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Abstract

We investigate a variety of questions in the theory of Shimura varieties of orthogonal type. Firstly we provide a
general introduction in the theory of these spaces. Secondly, motivated by the problem of understanding the special
points on Shimura varieties of orthogonal type we give a characterization of the maximal algebraic tori contained in
orthogonal groups over an arbitrary number field. Finally, motivated by the problem of computing dimension formulas
for spaces of modular forms, we compute local representation densities of lattices focusing specifically on those arising

from Hermitian forms by transfer.



Resumé

Le but de cette these est I'exploration d’une variété de questions sur les variétés de Shimura de type orthogonal.
On commence par une introduction a la théorie de ces espaces. Apres, dans le but de caractériser les points spéciaux
sur les variétés de Shimura de type orthogonal, on décrit les tores algébriques maximaux dans les groupes orthogonaux.
Finalement, dans le but d’obtenir des formules explicites pour la dimension des espaces de formes modulaires sur les
variétés de Shimura de type orthogonal, on trouve des formules pour les densités locales des réseaux. On se concentre

sur les réseaux qui proviennent de la restriction de formes Hermitiennes.
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CHAPTER 1
Introduction

The primary motivation for this thesis has been to understand various aspects of orthogonal Shimura varieties.
The study of these orthogonal symmetric spaces and their modular forms fits into the larger picture of automorphic
forms on Shimura varieties. This topic has connections to the study of Galois representations and the Langlands
conjectures. There are connections to explicit class field theory via the values of modular forms at special points.
Moreover, the Gross-Zagier theorem [GZ86], which allows for the construction of non-torsion points on elliptic curves,
has natural conjectural generalizations in this context, see for example the work of [BY06]. Understanding this
phenomenon remains an important open question.

Modular forms have been both a successful tool and object of study in number theory for some time. As a result
various generalizations also became objects of interest. An axiomatic treatment of many of these generalizations
was given by Deligne in [Del71]. In his article he defines the notions of Shimura varieties. These Shimura varieties
are highly related to Hermitian symmetric spaces, and are classified into families in much the same way. Although
many of these families have already been well studied, those we will investigate have received less attention. The
orthogonal Shimura varieties are precisely the generalizations that come from replacing the classical upper half plane
by an orthogonal symmetric spaces associated to a quadratic form of signature (2,n). Though these spaces have been
known for some time, many aspects of them have yet to be studied extensively and at present remain mysterious.
It is only recently that results coming out of the Fields Medal work of Borcherds, in particular his work in [Bor95],
have renewed interest in the structure of these spaces. Borcherds’ contribution to the theory was to define a lift of
classical modular forms on the upper half plane to modular forms on these orthogonal spaces. This lifting allows for
the construction of special divisors together with Green functions that are objects of great interest in Arakelov theory.
The work of various people, especially Brunier, Kudla, Rapoport and Yang (see [BKY12, Kud04, KR99]) have led to
strong conjectures about the intersection theory of divisors on these spaces.

The bulk of the original results contained in this thesis are contained in two papers:

1. The Characterization of Special Points on Orthogonal Symmetric Spaces and

2. Representation Densities for Hermitian Lattices.
These appear in this thesis as Chapters 3 and 4 respectively. The first paper was published, in a format similar to
what appears here, in [Fiol2]. The second has not yet been submitted, and it may be restructured into shorter papers
before being submitted.

Though the results of both of these chapters have applications outside the realm of orthogonal Shimura varieties,
they are both motivated by the study of particular aspects of these spaces. The concrete relation of these chapters to
orthogonal Shimura varieties is discussed in more detail in Chapter 2.

The first of the two papers characterizes which number fields can be associated to the algebraic tori in orthogonal
groups. The application of this result in the study of orthogonal Shimura varieties is that it gives a characterization
of the fields that are associated to the special points of these Shimura varieties. The results of this paper motivate
our interest in a certain class of quadratic forms, that we call Hermitian and it is these Hermitian forms on lattices
that are the motivation for our second paper.

Our second paper focuses on computing the arithmetic volume of the orthogonal groups associated to Hermitian
lattices. These volumes, which are computed by way of representation densities, determine the lead term in a Riemann-
Roch formula for dimensions of spaces of modular forms, but are also of independent interest. Though the primary
motivation of the paper is the study of Hermitian lattices over the rational numbers, along the way we produce general
formulas for computing representation densities over arbitrary number fields, as well as proving several structure
theorems for the transfer of lattices. These latter results are of interest outside the study of Shimura varieties.

Aside from Chapters 3 and 4 which contain these papers, Chapter 2 is also fairly substantial. It can be viewed as
either the background material necessary to understand the relation of the aforementioned chapters to the appropriate
problem in the theory of orthogonal Shimura varieties, or a survey of the general theory of modular forms on Hermitian
symmetric domains with an emphasis on the orthogonal case. Though most of the content of this background chapter
is not new, the details of at least some aspects of the discussion are not known to appear in the literature.

A discussion of some further avenues of research are discussed in our conclusion (Chapter 5).



CHAPTER 2
Background And Motivation

The main purpose of this chapter is to explain the connection between the later chapters of this thesis and
questions concerning orthogonal Shimura varieties. The connection for the content of Chapter 3 is made apparent
in Section 2.7.3, whereas the connection for the content of Chapter 4 is made apparent in Section 2.5.4. The main
purpose of the other sections in this chapter is to provide sufficient background on orthogonal Shimura varieties to
properly explain these connections. Strictly speaking we provide far more background than is needed.

The primary object of interest in this document are Shimura varieties of orthogonal type. In order to give a
satisfactory definition of these one needs the terminology and notation of the theory of Hermitian symmetric spaces
[Hel01], quadratic spaces and orthogonal groups [O’M00, Lam05, Ser73]. Note that Chapter 4 contains information
about lattices, while Chapter 3 gives a basic overview of Clifford algebras. To put it in the right context one should
perhaps also have access to the basic notions of Shimura varieties [Mil05, Del71].

It is our intent in this chapter to give a survey of the basic theory of orthogonal symmetric spaces. Other references
include [Fio09, Bru08]. The sections of this chapter are organized as follows.

(2.1) Introduces key notations and results for orthogonal groups.

(2.2) Covers the key notions of Hermitian symmetric domains.

(2.3) Provides a basic definition of modular forms.

(2.4) Surveys the construction of toroidal compactifications explaining the relevant structures for the orthogonal group.
We do not however give any explicit compactifications for this case.

(2.5) Surveys the problem of computing dimension formulas for spaces of modular forms via the Hirzebruch-Mumford
proportionality theorem (see [Mum?77]).

(2.6) Discusses the ramification structures between different levels introducing two interesting classes of cycles on
orthogonal Shimura varieties.

(2.7) Introduces the notions of Shimura varieties, special points and special fields.

One can view Sections (2.1) - (2.4) as an overview of the construction of toroidal compactifications (see [AMRT10]).

Whereas sections (2.1)-(2.6) can be put together to form a survey article on an approach to the problem of finding

dimension formulas for spaces of modular forms.

2.1 Basics of Orthogonal Groups

It is natural to assume that the reader has a basic understanding of quadratic spaces. Thus, the main purpose of
this section is to introduce our notation.

Definition 2.1.1. Let R be an integral domain, and K be its field of fractions. Given a finitely generated R-module
V', a quadratic form on V is a mapping ¢ : V — K such that:

1. q(r¥) = r?q(¥) for all r € K and ¥ € V, and

2. B(Z,7) := q(Z+ §) — q(¥) — q(¥) is a bilinear form.
Given such a pair (V,q), we call V a quadratic module over R. The quadratic module V is said to be regular or
non-degenerate if for all # € V there exists § € V such that B(Z, ) # 0.
Remark. Given an R module V and a bilinear form b : V' x V' — K we have an associated quadratic form ¢(Z) =
b(Z, ¥). Note that B(Z,7) = 2b(Z, ).
Definition 2.1.2. We define the Clifford algebra and the even Clifford algebra to be respectively:

Cq =@V /(T @7 —q(¥) and C):= V" /(T 7 — q(7)).
k k

They are isomorphic to matrix algebras over quaternion algebras. We denote the standard involution ¥} ® - - - ® ¥, +—>
Um @ - -+ ® U1 by v — v*. To a quadratic form ¢ we will associate the following algebraic groups:

O4(R)={9 € GL(V&grR)|q&) =q(9(%)) for all zx € V @ R'}
SO4(R') = {g € Og(R') | det(g) = 1}
GSpin, (R') = {g € (C@rR)* | gVg ' C V}
Spin, (R') = {g € GSpin,(R') | g-g* = 1}.



Proposition 2.1.3. Given a quadratic form q we have a short exact sequence of algebraic groups:
0 — Z/2Z — Spin, — SO4 — 0.
Over a number field k, with T' = Gal(k/k), this becomes the long evact sequence:
0 — Z,/2Z — Spin, (k) — SO, (k) % H'(I,2,/2Z) — ...

The map 6 is called the spinor norm.
Notation 2.1.4. We have the following standard invariants of (V,¢q):

e Whenever V is free over R we shall denote by D(q) the discriminant of ¢, that is, D(q) = det(b(¥;,7;);,;) for
some choice of basis {#1, ..., Uy}

o We shall denote by H(q) (or Hr(q), Hy(¢)) the Hasse invariant of ¢, that is, if over the field of fractions K
of R we may express ¢(Z) = >, a;z? then H(q) = [Ii<;(ai,a;) k. Here (a,b)x denotes the Hilbert symbol (see
[Ser73, Ch. III] and [Ser79, Ch. XIV]).

e We shall denote by W (q) the Witt invariant of ¢, that is, the class in Br(K) of C, when dim(V) is odd or of
CY when dim(V) is even.

e For areal place, p : R — R, we shall denote by (r,, s,), the signature of ¢ at p. Here 7, denotes the dimension of
the maximal positive-definite subspace of V ®, R and s, denotes the dimension of the maximal negative-definite
subspace of V' ®, R.

