. vR1(bi,j) > k whenever i+ j > m− `.
4. If m − ` is even and u2

∼=
πmR2

πR1
(mod R2πm−`R2

), then vR1(bii) > k for all i. Otherwise there exists i with

vR1(bii) = k.
The arguments are identical to those for M1 except that 1 is the necessary congruence.

Taking λ as above, we will now consider binary forms. Since we are not interested in those that decompose as
direct sums of unary forms we consider L over R2 of the form:

λ

(
u3π

a 1
1 u4π

a+b

)
=

πkR1

u1u2v2

 u3

f ′(πR2
)π`−aR2

1
f ′(πR2

)π`R2
1

f ′(πR2
)π`R2

u4

f ′(πR2
)π`−a−bR2


with a > 0 and b ≥ 0.

We use the basis:

{v, . . . vπ`−1
R2
}e1 ∪ {vuπ`R2

, . . . , vuπm−1
R2
}e1,

{v, . . . vπ`−1
R2
}e2 ∪ {vuπ`R2

, . . . , vuπm−1
R2
}e2,

where e1, e2 denote respectively the first and second coordinates of L.
Define the following quadratic submodules with the given basis:

M1 = {v, . . . vπ`−1
R2
}e1, M ′1 = {v, . . . , vπ`−1

R2
}e2,

M2 = {vuπ`R2
, . . . , vuπm−1

R2
}e1, M ′2 = {vuπ`R2

, . . . , vuπm−1
R2
}e1.

Also define N1 = M1 + M ′1 and N2 = M2 + M ′2. Note these are not orthogonal decompositions. We are considering
the span of both in the ambient space. Moreover, N1 and N2 also need not be orthogonal complements.
Proposition 4.5.12 (Binary Forms). Let a > 0,b ≥ 0, u3 ∈ R×1 and u4 ∈ R×2 . Let qR2 be the form associated to the

matrix λ
(
u1π

a 1

1 u2π
a+b

)
. Then the form:

qR1 = TrR2/R1
(qR2)

has 2 Jordan blocks, Ñ1 and Ñ2 of modularities πk−1
R1

and πkR1
, respectively. They differ in modularity by a multiple

of πR1
. We can only in general determine if the norm ideals are R1.
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• N
Ñ1
⊂ (πR1) if and only if max(`− a, 0) and max(`− a− b, 0) are even, and u2u3

∼= πR1/π
m
R2

(mod π`−aR2
) and

u2u4
∼= πR1/π

m
R2

(mod R2
1π

`−a−b
R2

)

• N
Ñ2
⊂ (πR1) if and only if max(m− `− a, 0) and max(m− `− a− b, 0) are even, and u2u3

∼= 1 (mod πm−`−aR2
)

and u2u4
∼= 1 (mod R2

1π
m−`−a−b
R2

).

Proof. Viewing the underlying space under the basis M1,M
′
1,M2,M

′
2 as above the matrix for qR1 is of the form:

A B Dt 0
B C 0 Et

D 0 F G
0 E G H

 .

The blocks (that is the submatrices A, . . . ,H) have the following properties:
1. A,B,C are ` by ` matrices and, F,G,H are m− ` by m− ` matrices.
2. For all the blocks we have ∗i1j1 = ∗i2j2 whenever i1 +j1 = i2 +j2. In particular, the square blocks are symmetric.
3. ν(∗ij) ≥ k − 1 for all blocks and all i, j. Furthermore,

ν(Aij) > k − 1 for i+ j > `− a,
ν(Bij) > k − 1 for i+ j > `,

ν(Bij) = k − 1 for i+ j = `,

ν(Cij) > k − 1 for i+ j > `− a− b,
ν(Dij), ν(Eij) > k − 1 for all i, j,

ν(Fij) > k for i+ j > m− `− a,
ν(Gij) > k for i+ j > m− `,
ν(Gij) = k for i+ j = m− `, and

ν(Hij) > k for i+ j > m− `− a− b.

4. The discriminant of 1

πk−1
R1

( A B
B C ) and the discriminant of 1

πk−1
R1

( F G
G H ) are units mod πR1

.

5. There are changes of basis which realize both N1 and N2 as Jordan blocks (though not simultaneously).
Hence the questions of whether the norm ideals of the rescaled Jordan blocks are contained in R1 are determined
by 1

πk−1
R1

( A B
B C ) and 1

πkR1

( F G
G H ).

6. The lattice N1 is odd unless max(`− a, 0) and max(`− a− b, 0) are even, and u2u3
∼= πR1/π

m
R2

(mod π`−a) and

u2u4
∼= πR1/π

m
R2

(mod R2
1π

`−a−b)

7. The lattice N2 is odd unless max(m− `− a, 0) and max(m− `− a− b, 0) are even, and u2u3
∼= 1 (mod πm−`−a)

and u2u4
∼= 1 (mod R2

1π
m−`−a−b).

Points (1) and (2) are direct checks. Point (3) uses Lemma 4.5.3. Point (4) is elementary yet tedious to check. First
observe that since modulo πR1

the matrix 1

πk−1
R1

( A B
B C ) is of the form:

( ∗ ∗ u
∗ X 0
u 0 0

)
,

where X is a 2`− 2 by 2`− 2 block, it has determinant −u2 det(X). We may iterate this procedure on X until X is
of the form: (

Ã B̃

B̃ C̃

)
with Ã, B̃, C̃ being `−a− b by `−a− b blocks. We may iterate until X has additional non-zero entries on the bottom
row and rightmost column. Now use the fact that:

det
(
Ã B̃
B̃ C̃

)
= det(C̃) det(Ã− B̃C̃−1B̃),
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combined with the observation that:

Ã− (B̃C̃−1B̃)ij ∈

{
πR1R1 i+ j > `− a− b
R∗1 i+ j = `− a− b

to conclude the result. We may perform an analogous argument for ( F G
G H ).

For point (5) notice that the change of bases needed are, respectively:(
Id − ( A B

B C )
−1
(
Dt 0
0 Et

)
0 Id

)
and

(
Id 0

− ( F G
G H )

−1
(D 0

0 E ) Id

)
.

The matrices (D 0
0 E ) ( A B

B C )
−1

and (D 0
0 E ) ( F G

G H )
−1

are integral by points (3) and (4). One sees that orthogonal com-

plements of N2 and N1 are preserved, respectively, modulo πk−1
R1

and πkR1
. Hence they are modular and we indeed

have a Jordan decomposition.
The arguments for (6) and (7) are analogous to that of the previous lemma. Indeed, one has norm ideal R1 if

and only if the diagonal contains a unit. Hence the problem reduces to considering the blocks on the diagonal, and
we are reduced to the situation of the previous lemma, (except that we have now two different subblocks to check for
each Jordan decomposition).

Remark. Note that though N1 and N2 are Jordan blocks for some Jordan decompositions, it is not necessarily true
that the space for qR1

is isomorphic to N1 ⊕N2 as N1 and N2 may not be Jordan blocks in the same decomposition.
In the above theorem one can take either Ñ1 = N1 or Ñ2 = N2, though not necissarily both at the same time.

We now move to the special case of forms which arise from Hermitian forms. We quickly review the possible
quadratic extensions R3/R2 of a 2-adic ring. On the level of their fields of fractions they are of the form K(

√
z). We

therefore look at the various cases for z.
• z = uπR2

for u ∈ R∗2.
Then the extension is ramified, has uniformizer

√
uπR2

, δR3/R2
= 4uπR2

, and the ring of integers has integral
basis: 1,

√
uπR2

.

In this basis the Hermitian form qR2
= 1

2 TrR3/R2
(λxσ(x)) has matrix:

λ

(
1 0
0 −uπR2

)
.

In this case k =
⌈
vR2

(2λf ′(πR2
))+1

2m

⌉
and ` = −(vR2(λf ′(πR2))−mk).

• z = 1 + aπ2r+1
R2

for 0 ≤ r < vπR2
(2) and a ∈ R×.

Then the extension is ramified, has uniformizer
1+
√

1+aπ2r+1
R2

πrR2

, δR3/R2
= 4

π2r
R2

(1+aπ2r+1
R2

), and the ring of integers

has integral basis: 1,
1+
√

1+aπ2r+1
R2

πrR2

.

In this basis the Hermitian form qR2
= 1

2 TrR2(R3/R2
(λxσ(x)) has matrix:

λ 1
πrR2

(
πrR2

1

1 −aπr+1
R2

)
.

In this case k =
⌈
vR2

(λf ′(πR2
))−r

m

⌉
and ` = −(vR2(λf ′(πR2))− r −mk).

• z = 1 + bπ2r for r = vπR2
(2) and x2 + 2

πrR2

x− b irreducible mod πR2 .

Then the extension is unramified, has uniformizer πR2
, δR3/R2

= (1 + bπ2r), and the ring of integers has integral

basis 1,
1+
√

1+bπ2r
R2

πrR2

.

In this basis the Hermitian form qR2
= 1

2 TrR3/R2
(λxσ(x)) has matrix:

λ 1
πrR2

(
πrR2

1
1 −bπrR2

)
.
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In this case k =
⌈
vR2

(λf ′(πR2
))−r

m

⌉
and ` = −(vR2

(λf ′(πR2
))− r −mk).

We already have from the above that the quadratic forms which result from these cases will have 2 Jordan blocks.
We thus proceed to summarize the results we can conclude about these cases.

Proposition 4.5.13. Let R3 is the maximal order of R2(
√
z), R2 and R1 being as above. Let λ =

πkR1

u1u2v2f ′(πR2
)π`R2

with u1 ∈ R×1 , u2, v ∈ R×2 , 0 ≤ ` ≤ m, k ∈ Z and let f(X) be the minimal monic polynomial of πR2
. Consider the

Hermitian form qR2
(x) = 1

2 TrR3/R2
(λxσ(x)), and qR1

(x) = TrR2/R1
(qR2

(x)). The form qR1
has two Jordan blocks

N1 and N2, they are πk−1
R1

and πkR2
- modular, respectively. Moreover, we have:

1. If z = aπR2 then the blocks are of dimension 2` − 1 and 2(m − `) + 1, respectively. Both blocks are always odd
(ie N = R1).

2. If z = (1 + aπ2r+1
R2

) then the blocks are of dimension 2` and 2(m− `), respectively. The block N1 is odd if r < `
whereas N2 is odd if r < m− `.

3. If z = (1 + bπ2r) then the blocks are of dimension 2` and 2(m− `), respectively. Neither block is ever odd.

Proof. The result follows immediately from the above discussion and Proposition 4.5.12.