2.2 Hermitian Symmetric Spaces

In this section we briefly recall some key results about Hermitian symmetric spaces. A good reference on this
topic is [Hel01]. Most of what we will use can also be found in [BJ06, Sec 1.5], or [AMRT10, Sec. 3.2].
Definition 2.2.1. A symmetric space is a Riemannian manifold D such that for each x € D there exists an isometric
involution s, of D for which z is locally the unique fixed point. We say that D is Hermitian if D has a complex
structure making D Hermitian.
Example. The standard example of this is the upper half plane:

H={z+iyeC|y>0}.

It is a consequence of the definition that we have:
Theorem 2.2.2. Fiz x € D, G = Isom(D)?, K = Stabg(z) and let s, act on G by conjugation then D ~ G/K and
(G*=)° ¢ K C G*=. Moreover, given any real Lie group G, an inner automorphism s : G — G of order 2, and K such
that (G*)° C K C G*, then the manifold D = G/K is a symmetric space.
See [Hel01, Thm. IV.3.3].
Theorem 2.2.3. A symmetric space D = G/K is Hermitian if and only if the centre Z(K) of K has positive
dimension. Moreover, if D is irreducible then Z(K)° = SO2(R).
See [Hel01, Thm. VIIL.6.1].
There are three main types of symmetric spaces:
1. Compact Type: In general these come from compact Lie groups G.
2. Non-Compact Type: In general these arise when K is the maximal compact connected Lie subgroup of G, or
equivalently when s, is a Cartan involution.
3. Euclidean Type: These generally arise as quotients of Euclidean space by discrete subgroups.
The definitions of these types can be made precise by looking at the associated Lie algebras.
Claim. FEvery symmetric space decomposes into a product of the three types listed above.
See [Hel01, Ch. V Thm. 1.1].
For D a Hermitian symmetric space of the non-compact type, one often considers the following objects (see [Hel01]
for details):
e The Lie algebra g of G.
The Lie sub-algebra ¢ C g of K.
The Killing form B(X,Y) = Tr(Ad(X) o Ad(Y)) on g.
The orthogonal complement p of £ under B is identified with the tangent space of D.
The centre Z(K) of K and its Lie algebra u.
A map hg: SOy — Z(K) C K C G such that K is the centralizer of hy.
The element s = Ad(hg(e’™/?)) induces the Cartan involution whereas the element J = Ad(ho(e’™/*)) induces
the complex structure.
Through these one can construct:



A G-invariant metric on D (via B and the identification of the tangent space of D with p).
The dual Lie algebra g* = ¢ @ ip. This is the Lie algebra of G the compact real form of G.
The ideals p1,p_ C pc which are the eigenspaces of u.
The parabolic subgroups Py associated respectively to p.
The embeddings D = G/K — G¢/KcP- ~ G/K ~D.
There exists a duality between the compact and non-compact types, that is, if D is of the compact type, there
exists a dual symmetric space D such that D < D. The following theorem makes this more precise.
Theorem 2.2.4. The subgroups P+ and K defined above satisfy the following:
e The natural map Py x K¢ x P_ — G is injective, and the image contains G.
o There exists holomorphic mappings

D( p-‘r /P_;,_
GJK —— Py x K x P_J/(KcP.) —— % P,

|

P+%>P+XK@XP /K((;P )*»Gc/(KCp,)

e These embed D into the complex projective variety D~ Ge/(KcP-). Moreover, the inclusion D in p, realizes
the space as a bounded domain.
See [AMRT10, Thm. 1 Sec. 3.2] or [Hel01, Sec. VIIL.7].
We wish to describe the image of D in py. To this end we have the following result.
Theorem 2.2.5. With the notation as above, where r is the R-rank of G, there exists a morphism ¢ : SUy x SL; — G
such that:
1. p(u, hgE(u)") = ho(u), and
2. ¢ induces a map H™ — D.
Moreover, every symmetric space map H — D factors through .
See [AMRT10, Thm. 2 Sec. 3.2] and [AMRT10, Prop 2 Sec. 3.2].
Let 7 denote complex conjugation with respect to g¢ then:

BT(ua U) - 7B(u7 T(’U))

is a positive-definite Hermitian form on gc. For each X € py we have a map [, X] : p_ — €. Denote by [, X]* :
tc — p_ the adjoint with respect to this Hermitian pairing. We may now state the following.
Theorem 2.2.6. The image of D € py is:

Ad(K) -im(p) = {X [ [ X]" o [, X] < 21d,_},

where the inequality implies a comparison of operator norms.

See [AMRT10, Thm. 3 Sec. 3.2].

Corollary 2.2.7. Every Hermitian symmetric domain D of the non-compact type can be realized as a bounded domain.

See [Hel01, Thm. VIIL7.1].

2.2.1 The O(2,n) Case

We now discuss the example of the Hermitian symmetric spaces in which we are most interested. That is those
associated to quadratic spaces of signature (2,n). Other references on this topic include [Fio09, Bru08, Bru02].

Let (V,q) be a quadratic space over Q. Then V(R) := V ® R has signature (r, s) for some choice of r,s. The
maximal compact subgroup of O4(R) is K ~ O,(R) x O4(R) C O4(R) and O4(R)/K is a symmetric space. These
only have complex structures (and thus are Hermitian) if one of 7 or s is 2. Since interchanging r and s does not
change the orthogonal group (it amounts to replacing ¢ by —¢q) we will assume that » = 2. We wish to construct the
associated symmetric spaces along with its complex structure in this case.

Remark. For much of the following discussion only the R-structure will matter, and as such, the only invariants of sig-
nificance are the values r and s. However, when we must consider locally symmetric spaces and their compactifications
the Q-structure, and potentially the Z-structure, will become relevant.



The Grassmannian
Let (V, q) be of signature (2,n). We consider the Grassmannian of 2-dimensional subspaces of V(R) on which the
quadratic form ¢ restricts to a positive-definite form, namely:

Gr(V):={vcV |dim(v) = 2,q|, > 0}.

By Witt’s extension theorem (see [Ser73, Thm. IV.3]), the group G = O4(R) will act transitively on Gr(V). If
we fix vg € Gr(V) then its stabilizer K,, will be a maximal compact subgroup. Indeed, since this group must preserve
both the plane and its orthogonal complement we have K,, ~ Oz x O,,. Thus Gr(V) = G/K,, realizes a symmetric
space.

Remark. Though this is a simple and useful realization of the space, it is not clear from this construction what the
complex structure should be.

The Projective Model

We consider the complexification V(C) of the space V and the projectivization P(V(C)). We then consider the
zero quadric:

N := {[#] € P(V(C)) | (@, ) = 0}

It is a closed algebraic subvariety of projective space. We now define:
k= {[0] € P(V(C)) | b(¥,7) = 0,b(¥,7) > 0}.

This is a complex manifold of dimension n consisting of 2 connected components.

Remark. One must check that these spaces are in fact well defined, that is, that the conditions do not depend on a
representative 7. Indeed b(c¥, c¥) = ¢2b(, ¥) and b(c¥, c¥) = ceb(7, 7).

Remark. The orthogonal group O4(R) acts transitively on . In order to see this we reformulate the condition that
=X +14Y € V(C) satisfies [] € £ as follows. We observe that:

b(X +4Y, X +iY) = b(X, X) — b(Y,Y) + 2ib(X,Y) and
b(X +4Y, X —iY) = b(X, X) + b(Y,Y).

It follows from the conditions b(X + ¢Y, X +4Y) = 0 and b(X + Y, X —4Y) > 0 that:
(6] € k< b(X,X) =b(Y,Y) >0 and b(X,Y) = 0.

We thus have that O4(R) acts on k. To show that it acts transitively we appeal to Witt’s extension theorem to find
g € O4(R) taking X — X’ and Y ~ Y’. This isometry g then maps [0] — [0"].

Consider the subgroup O;‘(R) of elements whose spinor norm equals the determinant. This consists of those
elements which preserve the orientation of any, and hence all, positive-definite planes. The group O;‘ (R) preserves
the 2 components of k whereas Oy \ Oj(R) interchanges them. Pick either component of x and denote it ™.
Proposition 2.2.8. The assignment [0] — v(0) := RX + RY gives a real analytic isomorphism k™ — Gr(V).

This is a straightforward check (see [Fio09, Lem. 2.3.38]).

The Tube Domain Model

Pick e; an isotropic vector in V(R) and pick e such that b(ey,ez) = 1. Define U := V Ney Nei. We then may
express elements of V(C) as (a,b, %), where a,b € C and § € U. Thus

V =Qe1 @ Qex &U

and U is a quadratic space of type (1,n — 1).
Definition 2.2.9. We define the tube domain

Hy :={y € U(C) [ ¢(3(9)) > 0},

—

where (%) is the imaginary part of the complex vector §. We also define the open cone:
Q=A{ycUR)]|q(y) >0},

as well as, the map ® from U(C) — U(R) given by ®(7) = I(¥) so that H, = &~1(Q).
Proposition 2.2.10. The map ¢ : Hy — & given by () — [—3(q(§) + q(e2)), 1,9)] is biholomorphic.
This is a straight forward check (see [Fio09, Lem. 2.3.40])

—
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Remark. The space H, has 2 components. To see this suppose ¢ has the form g(z1,...,z,) = a17? —agw3 — ... —apx?

with a; > 0. The condition imposed by ¢(3(Z)) > 0 gives us two components corresponding to z; > 0 and 23 < 0.
Under the map 1) one of these corresponds to k1. We shall label that component H;.

Via the isomorphism with k, we see that we have a transitive action of O;‘ (R) on H,. One advantage to viewing
the symmetric space under this interpretation is that it corresponds far more directly to some of the more classically
constructed symmetric spaces such as the upper half plane.