Remark. As in Proposition 4.5.12 we do not give an explicit Jordan decomposition, we only prove one exists with
the given properties. The blocks N1 and N2 that Proposition 4.5.12 gives us in this case are again both Jordan blocks
in some decomposition, but not necessarily in the same decomposition.
4.6 Computing Local Densities For Hermitian Forms over Q

The problem of computing the main terms in the dimension formulas for spaces of modular forms on orthogonal
Shimura varieties is reduced by Theorem 2.5.25 to the computation of VolHM (SO(L)\D). Proposition 2.5.31 reduces
this to computing α∞(L,L). By Proposition 2.5.34 and the remark following, the main computational issue is com-
puting αp(L,L), or equivalently βp(L,L). We now have all the tools in hand to carry out the task of computing the
local densities for Hermitian lattices over Q. This is what we shall do in this section.

The idea is as follows: given the ring of integers O of some étale algebra E over Q, we wish to understand the
local densities for the form q(x) = 1

2 TrE/Q(λxσ(x)), where λ ∈ E×. For each prime p of Q we may write Ep = ⊕p|pEp,
where the sum is over maximal ideals p for the maximal order of Eσ. The first step is thus to understand the Jordan
decompositions of the forms qp(x) = 1

2 TrEp/Qp(λpxσp(x)). Having done this we may then understand the Jordan
decomposition of the orthogonal direct sum qp = ⊕pqp with sufficient precision to compute the local density from the
formulas we have. In particular we need strictly more information to compute results for Ep than for Ep as the latter
only has 2 Jordan blocks and so can be handled more simply.

Before we proceed we point out that this does not actually require that we understand all the invariants of all of
the blocks of all of the qp. Indeed the formulas for Jordan decompositions do not always depend on all the details of
the isomorphism class.

Fix p|p a maximal ideal dividing p in the maximal order of Eσ. Set R3 be the maximal order of Ep, R2 the
maximal order of Eσp and R1 = Zp. Let ep and fp be, respectively, the ramification and inertial degrees of R2 over
R1. Let np = 2mp = [R3 : R1]. We shall denote by DRi/Rj the different ideal of Ri over Rj .

We now proceed to define a variety of constants which allow us to describe the Jordan blocks. We have:

δp = (−1)[R2:R1]NR2/R1
( 1

4λ
2D2

R2/R1
δR3/R2

).

This is the discriminant of the quadratic form q (see Proposition 4.5.5.) Set:

Hp = CorR2/R1
((z,−λf ′z(z))R2

)(NR2/R1
(z),−1)

mp−1
R1

(−1,−1)
mp(mp−1)/2
R1

,

where
√
z primitively generates the fraction field of R3 over that of R1. This is the Hasse invariant (see Theorem

4.5.7.)

Set kp =
⌈
vR1

(δp)

np

⌉
. The kp and kp − 1-modular blocks are those which may be non-trivial. The value of kp is

clear by considering the discriminant. Set:

np,i =


np − vR1(δp) (mod np)∗ i = k − 1

vR1
(δp) (mod np)∗ i = k

0 otherwise.
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Note that we mean that np,i is a value between 0 and np. Moreover, for the i = kp case use np as the representative
for 0, for the i = kp − 1 case use 0 (so that if there is only one non-trivial block it is the kp-modular block). This
represents the dimension of the ith modular block. Again, the computation is clear in consideration of the discriminant.

Set `p = vR2
(λ) + vR2

(DR2/R1
) + vR2

(δR3/R2
)/2 (mod ep) (a representative between 0 and ep). Then define:

χp,i(o) =


0 p = 2, i = kp − 1, kp and vR2(δR3/R2

) is odd

0 p = 2, i = kp − 1 and `p < vR2(δR3/R2
)/2

0 p = 2, i = kp and ep − `p < vR2
(δR3/R2

)/2

1 otherwise.

This value is 1 if Ni ⊂ 2Si, and 0 otherwise. This follows immediately from the criterion for evenness of the previous
section.

Set np,i(e) = 2
⌊
np,i−1+χp,i(o)

2

⌋
. This represents the dimension of the maximal even dimensional unimodular

sublattice with N ⊂ (2). Then:

χp,i(e) =


(p,−1)(i+1)mp(δp, p)

i+1(p,−1)np,i/2Hp np,i 6= 0 even, p 6= 2

(p,−1)imp(δp, p)
i(p,−1)(np+2)/2Hp np,i 6= 0 odd, p 6= 2

(δp, 2)i(−1,−1)(n2
p−2np)/8Hp np,i(e) = np,i 6= 0, p = 2

1 otherwise.

.

The above is an intermediate calculation for the discriminant of the ith Jordan block. For p 6= 2, it amounts to
checking if (−1)np,i(e)/2 times the discriminant of the block is a square based on the Hasse invariant. For p = 2, it
computes this when this block is even. The computation assumes the other block is also even, for if it were not we
would have the freedom to modify the discriminant of this block.

Let u be a non-square in R×1 . For p = 2 set u = 3. Define:

δp,i =


1 (χp,i(o) = 0 and np,i odd) or np,i = 0

(−1)np−np,i/2δp χp,i(o) = 0, np,i even

(−1)bnp,i/2cu(χp,i(e)−1)/2 otherwise.