Conjugacy Classes of Morphisms S — O, ,
We now give the interpretation of the space as a Shimura variety (see Section 2.7).
We may (loosely) think of Shimura varieties as elements of a certain conjugacy classes of morphisms:

h: (S = ResC/R(Gm)) — GOg’n
satisfying additional axioms. In particular, we are interested in those morphisms where the centralizer:
ZGO(h(S)) = Z(GOZ,TL) K~ Gm . (02 X On)-

We get a bijection between such maps and our space as follows:

Given an element (%,7) € Gr(V) we consider the morphism h(re?) defined by specifying that it acts as
( r2 cos(260) r?sin(20)

—r25in(20) 72 cos(20)

Conversely, given h in the conjugacy class of such a morphism we may take [0] € kT to be the eigenspace of
72 (cos(26) + isin(26)).

The following claim is a straightforward check.
Claim. These two maps are inverses.

Note that the two components correspond to swapping the (non-trivial) eigenspaces of h.

Realization as a Bounded Domain

For this section we will assume that:

) on the span(Z, ¢) and trivially on its orthogonal complement.

A:

o= O o
o o O
SO O
o o= O

A

is the matrix for our quadratic form. This is not in general possible over Q if n < 4. For the purpose of most of this
discussion we work over R and this fact is not a problem. However, it must be accounted for if ever rational structures
are to be used. In order to compute the bounded domain, we must work with the Lie algebra, and this is slightly
easier if we change the basis using the matrix:

1 0 1 0
01 0 1
1 0 -1 0
01 0 -1
1n72
so that the matrix for the quadratic form is:
20 0 0
02 0 O 2 0
A=]0 0 -2 0 =(o0 2
00 0 -2 A’

/

We compute that the Lie algebra so 4 is (Z v

>7 where W € Ms 5 is skew-symmetric, Y € M,, ,, isin soa/, Z € Ma ,,,

!
and Z' = —Z'A’/2. We conclude that the eigenspaces for the action of the centre of € on pc are py are (g %),

where Z = (Z't :Fi,?t) and Z' = —Z'A’ /2.

11



In order to compute the exponential of the Lie algebra we observe that the square of this matrix is equal to

1(ZtA'Z 0) paz (1 T

_ = — 1 —1
2\ 0 0 2 | T ’
0
and that its cube is the zero matrix. We thus have that Py is
1y — %ZtA’Z f%ZtA’
Z 1, ’
where Z = (2 Fiz').
After undoing the change of basis Py becomes:
0 —iz1—29 221 —iz1+2z9 —23A" 1 —i 1 —i
. - . s o At ot Al 2 X .
1 iz1+29 0 —iz1—To 2—izg 1Z3A Az =1 —i —1
oo+ ¢ —2z1  dz1—22 0 —iz1+ze —23A" | — 1 —i 1 —i ,
iz1—z2 20z  —iz1—22 0 iz A’ 8 -3 —1 —i —1
b —izt z3" —iz3t 0 0
where 73 = (23,24, ...,2n—2). The action of this matrix on k™ takes [1:4:1:4: 0] to:

W(2) = [(1,4,1,4,0) + 2(21, 22, —21, —22, 73) — L2 A'Z(1, —i, 1, —i,0)] € N.
One may check that this is an injective map. We thus conclude that D is the bounded domain:
{(#1, 22, 23) C P4| conditions }.
The conditions are computed by pulling them back from P(V(C)). The resulting conditions can be expressed as:
44+ 4ZAF + |74 > 0 and
4— |z > 0.
We have the following maps between these models:

U : Bounded — Projective
U1 : Projective — Bounded
T : Bounded — Tube Domain
T~!: Tube Domain — Bounded

The definition of the map ¥ is implicit in the above computations.
Set s(2) =1 — 22z — £ZA’Z" then Y is defined by:

i+ 229 +iZA'Z

Y1 = T;
i — 229 +iZA' T
Yo = ———— and
s(%)
2%,
Yi = Z_Z, for i > 2.
s(%)

To define an inverse to T set:

7 = (306y1 +iy2 + GA"T), (1 — y2), — 1 (iyr + iy2 + GA"T), =3 (y1 — v2), §3)-
Now set: gt
s yay
r(y) = (

g/)A//(g‘/)t '
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Notice that r(Y(%)) = 1 — 2z, — $7A’z". We can therefore define T~! via:

21 = (DAY +ily +y2)) + 1,
2o = 1r(§)(y1 — y2) and
zi = r(¥)y; for i > 2.

2.2.2 Boundary Components and the Minimal Compactification

Locally symmetric spaces are often non-compact. It is thus often useful while studying them to construct
compactifications. We present here some of the most basic notions of this very rich theory. For more details see
[Hel01, BJ0O6, AMRT10, Namg&0].
Definition 2.2.11. Consider a Hermitian symmetric domain D realized as a bounded domain in P,. We say x,y € D
are in the same boundary component if there exist maps:

goj:]HI—>5 j=1...,m

with ¢, (H) N @;41(H) # 0, and there exist 2/, y’ € H such that ¢1(2') = 2 and ¢ (y') = y.

We say that two boundary components Fy, Fy are adjacent if Fy N Fy # 0.
Theorem 2.2.12. The boundary components of the Hermitian symmetric domain D are the maximal sub-Hermitian
symmetric domains in D. Moreover, they satisfy the following:

o The group G acts on boundary components preserving adjacency.

o The closure D can be decomposed as D = Uy F,, where the F, are boundary components.

e For each boundary component F,, there exists a map:

Yo : SLe(R) — G

inducing a map -
fo H—>D

such that fo (i) = o (for the fized base point o = K) and f4(ic0) € F,.

See [AMRT10, Thm. 1,2 Sec 3.3].
Theorem 2.2.13. There is a bijective correspondence between the collection {Fy,} of boundary components and the
collection of real “maximal” parabolic subgroups P, of G = Aut(D). (By “mazimal” we mean that for each simple
factor G; of G the restriction to the factor is either mazximal or equal to G;).

Explicitly we have P, = {g € G | gF, = F.}. Moreover, F,, C Fg if and only if P, N Pg is a parabolic subgroup.

See [AMRT10, Prop. 1,2 Sec 3.3].
Definition 2.2.14. We say F, is a rational boundary component if P, is defined over Q. We define the space:

D = U F,.

rational

Theorem 2.2.15. Let T' C G(Q) be an arithmetic subgroup. There exists a topology on D* such that the quotient
—Sat .
X" :=T\D* has the structure of a normal analytic space.

We call X the minimal Sataké compactification of T\D.
See [BJ06, Sec. I11.3].
Remark. The topology one should assign may become more apparent once we introduce other compactifications.
2.3 Modular Forms
We give now a simplified notion of modular forms. More general and precise definitions can be found in any of
[Bor66, Mum?77, BB66].
Definition 2.3.1. Let Q be the image of D = G/K in the projective space D= G¢/P~ and let Q be the cone over
Q. A modular form f for I' of weight k£ on D can be thought of as any of the equivalent notions:
1. A function on Q homogeneous of degree —k which is invariant under the action of I'.
2. A section of I'\(Op(—k)|p) on I'\D.
3. A function on Q which transforms with respect to the k' power of the factor of automorphy under I'.
To be a meromorphic (resp. holomorphic) modular form we require that f extends to the boundary and that it
be meromorphic (resp. holomorphic). One may also consider forms which are holomorphic on the space but are only
meromorphic on the boundary.
Remark. The condition at the boundary depends on understanding the topology, a concept we have not yet defined.
There is an alternative definition in terms of Fourier series. Let U, be the centre of the unipotent radical of P, and
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set Uy, = I' NU,. This group is isomorphic to Z™ for some m and the function f is invariant under its action. The
boundary condition can be expressed by saying the non-trivial Fourier coefficients (which are indexed by elements of
UY), are contained in a certain self-adjoint cone Q, C UZ.

The following is what is known as the Koecher principle (see for example [Fre90]).
Claim. If the codimension of all of the boundary components is at least 2, then every form which is holomorphic on
D extends to the boundary as a holomorphic modular form.

This result is a consequence of results about extending functions on normal varieties.
Theorem 2.3.2 (Baily-Borel). Let M(T', D) be the graded ring of modular forms then

X" .= Proj(M(I, D))

is the Baily-Borel compactification of X. Moreover, this is isomorphic to the minimal Sataké compactification as an
analytic space
See [BB66] and [BJ06, I111.4].
2.3.1 The O(2,n) Case
Specializing the previous section to the orthogonal case we can use the following definition for modular forms.
Definition 2.3.3. Let &t = {¢' € V(C) | [#] € kT} be the cone over k7. Let k € Z, and x be a character of T
A meromorphic function on &' is a modular form of weight & and character x for the group I' if it satisfies the
following:
1. F is homogeneous of degree —k, that is, F(ct) = ¢ *F(¥) for ¢ € C — {0}.
2. F is invariant under T', that is, F/(g¥) = x(g)F(¥) for any g € T
3. F is meromorphic on the boundary.
If F is holomorphic on & and on the boundary then we call F' a holomorphic modular form. In this case U, and Q,
are precisely those introduced for the tube domain model (see Section 2.2.1).

Remark. The Koecher principle implies condition (3) is automatic if the dimension of maximal isotropic subspace
is less than n. Noting that for type (2,n) the Witt rank is always at most 2, we see that the Koecher principle often
applies.

Remark. One of the best sources of examples of modular forms for these orthogonal spaces is the Borcherds lift (see
[Bor95, Bru04, Bru02] for more details). The Borcherds lift, which may be defined via a regularized theta integral,
takes nearly holomorphic vector-valued modular forms for the upper half plane and constructs modular forms on an
orthogonal space. The forms constructed this way have well understood weights, levels, and divisors. One can also
consider other types of forms (for example Eisenstein series, Poincare series and theta series).

2.4 Toroidal Compactifications

We will now introduce the notion of toroidal compactifications. Many more detailed references exist (see for
example [AMRT10, Pin90, FC90, Lan08, Per11, Nam80]). Toroidal compactifications play an important role in giving
geometric descriptions of modular forms, as well as in computing dimension formulas (see Section 2.5).

The key idea of toroidal compactifications of locally symmetric space is that locally in a neighbourhood of the
cusps, the space looks like the product of an algebraic torus and a compact space. We thus compactify locally
at the cusp by compactifying the torus. Doing this systematically allows us to glue the parts together to get the
compactification we seek.

2.4.1 Torus Embeddings

We give a very brief overview of toric varieties. For more details see [Ful93, KKMSD73, Oda78, AMRT10]. For
the purpose of this section we will restrict our attention to complex tori though many results hold in greater generality.
Definition 2.4.1. By a torus T over C of rank n we mean an algebraic group isomorphic to G}, so that T'(C) = (C*)".
We shall denote the characters and cocharacters of T' by X*(T") and X, (T). There exists a pairing between X*(7T')
and X, (T)

Hom(T,G,,) x Hom(G,,,T) = Hom(G,,, G,,) ~ Z

given by (f,g) = fog.
We have the following basic results:
o X*(T)~X,.(T)=12"
e Lie(T) ~ C™ with the trivial bracket.
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e We have an exact sequence:

00— X.(T) Lie(T) T 0

exp

0 zr cr (C)" ——0

e As an algebraic variety T = Spec(C[X*(T)]).
Example. Before proceeding let us give a few basic examples of compactifications of tori.
e Compactification of C*.
We have C* < P! via z +— [z : 1]. The closure then contains [0 : 1] and [1 : 0].
e Compactification of (C*)2. We may consider maps (C*)2 — P? or (C*)? — P! x P! given respectively by:

(x,y) = [z:y:1] and (z,y) — ([x:1],[y: 1])

In the first case the boundary is 3 copies of P! ([0 : y : 1],[z : 0 : 1],[1 : y : 0]) in the second it is 4
(([x = ), [0 : 1)), ([z = y],[1:0]), ([0 : 1], ]2 : 9]),([L : 0],[z : y])). Notice that in both cases the copies of P! we
have added form a chain with intersections at 0, co.
We notice that in all these examples the torus T" acts on its compactification and we have a natural orbit decomposition.
Question. Can these types of embeddings be characterized systematically?
The answer is given by the following definition:
Definition 2.4.2. A torus embedding consists of a torus 7' with a Zariski open dense embedding into a variety X
together with an action of 7" on X which restricts to the group action on the image of T in X.
A morphism of torus embeddings (T, X) — (T’,X’) consists of a surjective morphism f : T — T’ and an
equivariant morphism f : X — X'’ extending f.
Question. How can one describe an inclusion of 7" into another space?
The answer is given by the following claim.
Claim. A map from a torus T into an affine variety X can be constructed by considering any submonoid M C X*(T)
and the map T = Spec(C[X*(T)]) — Spec(C[M]) = X induced by the inclusion of M — X*(T).
The above suggests an approach to the problem, we now proceed to make it systematic.
Cones and Cone Decompositions
If one works with the idea it becomes apparent that a random submonoid will lead to a poorly structured variety.
As such we are interested in defining ‘nice’ submonoids that will lead to ‘nice’ varieties.
Definition 2.4.3. Let Ng be a real vector space, a cone 2 C Ng is a subset such that Ry - Q = Q.
) is said to be non-degenerate if ) contains no straight lines.
Q is polyhedral if there exists z1,...,2, € Ng such that Q = {>". a;z; | a; € RT U{0}}.
Q) is homogeneous if Aut({2, Ng) acts transitively on €.
The dual of O is Q" = {v¥ e Ng | vY(y) > 0 for all y € Q}. The dual of Q is the interior of Q.
We say Q is self-adjoint (with respect to (-,-)) if there exists a positive-definite form on N whose induced
isomorphism Ng ~ Ny takes 2 to QY.
Remark. Polyhedral cones are by definition closed, whereas homogeneous cones are relatively open.
Example. The first 5 examples cover all the examples of simple open homogeneous self-adjoint cones.
e In R™ the cone {(x1,...,2y) | 2] — >, 27 > 0 and 21 > 0}.
The cone of positive-definite matrices in M, (R).
The cone of positive-definite Hermitian matrices in M, (C).
The cone of positive-definite quaternionic matrices in M, (H).
The cone of positive-definite octonionic matrices in M3(Q).
A more general version of the first case which we shall use in the sequel is the following. Consider the quadratic

space whose bilinear form b is ({}) @ (—A) where A gives a positive-definite quadratic form. Set

Q={7€ Ng|b¥,7) >0, v1 >0}

The cone is open, non-degenerate and convex. It is also self adjoint with respect to the inner product 2 + 23 +
T3 AT,. We claim QV is given by:

{(a1,az2,d3) | 2zx129 > 3 AT = a1xq1 + asTo + Z%‘Aﬂii > 0}.
i>3
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Indeed, by rescaling, suppose xo2 = 1. Then we have:

2129 > 73 ATh = a1z + as + Z a;Ax; > aléfgtAf—F as + Z a; Ax;.
i>3 i>3
Now writing:
aléx_étAx_é +ag + Z a;Ax; = G-(T3 + Y A(23 + %) +ag — La‘étzéla'f),
i>3 a1 2a
we see that this is larger than zero provided that 2ajas > @5 Ads. In particular if @ € Q.
Definition 2.4.4. Given a subset Q) of a real vector space Ng we say a set ¥ = {o;} is a convex polyhedral
decomposition of 2 if:
e () =Uo;.
e The o; are convex polyhedral cones.
e 0;Noj =0y € X is aface of both ¢; and o;.
We may also refer to the decomposition as a partial convex polyhedral decomposition of Ng.

We make partial convex polyhedral decompositions into a category by requiring morphisms be of the following
form. Given decompositions X, X s of Ng, MR ,respectively, a morphism is a linear map f : Ng — Mpg such that for
all o € Xy there exists ops € Xy such that f(on) C ou.

Remark. Note that the definition requires that 0 € €2, thus {2 can not be both open and non-degenerate. The space
Ny in which we are interested will almost always be either X*(7T') x R or X.(T) x R. Typically the space 2 we
consider are either all of Nk or the rational closure ™ (the convex hull of the rational rays in ) where Q' is an
open homogeneous self adjoint cone.

Definition 2.4.5. Given a cone decomposition ¥ of 2 we define a space Ny as follows:

Ny ={y+ooo | y € N/spano,o € X}.
We put a topology on this by specifying when limits converge. We say
limy,, + 000 = + oot

for o a face of 7 if
1. limy,, + oot = x + oot and
2. for any splitting span T = span ), ® L’ and for any z € o we have p(y,) € o + z for all sufficiently large n.
We denote by Qx the correspondingly enlarged object.
Constructing Torus Embeddings from Cone Decompositions
Definition 2.4.6. Given a torus T and a convex polyhedral cone o C X, (T) ® R we define a variety X, as follows:

X, = Spec(k[X*(T)Na"]).
This variety comes equipped with a map T'— X arising from the inclusion:
E[X*(T)NoY] — k[X*(T))].

Definition 2.4.7. Given a torus T, a cone Q C X, (T) ® R, and a convex polyhedral cone decomposition X of 2, we
define a variety Xy as follows. It has an open cover by affines:

X, = Spec(k[X*(T)Na"])

for each 0,7 € ¥. We glue X, and X, along their intersection X, N X, = X, ..
Proposition 2.4.8. There is an action of T on Xx,. Moreover, there is a bijection between the orbits of T in Xx, and
Y. We express this bijection by writing O(o) for an orbit of T. Moreover, there is a continuous map S : Xcy» — Qx.
It maps the orbit O(o) to X, (T) Qr +000.

See [0da78, Thm. 4.2].

Properties of Torus Embeddings

We now summarize a number of geometric results concerning torus embeddings. For more details see [Oda78].
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Definition 2.4.9. We say a convex polyhedral cone o is rational (with respect to an integral structure Ny in the
ambient space) if there exists r1,...,r,; € Nz such that:

o=A{z]| (ri,z) >0 for all i}.

For f to be a morphism of rational partial polyhedral cone decompositions we require that f(Nz) C My and that
Mz/f(Nz) be finite.

Theorem 2.4.10. There exists an equivalence of categories between mormal separated locally of finite type torus
embeddings and rational partial polyhedral decompositions. Moreover, the variety is finite type if and only if ¥ is finite
(as a set).

See [0da78, Thm. 4.1].

Remark. One could obtain torus embeddings which are not normal by using monoids which do not arise from
cones, and which are not separated by using cones whose intersections contain open subsets of both. One can obtain
non-locally of finite type torus embeddings by removing the requirement of rationality.

For the remainder of this section assume all torus embeddings are normal separated and locally of finite type.
Theorem 2.4.11. A morphism of torus embeddings is proper if and only if the associated morphism of cone decom-
positions is surjective and the preimage of every cone is finite.

Consequently, a torus embedding is complete if and only if it is finite and decomposes all of X.(T) @ R.

See [0daT78, Thm 4.4].