This represents a valid discriminant for the ith modular Jordan block. For p = 2 the value is typically accurate mod
8. If p = 2, np,i = 1,mp = 1 it is only accurate mod 4 but this case does not impact the following computations.
The first two cases compute the discriminant when this block is odd. It does so assuming the complementary block
is hyperbolic, since if this block were odd, we would be able to assume the hyperbolicity of the complementary block.
We now set:

Hp,i =


1 p 6= 2

1 np,i = 1

(−1,−1)(np−np,i)(np−np,i−2)/8(δp,i,−1)mp−np,i/2(δp, 2)iHp otherwise.

This represents a valid Hasse invariant for the ith modular block. We compute it assuming the complementary block
is even. If it is not, then the Hasse invariant of the ith block depends on a choice. Hence the result is still valid.
Now we set χp,i = 0 if ni is odd or if p = 2 and either χp,i−1(o)χp,i+1(o) = 0 or χp,i(o) = 0 and δp,i = (−1)(np,i−1)/2

(mod 4) otherwise define χp,i by:

χp,i =

{
((−1)np,i/2δp,i, p) p 6= 2,

(−1,−1)np,i(np,i−2)/8Hp,i p = 2.

This value is 0 if the isomorphism class of the maximal even unimodular sublattice is not well-defined. The value is
1 if it is hyperbolic and it is −1 if it is not hyperbolic. The computation is based on those in the proof of Corollary
4.4.20.
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We now proceed to introduce the remaining terms which appear in the formulas:

tp =
∑
i

(1− χp,i(o))np,i + (1− χp,i(o))(1− χp,i+1(o))−∑
i

δnp,i,0(1− χp,i−1(o)χp,i+1(o)),

sp = |{i | np,i 6= 0}| ,
wp = (k − 1)[R3 : R1]([R3 : R1] + 1)/2 + nk(nk + 1)/2,

Pp,i =

np,i(e)

2∏
j=1

(1− q−2j),

Ep,i = (1 + χp,iq
−np,i(e)/2)−1,

Pp =
∏
i

Pp,i,

Ep =
∏
i

E−1
p,i .

Theorem 4.6.1. Let R1 = Zp and R3 be the ring of integers of a p-adic field with involution σ and maximal ideal p.
Suppose λ ∈ (Rσ3 )×. Consider the lattice L = R3 with the bilinear form:

(x, y) = 1
2 TrR3/R1

(λxσ(y)).

Using all the notation as above, we have:

βp(L,L) = 2sp−tpqwpPpEp.

Proof. The result follows immediately from Theorem 4.4.29 and the above computations of the relevant terms.

We now combine what we know about the quadratic forms qp to get sufficient information about the form qp to
compute its local densities. We define the relevant constants in terms of the decomposed ones:

np,i =
∑
p|p

np,i,

δp,i =
∏
p|p

δp,i,

χp,i(o) =
∏
p|p

χp,i(o),

np,i(e) = 2

⌊
ni + 1− χp,i(o)

2

⌋
, and

Hp,i =
∏
p|p

Hp,i

∏
p<q

(δp,i, δq,i).

The above formulas are all direct computations. Now we set χp,i = 0 if ni is odd or if p = 2 and either χp,i−1(o)χp,i+1(o) =
0 or χp,i(o) = 0 and δp,i = (−1)(np,i−1)/2 (mod 4) otherwise define χp,i by:

χp,i =

{
((−1)np,i/2δp,i, p) p 6= 2

(−1,−1)np,i(np,i−2)/8Hp,i p = 2.
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As above, this formula is based on the computations of Corollary 4.4.20. We may now introduce the terms which will
appear in the formulas:

tp =
∑
i

(1− χp,i(o))np,i + (1− χp,i(o))(1− χp,i+1(o))−∑
i

δnp,i,0(1− χp,i−1(o)χp,i+1(o)),

sp = |{i | np,i 6= 0}| ,

wp =
∑
i

inp,i((np,i + 1)/2 +
∑
j>i

np,j),

Pp,i =

np,i(e)

2∏
j=1

(1− q−2j),

Ep,i = (1 + χp,iq
−np,i(e)/2).

Finally, define:

Pp =
∏
i

Pp,i and Ep =
∏
i

E−1
p,i .

Theorem 4.6.2. Let OE be the ring of integers of a number field with involution. Using all the notation above the
p-adic local density of the form 1

2 TrE/Q(λxσ(y)) on OE is:

βp(L,L) = 2sp−tpqwpPpEp.

Proof. Again, the result follows immediately from Theorem 4.4.29 and the above computations of the relevant terms.

The above formula is complicated. This is largely by virtue of the fact that each p|p could contribute to different
Jordan blocks, and hence we must independently compute the invariants for each. One can thus in general expect no
reasonable cancellation in the above formulas as there are cases where none occurs. The advantage of this formula over
those of the previous section is that the formula is expressed entirely in terms of the invariants of the rings involved
(and λ) and thus given a ring which one understands, one can compute this formula.

We now present a restricted case, that is, we shall suppose that λp has small valuation for all p so that k = 1
and the final lattice has at most 2 Jordan blocks at each p. In particular assume that 0 ≤ vp(λ/2) + vp(δOE/OEσ )/2 +
vp(DOEσ/Z) ≤ ep for all primes p of Eσ.

Under these assumptions we have:
• The dimension of the space is n = 2m = [E : Q].
• The dimensions of the Jordan blocks are:

np,0 = n− vp(N(λ/2)2δE/Qp) and np,1 = vp(N(λ/2)2δE/Qp).

• The conditions for the blocks to be odd are:
χp,0(o) = 0 if and only if either vp(δE/Eσ ) odd or ep > vp(λ) + vp(DEσ/Q) for some p.
χp,1(o) = 0 if and only if either vp(δE/Eσ ) odd or vp(δE/Eσ ) > 2ep − vp(λ)− vp(DEσ/Q) for some p.

• As before one computes np,i(e) = 2
⌊
ni+1−χp,i(o)

2

⌋
.

• We have the following formula for χp,i:

χp,i =



0 ni = 0 or ni odd

0 p = 2, χp,i−1χp,i+1 = 0

0 p = 2, δp = (−1)m−1 (mod 4)

CorEσp /Qp((z, (−1)mpi+1λf ′z(z))Eσp ) p 6= 2, ni even

CorEσp /Qp((z, (−1)m2iλf ′z(z))Eσp ) otherwise,

where
√
z primitively generates the E over Qp.
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Remark. Notice that for all primes which are unramified in E and for which vp(N(λ)) = 0 (or for p = 2 take λ = 2)
the above formula for χp,i reduces to ((−1)mD, p). The lack of symmetry at 2 is a consequence of our normalization
of the form. The normalization we have chosen makes the Witt invariant formula cleaner, but breaks the symmetry
in this formula.
Now set:

tp =


(1− χp,0(o))(np,0 − 1) + (1− χp,1(o))(np,1 − 1)+

(1− χp,0(o))(1− χp,1(o))
np,0np,1 6= 0

(1− χp,0(o))(np,0 − 2) + (1− χp,1(o))(np,1 − 2) otherwise,

sp = |{i | np,i 6= 0}| , and

wp = np,1(np,1 + 1)/2.

Theorem 4.6.3. Let E/Q be a finite extension with involution σ, supposing E is primitively generated by
√
z over Q

with z ∈ Eσ. Let λ ∈ (Eσ)× with:

0 ≤ vp(λ/2) + vp(δOE/OEσ )/2 + vp(δOEσ/Z) ≤ ep,

for all primes p of Eσ. Then with notation as above the local density of the form 1
2 TrE/Q(λxσ(x)) is:

2sp−tpqw

np,0(e)

2∏
j=1

(1− q−2j)

np,1(e)

2∏
j=1

(1− q−2j)(1 + χp,0q
−np,0(e)/2)−1(1 + χp,1q

−np,1(e)/2)−1.

Proof. Once again this is an immediate application of Theorem 4.4.29 together with the above computations of the
relevant terms.

4.7 Example of Q(µp)
Fix a prime p of Z. In this section we shall compute the local densities for the form

qE,λ = 1
2 TrE/Q(λxσ(x)),

where E = Q(µp) is the cyclotomic field of pth roots of unity, σ is complex conjugation, and λ is restricted in valuation
so that 0 ≤ vq(λ/2) + vq(δOE/OEσ )/2 + vq(DOEσ/Z) ≤ eq for all q.

We shall use the following ‘elementary’ facts.
• The ring of integers of E is OE = Z[ζap ] for each a ∈ (Z/pZ)×.
• The ring of integers of F := Eσ is:

OF = Z[ζp + ζ−1
p ] = Z[(ζp − ζ−1

p )2] = Z[(ζap − ζ−ap )2]

for each a ∈ (Z/pZ)×.
Denote by za = (ζap − ζ−ap )2 then za is totally negative and E = Q(

√
za). Denote by fz the minimal polynomial

of za (this does not depend on a).
• There is a unique prime in each of OE and OF over p. Denote by p the prime over p in OF .
• The discriminant of E/Q is δE/Q = (−1)(p−1)/2pp−2.
• Since ζ2

p 6= 1 (mod q) for all q - p it follows that ζap − ζ−ap and hence (ζap − ζ−ap )2 is a unit away from 2 and p.
• Since the different ideal is DF/Q = (f ′z(za)) it follows that f ′z(za) is a unit at all places away from p.
• The elements ζap − ζ−ap and (ζap − ζ−ap )2 are uniformizing elements in the respective cases.

This follows from the observation that the order Z[
√
za] = OF [

√
za] is maximal away from 2.

• The ramification degrees are e` =

{
p− 1 ` = p

1 otherwise
.

In the formulas of the previous section we have the following:
• The dimension of the space is [E : Q] = p− 1.
• The dimensions of the Jordan blocks are for ` 6= p are:

n`,0 = p− 1− 2ν`(NF/Q(λ/2)) and n`,1 = 2ν`(NF/Q(λ/2))
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and for ` = p they are:

n`,0 = 1− 2νp(NF/Q(λ)) and n`,1 = p− 2 + 2νp(NF/Q(λ)).

Thus we set:

w` = n`,1(n`,1 + 1)/2 and

s` =

{
1 ` 6= p, ν`(NF/Q(λ)) = 0,±(p− 1)/2

2 otherwise.

• The parity of the Jordan blocks at 2 are:
χ2,i(o) = 1

so long as the blocks are non-trivial. This is true because the extension is unramified at 2. Consequently, t` = 0
for all `.
• The character for the blocks are computed as follows:

χ`,i =


0 ` = p

CorEσ/Q
(
(za, (−1)(p−1)/22iλf ′z(za))

)
`

` = 2

CorEσ/Q
(
(za, (−1)(p−1)/2`i+1λf ′z(za))

)
`

` 6= 2, p.