Remark. In particular finite refinements are proper.
Definition 2.4.12. A rational convex cone o is said to be regular if it has a generating set which is a basis for its
span, that is, there exists zy,...,x, such that:

o= {Zaixi | a; € RT}

and x; form a basis for Nz Nspano.
Proposition 2.4.13. A torus embedding is reqular if and only if all of its cones are reqular.
See [0da78, Thm. 4.3]
Definition 2.4.14. A convex rational polyhedral cone decomposition ¥ is said to be projective if there exists a
continuous convex piecewise linear function ¢ : V' — R such that the following properties hold:
1. ¢(x) > 0 for = # 0.
2. ¢ is integral on Ny.
3. The top dimensional cones ¢ are the maximal polyhedral cones in 2 on which ¢ is linear.
Theorem 2.4.15 (Projectivity). If ¥ is projective then the torus embedding corresponding to ¥ is quasi-projective.
The statement of the result is [Nam80, Prop. 6.14]. For the proof see [Oda78, Sec. 6].
Theorem 2.4.16. Let Xx be a torus embedding of finite type, then there exists a refinement ¥’ of ¥ such that Xs
is non-singular and Xx is the normalization of a blowup of Xx along an ideal sheaf.
See [KKMSD73, Thm. 10,11]. Concretely one may use iterated barycentric subdivisions to find such a refinement.
2.4.2 Toroidal Compactifications
We now describe how to construct the toroidal compactification for a general Hermitian symmetric domain of
the non-compact type. The proofs that the constructions we describe have the desired properties can be found in
[AMRT10]. In practice one is able to explicitly compute all the objects involved. See for example [Nam80] for the
Siegel case, or the following section for the orthogonal case. What is in fact much harder is describing explicitly a
good choice of cone decomposition and the resulting space.
The key objects involved in the construction are the following:
e A Hermitian locally symmetric domain of the non-compact type:

X =T\D=T\G/K.
e The maximal (real) parabolic subgroups P, «> F, which correspond to boundary components:

P,={ge€G|gF,=F,}

The unipotent radical W,, of P,.

The centre U, = Z(W,,) and the quotient V, = W, /U,

An open self adjoint homogeneous cone Q, C U,. It is the orbit under conjugation of P, acting on ¢((1)) € U,
where ¢ is the map of Theorem 2.2.12. (See [AMRT10, Sec 3.4.2]).
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e The pieces of the Levi decomposition Gy, o, Gr,o of P,. They are characterized by the fact that
Gh,o = Aut(F,) and Gy o = Aut(Qqa, Uy ).

These morphisms are realized by maps py o, De,a-

e A decomposition P D B, = Uy,D = F, X Vo X Uq,c. The inclusion D — B, realizes D as a fibre bundle of
cones and vector spaces. The natural projections are equivariant for the actions of G, o on F,, and Gy, on Uy ¢
through pj o and pyo. This map has an intrinsic description, see [AMRT10, Sec. 3.3.4].

e A map ®, : B, — U, such that D = ®_1(Q,). This map is equivariant for the actions of Gy, This map has
an intrinsic description, see [AMRT10, Sec. 3.4].

We make the following additional definitions:

e 'y, =TNP,.

o W, =ToNW,.

o Uy, =W,NU,.

o V,=W,/U,.

In order to compactify the space we shall need to describe the space locally using the following collection of open
covers.

Qo C ity =iX.(T) @R
|
Us\D C Un\B,, = Fo X Vo X Uac/Ua
MDL,(C\BQ = F(X X Va

We define T, = U, /Uy It is an algebraic torus (over C).
Heuristically one may think of Q, as (RT)™ and

Ua\D = {(7’1,7’2,7’3) | 0< ‘?3‘}.

It thus seems natural to add points for 73 = 0. The Sataké compactification effectively adds (71, 72, 73) € F, x (0) x (0).
The collection of points added for the toroidal compactifications we are considering shall typically be larger. In order
to functorially control the set of points added, we shall need the auxiliary information of cone decompositions.
Definition 2.4.17. A p; (I',)-admissible polyhedral decomposition of 2, is £, = {o, } (relative to the U, rational
structure on U, ) such that:

1. X, is a rational convex polyhedral cone decomposition of mmt the rational closure of Q,,
2. X, is closed under the action of pgo(T'y), and
3. only finitely many p; o(T's) orbits in 3.
A T-admissible family of polyhedral decompositions is ¥ = {X, }+ Rational Where:
1. 34 is a peq(Ty)-admissible polyhedral decomposition,
2. for y € T if yF,, = Fj then 72,7~ ! = X3, and
3. for F, a boundary component of Fj3 then ¥3 = ¥, NU3.
The points being added
Now given such a py o(I's)-admissible polyhedral decomposition ¥, we may construct:

(Ua\Ba)Ea =Fy X Vo X (To)s
= UUEZQO(O-)7

e

where O(0) = F, x V, x O'(c) and O’(o) is the points added with respect to o to T,. The O(o) have the following
properties:

1. O(o) a torus bundle over F, X Vg,

2. for o < 7 have that O(7) C O(o) (for 0 = {0} we have O(c) = U,\B,), and

3. dim o+ dim O(o) = dim D.
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There is a map St

S i Foy X Vo X Unc = Us,

(71,72, 73) > S(73)
which projects onto the imaginary part of U,. It can be extended/descended to a map

R (Ua\Ba)Ea — (ua)z

e

in such a way so that:
$:0(0) = {y + oo}

Using the fact that @, is a translation of & we can then extend ®,, to:

Do (Ua\Ba)s, = (Ua)s,-
With all this in hand, we make the following definitions:

(Ua\D)s,, := Interior of closure of U,\D in (Uy\Ba)s,,, and
(Qa)x,, = Interior of closure of Q, in (Uy)sx,, .

By continuity if follows that ®~1((Q,)s.) = (Us\D)sx, . This observation allows one to check the following claim:
Claim. If 0 NQ, # & then O(o) C (U, \D)s,, .
As a consequence we define:
O(F,) == mslz_l;eoo(a)'
We call these sets O(F,) the points added with respect to Fj,.
Note that the converse to the above claim does not hold. It is thus reasonable to ask about the other O(o) which
are not part of O(F,)? The answer is that these relate to O(F3) when F, is a boundary component of Fg. Indeed,
having F,, on the boundary of Fj implies:
o Ug C Uy,
e (g is on the rational boundary of €, and
° Eﬁ =Y. N U5.

We can thus construct maps as follows

o

Ug\U,
Us\D —2% gD

Ug\Uo,

(U\D)s, =3 (U\D)s,

To,B

(Us\D)s; —— (Ua\D)x,

O5(0") ——— Oalo)
where ¢’ € X3 has image 0 € ¥,.

We define a projection map m, : (Us\D)x, — Wsat using the natural projection maps O(F,) — F,. We assert
that this map is holomorphic, but note that we have not defined the topology on the Sataké compactification.
Gluing
Having defined the points we wish to add, we must describe how these points will all fit together. We first
take a further quotients of the space we have constructed. In order to get a reasonable space we need the following
proposition.
Proposition 2.4.18. The action of the group T'o /Uy on (Us\D)sx
See [AMRT10, Sec. 3.6.3 Prop. 2].
Theorem 2.4.19. The quotient

is properly discontinuous .

@

(Fa/Ua)\(Ua\D>Eu
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has the structure of a normal analytic space. Moreover,
O(Fo) :== (o /Ua)\O(Fu)

s an analytic subspace.
We have
— > T\D

<—);
)

Ta

Ua\D)s., — (T\D

]

Sat

(Fa/Ua)

~—

=

(Ta/Ua

~—

et
We want the spaces (I'o/Ua)\(Uas\D)x, to give us an “open covering” of (F\D);i in the sense that the maps from
them give an open covering.

We give two ways to think about it.

e Firstly we consider the collection of (I, /Uy )\(Us\D)s, modulo T, that is, taking one representative for each
cusp ofgsat. This is a finite collection.
Now if Fo N Fg D F,,, then we glue along the image of 73, Taw of (U,\D)s
that there is no map

in each factor. The difficulty is

w

(Pw/Uw)\(Uw\D)Ea - (Fa/Ua)\(Ua\D)Ea~

However, there is a neighbourhood of B, on which (U, \D)s
e Alternatively we construct the space as

injects so that the map descends.

w

C\D)y = [[Ua\D)s./ ~

Fo

where we define the equivalence relation as follows. For z, € (Us\D)x, and x5 € (Us\D)x, we say zo ~ 2 if
there exists a boundary component F,, an element v € I' and a point z,, € (U, \D)s,, such that:

Taw(Tw) = To and

Taw(Tw) = Y238.
Using either interpretation we can define the map:

T

Tt Ca/U\(Ua\D)ss, — T\D .

[eY

We note that 7p, is injective near O(F,). Consequently in a neighbourhood of (T, /U,)\O(F,) the space (F\D);Jlr

looks like: tor
(pa,h(r)\Fa) X V/ “VZ + TVZ” X (Ta)E

2.4.3 Properties of Toroidal Compactifications
We now discuss some of the properties of toroidal compactifications and how they relate to the choice of 3. The
following results are more or less clear from the construction. Details can be found in [AMRT10].
1. The boundary has codimension 1, (O(o,,) for o, minimal).
2. There is a map (F\D);r — (F\D)Sat.
3. The space (F\D);)r is not a unique, but it is functorial in ¥, and is compatible with the level structure.
4. The space is compact.
Smoothness
Definition 2.4.20. A subgroup I' € GL,, is neat if for all G C GL,, and algebraic maps ® : G — H the group
®(I' N G) is torsion-free.
A key property of neat subgroups is that they act without fixed points. It is a theorem of Borel [Bor69, Prop.
17.4] that neat subgroups exist.

Claim. The singularities of F\Dtor are all either:

e
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1. finite quotient singularities from non-neat elements of I, or
2. toroidal singularities in wg (O(0)) for irregular cones .
This follows by observing which types of singularities can exist in the quotients of Fy, x Vo X (Uy,c)s,, -
Claim. There exist reqular I'-admissible refinements.
See [FC90, p. 173] or [Loo88, Sec. 4].
Projectivity of (F\D)tor
For more details on this see [AMRT10, Sec. 4.2].
Definition 2.4.21. A I'-admissible decomposition X, is called projective if there exists functions ¢, : Q, — RT
which are:
1. convex, piecewise linear, and I'-invariant functions for which ¢, (T, N Q) C Z, and
2. for all o € X, there exists a linear functional ¢, on U, such that:
(a) Ly > o on §,, and
(b) o ={z €U [ ls(x) = pa(z)}
(equivalently o the maximal subsets on which ¢, is linear).
Define ¢% () = miin(ﬁi()\)) where ¥; are vertices of o N {p = 1}.