We are thus interested in computing:

CorF/Q ((za, λ)) CorF/Q

(
(za, (−1)(p−1)/2f ′z(za))

)
.

For all ` 6= 2, p we have that za and f ′z(za) are units and thus:

CorF/Q

(
(za, (−1)(p−1)/2f ′z(za))

)
`

= 1.

For ` = 2 we have that:
CorF/Q

(
(za, (−1)(p−1)/2f ′z(za))

)
2
· (−1)(p−1)(p−3)/8

computes the Hasse invariant of the form (for λ = 1). Since this Hasse invariant is 1 for all places (including
infinite) other than p we can conclude that:

CorF/Q((za,(−1)(p−1)/2f ′z(za)))2

= (−1)(p−1)(p−3)/8 CorF/Q

(
(za, (−1)(p−1)/2f ′z(za))

)
p

We are thus reduced to computing CorF/Q
(
(za, (−1)(p−1)/2f ′z(za)

)
p
. Observe that:(

za, (−1)(p−1)/2f ′z(za)
)
p

=
(
za,−z−1

a

)(p−3)/2

p

(
za, (−1)(p−1)/2f ′z(za)

)
p

= (za,−1)p

(
za, z

−(p−3)/2f ′z(za)
)
p

= (za,−1)p

∏
a 6=b∈(Z/pZ)×/±1

(
za, 1− zb

za

)
p
.

Now, we may use that za is a uniformizer and that:

zb
za
∼=
a2

b2
(mod za).

It follows that the terms we wish to evaluate are actually:(
za, 1− zb

za

)
p

=
(
za, 1− b2

a2

)
p

=
(
za, 1− b

a

)
p

(
za, 1 + b

a

)
p
.

98



The resulting expression now becomes:(
za, (−1)(p−1)/2f ′z(za)

)
p

= (za,−1)p
∏

±a6=b∈(Z/pZ)×

(
za, 1− b

a

)
p

= (za,−2)p .

Applying the Corestriction map we have:

CorF/Q ((za,−2)p) =
(
NF/Q(za),−2

)
p

=
(

(−1)(p−1)/2p,−2
)
p

= (p,−2)p .

From this we can conclude that:

CorF/Q

(
(za, (−1)(p−1)/2f ′z(za))

)
2

= (−1)(p−1)(p−3)/8(p,−2)p = 1.

Now, for all ` 6= p we find:

CorEσ/Q ((za, `))` =
(

(−1)(p−1)/2p
`

)
=
(
`
p

)
.

Thus we can conclude that:

χ`,i =



0 ` = p

CorEσ/Q ((za, λ))` ` = 2, i = 0

CorEσ/Q ((za, λ))`

(
`
p

)
` = 2, i = 1

CorEσ/Q ((za, λ))` ` 6= p, i = 1

CorEσ/Q ((za, λ))`

(
`
p

)
` 6= p, i = 0.

� Examples
Combining all of the above we can easily compute the product over all local densities for the following cases:
• Case λ = 2, the arithmetic volume is:

2p(p−2)(p−1)/2(1− pp−1)
∏
`

(1 +
(
`
p

)
`(p−1)/2

) (p−1)/2∏
i=1

(1− `−2i)−1

 .

• Case λ = 2µ, where µ ∈ O×F has a unique negative embedding and (za, µ)p = −1, the arithmetic volume is:

2p(p−2)(p−1)/2(1− pp−1)
∏
`

(1 +
(
`
p

)
`(p−1)/2

) (p−1)/2∏
i=1

(1− `−2i)−1

 .

• Case λ = 2µ, where µ ∈ O×F has a unique negative embedding and (za, µ)p = 1, the arithmetic volume is:

2p(p−2)(p−1)/2(1− pp−1)
1−

(
2
p

)
2(p−1)/2

1 +
(

2
p

)
2(p−1)/2

∏
`

(1 +
(
`
p

)
`(p−1)/2

) (p−1)/2∏
i=1

(1− `−2i)−1

 .
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• Case λ = 2q, where (q)|q 6= p is prime and (q, p)p = −1, set nq = νq(NF/Q(q)) and suppose (q) 6= (q) and q is
totally positive, the arithmetic volume is:

22p(p−2)(p−1)/2qnq(nq−1)/2 (1− qnq )
(

1 + q(p−1)/2−nq
) nq∏
i=1

(
1− q2i

)−1

p−1−nq∏
i=1

(
1− q2i

)−1∏
` 6=q

(1 +
(
`
p

)
`(p−1)/2

) (p−1)/2∏
i=1

(1− `−2i)−1

 .

• Case λ = 2q, where q|q 6= p, 2 is prime and (q, p)p = 1, set nq = νq(NF/Q(q)) and suppose (q) 6= (q) and q is
totally positive, the arithmetic volume is:

22p(p−2)(p−1)/2qnq(nq−1)/2 (1 + qnq )
(

1 + q(p−1)/2−nq
) nq∏
i=1

(
1− q2i

)−1

p−1−nq∏
i=1

(
1− q2i

)−1
1−

(
2
p

)
2(p−1)/2

1 +
(

2
p

)
2(p−1)/2

∏
` 6=q

(1 +
(
`
p

)
`(p−1)/2

) (p−1)/2∏
i=1

(1− `−2i)−1

 .