'
Proposition 2.4.22. Fvery holomorphic function on (I'\D) o has a Fourier expansion of the form:

Z ep(,]_177_2)627rip(‘r3).

PEQLNUY

where (T1,T2,T3) € Fo X Vo X Ua c.
See [Bai66, Sec. 3| for details. This is just the development of a Fourier series with respect to U,. The positivity
condition on Fourier coefficients is equivalent to the growth conditions.

Definition 2.4.23. We define a sheaf J,, on X by defining the stalks to be:
Imz={f €0, |6, #0onlyif pecU,NQ,e5(p) > m}.

We define the locally free sheaf I, on (Ua\D)Za to be the one generate by e27#%=(72)  We then define the sheaf I on

———tor
(M\D) ~ by:
LU, I) = {s € oT'(7; " (U), I,) | ‘glue on overlaps’}.

We have that:
I = Wa*(lm)-

————tor —S
Theorem 2.4.24. The toroidal compactification (D/F);O is the normalization of the blow up of (D/T) o along Jp,.

Moreover, i (Jy,) = I™.
See [AMRT10, Sec. 4.2.1].

2.4.4 Toroidal Compactification for the Orthogonal group
We now summarize all the objects we shall need for toroidal compactifications in the case of orthogonal groups.
We will assume that:

001 0
00 01
A=|1 0 0 0
0100

A

gives the matrix for our quadratic space over Q. Note that for n < 4 there may be no such matrix over Q. The main
difference in the theory if no such matrix of this form exists is that certain classes of boundary components will simply
not exist. Though these cases are of interest, we will not treat them here.

Boundary Components and Parabolics

We now compute the shape of the parabolics for the different boundary components.

These parabolics P, = {g € G | gF, = F,} come from fixing a real isotropic subspace a. The group P, is the
stabilizer in G of this space. Up to equivalence the options for a are {e1},{e1,e2}. It is conceivable that there may
be no rational parabolics of one or both types. This can only happen if n is small, and cannot happen based on our
assumption about the shape of the quadratic form. We have that the corresponding P, have the following form:
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S OO0 Q
SO o

i) T3 Tq
3 4
IO
a”! 0 0
4
PO
- —(3)t
y4 *4 *
Z2 T3 7
w1 w2 ’(174
d =V 0
- d 0
gt 2 x

The unipotent radical W, of P, is:

e {e1}

1 X1
0 1
0 0
0 0
0 0
o {e1,e2}

S OO O
o oo~ O

We therefore find the centre U, of W, is:

o {e1}

cocooco~
coo=E

T2

Ys
1

Y1
i

Ya

T2
Y3
1
Y1
St
Ya

r3 T4
0 0
0 0

1 0

0 Id
T3 Ty
wy Wy
0 0
1 0
Z' Id

T3 Xy
0 0
0 0
1 0
0 Id

a€ Gy,
(*ij) € SO 1
zo = —alysyr + sY2AYL")

(i) (i)

T; = —a(*éi)yl + %y ys + kg Aylt) 1# 2.

(25) € GLa, (%) € SO4

(4 ) =™y

d'zy — dwy = —1GAG

— bz +a'wy, = —1ZAF

d'zs — cwy — Vg + dw, = —jAZ
dz; —dw; = _%i'(i)Agf for i > 4

— bz, +dw; = —%I(i)AZt for i > 4.

x2 = —(y1ys + 303 AV
T3 = —Ys3

1 = -

T = —y;Ai_3i—3 for i > 4.

1A
Ty = —5YAY
Wo = —%EA?
T3+ wyp = —gAZ_’t

x; = —Yy;A;j_3i_3 for i > 4
w; = —ZiAi_gi_g for i > 4.

w2 = —(y1ys + $U2AYL)
I3 = —Ys
1= -

vy = —y;Ai_gi_3 for i > 4.

When we need to denote this compactly, we write U, = {(y1,y3,v4)}-

[ ] {61,62}

OO O O
[Nl -]

0
w

=

1
0
0

T

w

O R OO
o O o o

Ir3 = —Wq.
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When we need to denote this compactly, we write Uy, = {(w1)}.
We can now describe V,, = W, /U,
o {e1}
This is trivial.
° {61, 62}
Coset representatives are given by (¢4, 21). The identification with ©3 = g3 + 2} gives it a complex structure.
We now describe the realization of D as a Siegel domain of the third kind. We have B, = Uq,c - D C Py and the
diagram:

By =Uyc- D ~ Fo x Vo xUac
Bo/Ua ¢ o~ Fy X Vg,
Ba/(Wa . ua,(C) = Fa~

e {e1}

As V,, F, are trivial the identification B, = U, is apparent. We describe it in P(V(C)). We observe that:

—.

Usc - D=Usc-[1:7:1:3:0]
=[1—iy1 —iys — (yays + SUa"Aga) 1i+ys : L i+ yr : gal.

It is apparent from this that the map from P(V(C)) to Uy ¢ is given by:

[(U07"'7Un+1)] = (y17y3,"'ayn) = (%7%7%)

Note the use of y;,y3 rather than y1 + ¢, ys + <.

[ ] {61, 62}
It is more convenient to express the action inside the orbit above so U, ¢ - D is:

Upc - [L =iy —iys — (y1ys + 292 Aya) 1i+ys s 1oi+ 1 2 i)
= [1—iyr —i(ys +w1) = (ya(ys +w1) + 593" Agja) -
i+ (ys+w):1:i+y;:yal
We compose this with the inverse above and conclude we have the following:
Vo = {[303'Av3:0:1:0: 03] € 67}
in the sense that V, = (i, 22) — ya + 124 = v4. The map B, — U, ¢ given by:
[—(v1v3 + %thAUZ) cwz 1wy vg] > vs.
Finally, we have the map B, — F, ~ H given by:
[—(vivs + %vﬁtAvZ) cvg:l:iog i 0h) > vg.

We now describe the self-adjoint open cone 2, C U,.

o {e1}

Qo ={(W1,---,Yn) €EUa | 1ys + 3¥4AYL > 0 and y3 > 0}

o {e1,e2}
Qo = {(w1) €Uy | w1 > 0}
It comes with a map:
O : By =Py -Uac/(PoNK)— Py -Uac/Po ~U,.

o {e1}

o T (S(y1), Slys), S(ya)).



e {e1,e2}
Dy s 7 (23(y1)S(ys) + 3(ya) A3 (va))-
We may check that D = ®_1(Q,) in either case.
We now look at the Levi decomposition for P,. We have the subgroups G, o, G, Ma C P,. These satisfy
P, ~ (Gha - Gra - Ma)W, with m, being compact.
e {e1}
G, q is trivial.
G@7a is Gm X SOl)n,l.

m is trivial.

e {c1,e2}
Gh,a = SL2
Gy, = G, viewed as the diagonal in the apparent GLg factor.
m = SOH,Q.

This decomposition is characterized by two maps. The map pp o : Py = Gho ~ Aut(Fy).

e {e1}

This is the trivial map.
o {e1,e2}
This is the map g — (2 %) where we view this in PGL; = Aut(H) under the action

(28)ol:m]=[1:25=5)

We see immediately that this map is equivariant for the action of P,.
The map py,o : Py = Goo = Aut(Uy, Qy) (the group Gy, acts on U, by conjugation).
o {e1}
This is the map G,,, x SO1 ,—1 = GO1q ,,—1. (It is the connected component of the identity which preserves the
cone.)
o {e1,e2}
This is the map g — det (‘; Z) where we view det (‘; Z) € G,,.
In both cases we can check that the maps are equivariant.
We also have the following objects:
r.=TnNnP~P,.
I, =T, NKer(pra)-
', = pg’aﬂ—‘a) C éut(Um QQ).
1-T,—-T,—>T,— 1
U, =TnNU, a lattice.
Wo =T NW,.
Wo /Uy C V, a lattice.
Partial Quotient and Boundary Components
The open neighbourhoods of the cusps that we need to consider are the spaces U,\B,. These are:

o {e1}

Ua\Ba = Ug\Ua.c = (C*)".

We shall add points “near the origin” of C*. These points will correspond to the infinite limit points of .
o {e1,e2}
Us\Bo = Foy X Vi X (Usg\Uac) = H x C"2 x C*.

We shall add the point “at the origin” of C* which corresponds to the point at infinity of RT = Q.
We now consider the further quotient modulo T,
o {e1} _ _
The group is I'y C SO;,—1(Z). We thus wish to consider I',\(C*)%, . The action on the interior of D is
non-trivial. However, on the O(c) components of the cusps it simply acts to identify them so that locally near
the cusps, everything looks the same.
o {e1,e2}
The group I', C {£1} acts trivially.
We next consider the quotient modulo I",.
L] {61}

These groups are trivial, hence there is no action.
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o {e1,62}
The group is I}, C SL2(Z) x (Z?)"~2. This acts trivially on the U, c component of B,. we thus consider its
action on F,, x V, = H x C"2. We see that the matrix:

/
er,

oo o0 QL
oo o o
S
|
S~
MO O w ¥y

sends:

[k:Z:1:vy:vy) €Ba]—=[x:2":1: fé’;;bd : ﬁ(@;—i—vl&—i—X@)].

Due to the equivariance of the action on U, we have Z’ = 0 if and only if Z = 0. Thus, in a small neighbourhood
N of X =0 in U, we have that I'/,\B,, is of the form:

N x (T \(H x C"~?)).