Other more complicated combinations can be handled similarly.
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CHAPTER 5
Conclusion

The topic of Shimura varieties of orthogonal type provides for many avenues of research. The main results of this
thesis resolves only a few. Even these results aren’t the end of the road as further questions can still be asked.

In terms of the results of Chapter 3, concerning the characterization of special points (or more accurately algebraic
tori) associated to orthogonal groups, the following generalizations remain open:

1. A characterization of the non-maximal tori which do not appear as direct factors. Specifically we can consider
embeddings

TF,σ ↪→ GL(Fn)

and ask when such a torus preserves a quadratic form on Fn. Or equivalently when does there exist an extension
(E, σ) of (F, σ) such that q ' qE,σ,λ. This question relates to a characterization of ‘generalized special cycles’
(see Section 2.6.3).

2. A characterization of the algebraic tori in other reductive groups, including the outer forms of orthogonal groups
and Spin groups. For Spin groups, our results shed a fair bit of light on the problem, but in this setting some
questions remain open. One may still ask, for example, which algebras are complete reflex algebras? For classical
groups arising from involutions one expects many similar phenomena to arise.

3. Even more generally one may ask for a characterization of inclusions of algebraic groups G ↪→ Oq or more
ambitiously G1 ↪→ G2 or G1 → G2. A necessary condition is certainly that for all T ↪→ G1 there exists a map
T → G2. This motivates looking at the case of tori first.

Besides these generalizations, another problem which the present work does not discuss is that of relating the charac-
terization of tori given in Chapter 3 with that given in my masters thesis [Fio09]. The characterization there is in terms
of certain cohomology classes in H1(Gal(k/k), NO(T )) and it would be interesting to relate this to the characterization
given here in terms of étale algebras with involution. One expects the correspondence to be quite natural and this is
something I intend to look at in a more general context in upcoming work.

As for the results of Chapter 4 a number of natural questions remain open:
4. Obtaining more general formulas for βp(L,M) for primes p over 2. Some of the results of Chapter 4 are easily

extended to this context, in particular Theorem 4.4.11. Other results would require performing a significant
number of new computations, specifically Theorem 4.4.18. Finally, some of the results may simply not extend
in any natural way and thus require entirely new ideas, for example Theorem 4.4.28.

5. Computing more explicitly the contribution of the structure of distinct Jordan decompositions to βp(L,L).
Specifically, over Q2, the formula simplifies greatly, and one should expect a similar result for other explicit
(especially unramified) extensions of Q2.

6. More refined computation of invariants for transfer of lattices over 2-adic rings. In particular a complete de-
scription of the norm group.

A major theme of Chapter 2 is computing dimension formulas. The work here suggests several areas needing
more work.

7. An explicit description of a smooth projective toroidal compactification for the O(2, n) Shimura varieties. In
particular a detailed understanding of the cone decomposition for the relevant cone Ω.

8. Computations of the intersection numbers for Chern classes and boundary components relevant for the Riemann-
Roch theorem.

9. Explicit formulas for the numbers of cusps of a compactification.
10. More refined results on the vanishing of cohomology.

Another topic of great interest, alluded to in Chapter 2, is that of studying the many types of cycles which appear in
orthogonal Shimura varieties. Many of the questions one may ask about these cycles naturally generalize those one asks
about special points. In particular, one can ask about the field of definition of a cycle and its irreducible components,
and consequently, about the precise role the various cycles may play in explicit class field theory. Moreover, these
cycles have an important role in Arakelov theory and an understanding of the relationship between their intersection
theory and the special values of L-functions is a topic of great interest.

I hope that the above provides an indication at the breadth of the field which remains to be explored.
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Index of Notations

(Γ\D)
tor

Σα
20

A∨ 26
AX 63
(a, b)K 8
αR(M,L) 69

B(~x, ~y) 7
b(~x, ~y) 7
bΛ(·, ·) 62
BΛ(x, y) 62
BM (x, y) 62
BE,σ,λ(x, y) 47
Bα 18
βR(M,L) 69

c(E) 28
cα(E) 28
ci(E) 28
ct(E) 28
ch(E) 28
CHr(X) 28
Cq 7, 48
C0
q 7, 48

CorL/F 50

D(q) 8, 48, 63
DΛ 63
D 8
DRi/Rj 93
DL,S 35
Dφ 37
∆α 31
δE/k 44
δΛ 63

E(A) 27
EΦ 45
Eφ 45
Eσ 44
ep 93
eρ 44

Ĕ 30
E(n−2) 25
E 30
Eρ 30
(E, σ) 44

Fα 13
fp 93

G`,α 18
Gh,α 18
Γα 18
Γφ 44

Ğ 9
Gr(V ) 10
GSpinq 7

H 8
H(Λ) 63
H(q) 8, 48
Hφ 37
HL,S 35
Hq 10

JDL 81

κ 10

L(2) 71
La,b 65
Λ(2) 71
Λ# 63

M⊥ 62
Mk(Γ) 31

NΛ 63
NΣ 16
ni(e) 83
NΛ 64
nΛ 64

O(σ) 16
Ω 10
Ωα 17
Ω1
X 28

Ω1
X

(log) 30

Ω′
rat

16
Ω
∨

15
Oq 7

Pα 13
P± 9
p`,α 18
PAut,L,r 82
Peq,I,r 81
ph,α 18
PI=J,r 81
PJD,r 81
p± 9
Φα 18

q(~x) 7
qΛ(x) 62
qE,λ(x) 47
qR1

(x) 85

Rad(M) 62
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(rρ, sρ)ρ 8, 48

Sk(Γ) 31, 34
ΣN 16
SΛ 64
SOq 7
Spinq 7

S̃k(Γ) 34
S 11, 39

TE 47
TE,σ 47
TX 28
td(E) 28

Uα 18
Uc 65
U 10
Uα 17

Vα 18
Vα 17
VolHM (X) 30
νπ 65
(V, q) 7

W (Λ) 64
W (q) 8, 48
Wα 18
Wα 17
wΛ,π 64

X∗(T ) 14, 46
X∗(T ) 14
XΣ 16
Xσ 16

X
BB

14
χ(E) 29

X
Sat

13
χ(V ) 71

y +∞σ 16
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Index of Definitions

algebraic torus 46
type E 47

a-modular see lattice
anisotropic see lattice

boundary component 13, see symmetric space
rational 13

canonical see model
canonical model see model
Chern class 28
Chern polynomial 28
Clifford algebra 7, 48, see quadratic form
co-core see kernel
comparable see kernel
cone 15

dual 15
homogeneous 15
non-degenerate 15
polyhedral 15
regular 17
self-adjoint 15

cone decomposition
Γ-admissible family 18
ρ`,α(Γα)-admissible 18
convex polyhedral 16
partial convex polyhedral 16
projective 17, 21
rational 17

connected Shimura datum see Shimura datum
connected Shimura variety see Shimura variety
convex polyhedral see cone decomposition
core see kernel

discriminant 8, see quadratic form, 63, see lattice
discriminant group 63, see lattice
discriminant ideal 63, see lattice
dual see cone, see lattice

étale algebra 44
étale algebra with involution 44
discriminant 44

Euler characteristic 29
even see lattice
exponential Chern character 28
extreme points 27

Γ-admissible family see cone decomposition
γ-canonical see singularity
Γ-polyhedral see kernel
generalized Heegner cycle 35
generalized special cycle 37
generalized special cycles 36

Hasse invariant 8, see quadratic form, 63, see lattice
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Hermitian see symmetric space
Hermitian form 61
Hermitian lattice 61
Hilbert polynomial 29
Hirzebruch-Mumford volume 30
holomorphic see modular form
homogeneous see cone
hyperbolic see lattice

integral see lattice
isotropic see lattice

Jordan decomposition see lattice
Jordan form see lattice

kernel 26
Γ-polyhedral 27
co-core 27
comparable 26
core 27
locally rationally polyhedral 27
semi-dual 26

lattice 62
a-modular 62
π-weight ideal 64
anisotropic 63
discriminant 63
discriminant group 63
discriminant ideal 63
dual 63
even 62
Hasse invariant 63
hyperbolic 63
integral 62
isotropic 63
Jordan decomposition 66
Jordan form 81
level 63
local density 69
modular 62
norm group 64
norm ideal 64
primitive 63
pseudo-hyperbolic 63
rank 63
scale ideal 64
signature 64
stuffe 63
unimodular 62
Witt invariant 64

level 63, see lattice
local density see lattice
locally rationally polyhedral see kernel

meromorphic see modular form
model 40, see Shimura variety

canonical 41
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canonical model 40
weakly canonical 41

modular see lattice
modular form 13, 14

ρ-form 30
holomorphic 13, 30
meromorphic 13

M ′-valued quadratic module see quadratic module

neat 20
non-degenerate see quadratic module, see cone, see quadratic module
norm group 64, see lattice
norm ideal 64, see lattice

orthogonal discriminant see quadratic form
orthogonal Witt invariant see quadratic form

p-adic ring 65
partial convex polyhedral see cone decomposition
π-weight ideal 64, see lattice
polyhedral see cone
primitive 63, see lattice
projective see cone decomposition, see cone decomposition
pseudo-hyperbolic see lattice

quadratic form 7
Clifford algebra 7, 48
discriminant 8, 48
Hasse invariant 8, 48
orthogonal discriminant 48
orthogonal Witt invariant 48
signature 8, 48
Witt invariant 8, 48

quadratic module 7, 62
M ′-valued quadratic module 62
non-degenerate 7, 62
regular 7, 62

rank 63, see lattice
rational see boundary component, see cone decomposition
reciprocity map 40
reflex field see special point
regular see quadratic module, see cone
ρ-form 30, see modular form
ρ`,α(Γα)-admissible see cone decomposition

scale ideal 64, see lattice
self-adjoint see cone
semi-dual see kernel
Shimura datum 39

connected Shimura datum 39
Shimura variety 39

connected Shimura variety 39
model 40
special field 40
special point 40

σ-reflex algebra 45
complete σ-reflex algebra 45
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σ-reflex norm 45
σ-type 44
signature 8, see quadratic form, see lattice
singularity

γ-canonical 34
special field see Shimura variety, see special point
special point 40, see Shimura variety

reflex field 40
special field 40

spinor norm 8
stuffe see lattice
symmetric space 8

boundary component 13
Hermitian 8

Tod class 28
torus embedding 15
total Chern class 28
transfer 85
type E see algebraic torus

unimodular see lattice

weakly canonical see model
Witt invariant 8, see quadratic form, 64, see lattice
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