Define £"~2) to be the quotient:
EM=2) .= T/ \(H x C"?)

for the action described above. It comes with a map:
EN) = pha(TL)\H

where the right hand side is the modular curve Y (pp, o (T,)). The fibres of the morphism £~ — Y (pp, o(T%,))
satisfy:
87(_71—2) _ (57_)71—2

where & = E; is the elliptic curve with level structure parametrized by 7 € Y (pp,o(I,)). Thus we see that
EM=2) = £ xy --- xy € is the (n — 2)-fold fibre product of the universal elliptic curve over the modular curve.

Adjacent boundary components

We now describe the relations between adjacent boundary components. As there are two types of boundary
components, there are naturally two types of adjacency to consider.

We shall first consider the case where F|, is 1-dimensional and Fj is 0-dimensional. We say these are adjacent if
Fs C Fain XM,

In this case F,, corresponds to a 2-dimensional isotropic subspace containing the 1-dimensional isotropic subspace
corresponding to Fg. It follows that the parabolics P, and Pg are simultaneously conjugate to our standard ones
above. We see that U, — Us and admissibility of the cone decomposition implies that the image of Q, (which is
1-dimensional) is a cone in ﬁ;at.

We may also view Fj as a boundary component of F,, ~ H. Thus Fp corresponds to a cusp of Y (pp,o(I%)).
Without loss of generality it is the cusp ¢co. We see that as 7 € H approaches Fj, the lattice we are taking a quotient
by to get £"~2) is degenerating to:

7" 2 X iccZ" 2 =722 C U,

We then see quite naturally that we have a map:
Fo x (Us NVa)\Va) X Us\Uac = Fo x (C)"™1 — (C*)" = Up\Up

using the map H ¥ C*.
Looking at the cone 2, € U, we see that:

(Ua\Fa X Vi X Z/{a7(C)Qa C Uﬁ\uﬁ (] O(Qa)
where we are viewing O(€,) relative to Bg. We have further that:
O(Qa) = (Ua NT)\H) x (V3N Ua)\Vs x (0) — 72,

We now wish to describe the closure of £"~2) in the compactification.
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Given any other cone o € ¥g we see that O(o) is in the closure of O(£,) in Bg if and only if Q, C 0. We thus
consider the set:
(Eﬁ)a = {O’ S 25 | Q. C 0'}.

We now consider the image of (X3), in Us /U, ~ RY xV,. This gives us a cone decomposition for the cone associated
to H xVg. This cone decomposition is invariant under the action of I'y N T'g. Indeed (Ug N Vy)\Vp — Gy must
stabilize the collection of cones adjacent to €, and since V3 centralizes Ug this action descends to U, /Uz. We likewise
find that the stabilizer of ico in G, g injects into W,, and thus also stabilizes X3 . Moreover, as V, = Ug NV, it
is also rational for the appropriate rational structure. Consequently, if we proceed as in the usual construction of
toroidal compactification we can construct:

£y, = (T x Va)\EX(C)"?)(,),)-

This map is injective near the cusp Fj and realizes a compactification of E£(M+2) pear this point. Moreover, by

functoriality we obtain a map:
—tor

———tor
g2y =Xy
which lands in the fibre over Fg.
We now consider the case where both F, and Fj are both 1-dimensional. Both boundary components are

characterized by 2-dimensional isotropic subspaces. The curves Fy, and Fiﬁ intersect in Ysat if and only if the associated
2-dimensional spaces intersect in a 1-dimensional isotropic space. In this case, there exists the boundary component
F,, corresponding to this 1-dimensional isotropic space and F,, = F, N Fg. It follows that F,, is adjacent to both
F, and Fj in the sense described above. However, there is in general no reason for the closure of the fibres over Fy,

. . —=ztor . . . . —=>Sat . . . . o -
and Fg to intersect in Xy just because the images intersect in X . From the discussion in the previous case, it is

apparent that the closures of the fibres will intersect in Yt;r if and only if the cones €2, and g viewed in €, are both
contained in a common cone ¢ € ¥,,. In this case, the intersection of the closure of the fibres is precisely:

U O(o).
203,04
Remark. We remark that if ¥ is regular then this intersection (provided it is non-empty) has dimension n — 2.
Remark. Even though Oy (Q) will act transitively on the set of boundary components it is not in general true
that there exists a lattice L C V such that Op(Z) will act transitively on either the 0-dimensional or 1-dimensional
boundary components.

However, if the Hasse invariant is trivial, then there exists a lattice L C V with square free discriminant. For
such a lattice, the primitive representative for every isotropic vector can be embedded into a hyperplane H which is a
direct factor of L. If Oy has Q rank 2, it follows that the isomorphism class of H' is uniquely determined and thus
OL(Z) will act transitively on the 0-dimensional boundary components.

This argument fails for 1-dimensional boundary components as:

HoOH®Eg® Es~HoH® D

2.4.5 Constructing Rational Polyhedral Cone Decompositions
We now introduce a method for the construction projective rational polyhedral cone decomposition. This is
largely a summary of the method outlined in[AMRT10, Section 2.5], See also [Loo88]. Before proceeding we should
note that the resulting cone decompositions need not be regular.
We first introduce the notation we shall be using throughout.
L a lattice with a positive-definite bilinear form (-, -).
L# the dual of L with respect to (-, ).
Q is a convex open homogeneous cone in V = L ® R self-adjoint with respect to (-, ).
I a subgroup of Aut(Q,V).
Definition 2.4.25. A subset K is said to be a kernel of Q if: 0 ¢ K and K +Q C K.
We say two kernels are comparable if \K’ ¢ K C A" K.
The semi-dual of a set A is:

AY = {h € Hom(V,R) | h(a) > 1 for all a € A}.
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The extreme points of a convex set A are:

y+z

EA)={zcA|z= 3

=y=z=u}

We summarize a few key results of [AMRT10, Sec 2.5.1-2].
Proposition 2.4.26. For a kernel K we have the following:
o KV is a kernel

e K= U e+Q.
e€E(K)

Proposition 2.4.27. The closed convex hull of QN L is a kernel for Q. Moreover, these are all comparable indepen-
dently of L.
Definition 2.4.28. A kernel is called a core if K is comparable to the closed convex hull of Q N L. Tt is called a
co-core if KV is a core.
Example. We have the following examples of cores:

o K ont the closed convex hull of QN L is a core.

e K! . the closed convex hull of QN L# is a core.

o Koot = (closed convex hull of QN L\ 0)Y is a core.
Definition 2.4.29. A closed convex kernel is called locally rationally polyhedral if for any rational polyhedral
cone I whose vertices are in ) there exists a finite collection of x; € Vg N €2 such that:

INK={yell| {x;,y) >1}.

It is said to be I'-polyhedral if it is moreover I-invariant.
Notation 2.4.30. Let T C LN\ 0 we define:

Kr={zeQ|{(x,y)>1foralyecT}

Proposition 2.4.31. If T is stable under the action of Aut(L¥ Q), then Kr is Aut(L,Q)-polyhedral. If K is
Aut(L#, Q)-polyhedral then K" is Aut(L,Q)-polyhedral.
See [AMRT10, Sec. 2.5.2 Prop. 9,10].
Definition 2.4.32. For a convex set A C V', a hyperplane H is said to support A if A\ H is connected and ANH # &.
For y € Q2 denote by H, := {x € V | (z,y) = 1} the associated hyperplane. Given a kernel K define:

Yk ={y € Q| H, supports K, H, N E(K) spans V}.

For y = {y1,...,ym} C VK let o, be the cone generated by N;H,, N E(K).
Proposition 2.4.33. Let K be a I'-polyhedral co-core for 0 and define:

Y:={oy |y C VK finite}.

The decomposition X is I'-admissible and projective.

For the proof of the first statement see [AMRT10, Sec. 2.5.2 Prop. 8] for the proof of projectivity see [AMRT10,
Sec. 4.2].

What the above theorem does is it translates the abstract problem of finding a I'-admissible cone decomposition
into the concrete problem of understanding how the extreme points of a lattice intersect hyperplanes. This should not
be assumed to be a simple task.

Proposition 2.4.34. Taking iterated subdivisions of a I'-admissible and projective cone decomposition preserves I'-
admissibility and projectivity. By this process one may construct a projective reqular cone decomposition.

See [Loo88, Sec. 4].

2.5 Dimension Formulas for Spaces of Modular Forms

One very natural question which remains unanswered about modular forms on orthogonal symmetric spaces is
that of giving explicit formulas for the dimensions of spaces of modular forms on these spaces. These types of formulas
have a wide variety of applications, both computational and theoretical. This problem has been extensively studied
in lower dimensional cases where exceptional isomorphisms exist between the orthogonal Shimura varieties and other
classical varieties. In particular, the (2,1)-case corresponds to the classical modular and Shimura curves and the (2,2)-
case corresponds to Hilbert modular surfaces. Many results are known for these cases (see for example [DS05, Ch. 3]
and [Fre90, Ch. 2]). Additionally, the split (2,3)-case corresponds to a Siegel space where the work of Tsushima (see
[Tsu80]) gives us dimension formulas. The only work in the general case is that of [GHS08]. They are able to compute
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asymptotics for the dimensions as one changes the weight for several higher dimension cases. The standard approach
to this type of problem and the one we intend to discuss is that which has been used successfully in the above listed
cases.

The first tool we shall discuss is the Riemann-Roch formula.

2.5.1 Hirzebruch-Riemann-Roch Theorem

Before discussing the theorem we shall quickly survey the objects involved in the statement of this theorem. Most
of what we say can be found in [Har77, Appendix A]. More thorough treatments exist, both from a more topological
approach [Hir66] or algebraic approach [BS58].

What the Hirzebruch-Riemann-Roch theorem fundamentally is about is a formula for the Euler characteristic in
terms of the values of intersection pairings between certain cycles and cocycles. We will say very little about what
this means. Two good references for this material are [Ful98, Ful84).

Chern Classes

The main cohomology classes involved in the Riemann-Roch theorem are the Chern classes. There are many ways
to introduce them; for an alternate topological approach see [MS74]. We mostly introduce notation and key results
we shall use.

Notation 2.5.1. Let £ be a locally free sheaf of rank r on a non-singular projective variety X of dimension n. Let
P (&) be the associated projective space bundle (see [Har77, I1.7]). Denote by CH"(X) the Chow ring of X, that is,
the codimension r cycles up to equivalence. Let & € CH*(P(£)) be the class of the divisor corresponding to Opg)(1).
Let m: P(£) — X be the projection. Denote by Tx the tangent sheaf of X and by Q) the cotangent sheaf of X.
Definition 2.5.2. For i = 0,...,r we define the ith Chern class ¢;(£) € CH'(X) by the conditions ¢o(£) = 1 and

> (=D)irre(€) & =0.
i=0
We define the total Chern class
(&) =co(&)+ (&) + -+ (E),

and the Chern polynomial
(&) =co(&) + ()t 4+ ().

For a partition a = (a1, ..., ) of i = Y, ay we shall write ¢*(&) = [, ca,(£).
Proposition 2.5.3. The following properties uniquely characterize the Chern classes.
1. If € = Ox (D), then ¢:(€) = 1+ Dt.
2. If f: X' = X is a morphism, then for each i we have ¢;(f*E€) = f*¢;i(E).
3. If0 =& =& —=E" — 0 s exact, then ¢;(E) = ct(E) - 1 (E).
The following principle allows simplified statements for the next set of definitions.
Proposition 2.5.4 (Splitting Principle). Given € on X there exists a morphism f : X' — X such that f* : CH(X) —
CH(X') is injective and &' = f*E splits. Explicitly this means we may write &' = &) 2 & C --- C &L =0 so that the
successive quotients are invertible sheaves.
See [Ful98, Sec. 3.2 Thm. 3.2].
Definition 2.5.5. It follows from functoriality that if £ splits with quotients L1,..., L, then:

r

Ct(g) = Hct(/.:i) = H(l + ait).

i=1

We define the exponential Chern character to be:

ch(&) = ;e“"’ = Z <Z &a?) .

i=1
We define the Tod class to be:

a:
td(€) = —_—
( ) H 1— e—ai7
i=1
where == = 1+%x+%x27%x4+....
With this notation we can express certain functorialities in a simple manner as follows:
o ch(€& @ F) = ch(€) + ch(F),
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o ch(€ ® F) = ch(€) ch(F), and
e ch(&Y) =ch(&)~ L.
The Euler Characteristic
Theorem 2.5.6 (Serre). Let X be a projective scheme over a Noetherian ring A and let Ox (1) be a very ample
invertible sheaf on X over Spec(A). Let £ be a coherent sheaf on X. Then the following properties hold:
1. For each i > 0 the ith cohomology H' (X, ) is a finitely generated A-module.
2. There exists an ng such that H (X,£(n)) =0 for all i > 0 and n > ny.
See [Har77, 111.5.2].
Definition 2.5.7. Let X be a projective scheme over k and let £ be a coherent sheaf on X we define the Euler
characteristic of £ to be:
X(€) =) (~1)"dimy, H'(X, ).
Proposition 2.5.8. Let X be a projective scheme over k, let Ox (1) be a very ample invertible sheaf on X over k,
and let € be a coherent sheaf on X. There exists P(z) € Qz] such that x(E(n)) = P(n) for all n. We call P the
Hilbert polynomial of £ relative to Ox(1).
See [Har77, Thm. 1.7.5 and Ex. 2.7.6].
Theorem 2.5.9 (Hirzebruch-Riemann-Roch). For a locally free sheaf £ of rank r on a non-singular projective variety
X of dimension n we have the following formula for the Euler characteristic:

X(€) = deg(ch(&). td(Tx))n-

The statement is from [Har77, A.4.1]. For the proof see [BS58|.
Corollary 2.5.10. Consider a locally free sheaf £ of rank r on a smooth projective variety X of dimension n. There
exists a ‘universal polynomial’ Q such that:

X<g> = Q(Cl(g)v s 7CT(6); cl(Q_lX)’ ) CH(Q§)>

=X D aapc’(E) (),

i=0 |a|=i |B|=n—i
where o, B are partitions of i,n — 1, and the an g are integers which depend only on a, B,n.

Proof. This follows from the observation that the Tod and Chern characters are universal polynomials in the Chern
classes. O

2.5.2 Kodaira Vanishing
In order to effectively apply this theorem to computing dimensions of H%s, one needs to know that, for the line
bundle in question, the higher cohomology vanishes. To this end we have the following results.
Theorem 2.5.11 (Kodaira). If X is a non-singular projective variety of dimension n and L is an ample line bundle
on X then:
HY(X,L®C™) =0 for allm > 0,i < n.

The statement is [Har77, Rem. II1.7.15]. For the proof see [Kod53].
Corollary 2.5.12. If X is a non-singular projective variety of dimension n and L is an ample line bundle on X then:

HY(X,L®™ @ QL) =0 for allm > 0,i > 0.

This follows immediately from the previous result by Serre duality (see [Har77, II1.7 and I11.7.15]).
2.5.3 Hirzebruch-Proportionality

In order to effectively apply the Riemann-Roch theorem to the situation of locally symmetric spaces there are a
number of key issues that must be overcome. The first is that one must be working with a line bundle on a projective
variety. It is not immediately apparent that modular forms should be sections of such a bundle and this should
not be assumed lightly. The second is how to actually compute the various intersection pairings that make up the
Riemann-Roch formula. Both of these problems have at least partial solutions coming out of the theory of toroidal
compactifications (see [AMRT10, Mum?77]).
Notation 2.5.13. Throughout this section we will be using the following notation. Let D = G/K be a Hermitian
symmetric domain of the non-compact type and let D =G° /K be its compact dual. Each of these has the induced
volume form coming from the identification of tangent spaces at a base point with part of the Lie algebra pc C gc.
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Let I' C Aut(D) be a neat arithmetic subgroup with finite covolume and let X = I'\D be the corresponding locally

— —BB
symmetric space. We will denote by X a choice of smooth toroidal compactification and by X the Baily-Borel

compactification.
Definition 2.5.14. We then define the Hirzebruch-Mumford volume to be:
Vol(X)
Vol X) = .
Hu(X) Vol(D)

Proposition 2.5.15. Given a G equivariant analytic vector bundle Eq on D there exists:
e an analytic vector bundle E on D which agrees with Ey on D,
e an analytic vector bundle E on X with an induced Hermitian metric, and
o a unique extension E to X such that the induced metric is a good singular metric on X.
See [Mum?77, Thm 3.1].
Theorem 2.5.16. Using the notation of the previous proposition. For each partition o of n = dim(X) the associated

v

Chern numbers ¢*(E) and ¢*(E) satisfy the following relation:
(B) = (—1)"X) Vol (X) e (E).

See [Mum?77, Thm 3.2].
Geometric Modular Forms
We now give a definition of the spaces in which we are interested.
Definition 2.5.17. Given a representation p : K — GL,, we define a bundle E, on D via

E,=K\(G x,C").

We define a p-form on X to be a I'-equivariant section of £, such that the induced map f: G — C™ satisfies:

o) = clial

for some n > 1,C > 0. The norm ||g|| is defined as in [Bor66, Sec. 7] as Tr(Ad(s(g))~* - Ad(g)), where s is a Cartan
involution.
We say a p-form is holomorphic if it is a holomorphic section of:

E, = KcPy\(Ge x, C")

on the inclusion of E < E.
Proposition 2.5.18. The vector space of holomorphic p-forms is precisely:

HO(Y,E),

where X is a smooth toroidal compactification of X and Ep the unique extension of E, to X.
See [Mum?77, Prop 3.3]. y
Proposition 2.5.19. Consider the case E = Qlﬁ so that E = QL. In this case

T _ ol
E = Q%(log)

is the bundle whose sections near a boundary of k intersecting hyperplanes are of the form:

k

Z dz’ + Z a;(z)dz;.

i=1 i=k+1

See [Mum77, Prop 3.4.a]. ;
Proposition 2.5.20. Consider the case E = Q% so that & = Q% is the canonical bundle of D. In this case

— [*(Ogs5(1))
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is the pullback of an ample line bundle on the Baily-Borel compactification. The sections of Oxss (n) are the modular

forms of weight n.
See [Mum?77, Prop 3.4.b].

Corollary 2.5.21. Suppose n’ = dim(YBB — X), then for all k > n' the cycle [Qly(log)]k is supported on X.
Proof. This is true for the ample line bundle on X7? for which Qly(log)k is the pull back. Hence the statement is
true for QL (log)*. O

Corollary 2.5.22. For X =T'\D a locally symmetric space, the modular forms are:
M(T) = H(X, Q% (log)")
is the space of modular forms of weight k level I' for G. Furthermore the cusp forms are:
Sk(T) = HO(X, 0% (log)" ' @ Q).

Computing Dimensions
We now describe how to compute dimensions for spaces of modular forms.
Proposition 2.5.23. Suppose D is a cycle on X supported entirely on X, then

D - c*(Qx(log)) = D - c¢*(Q).

This follows from the properties of the Chern classes.
Lemma 2.5.24. Suppose Q) is the universal polynomial of Corollary 2.5.10 then:

Ex(0) : = Qler (R (log))ser (2 (l0g)), - -, cn (2 (log)))
— Qler (Q(log)); 1 (), - - - en(Q%))

=Y e (@ (og))] S bale?(9L) — e (9L (log))
1=0

|a|=n—1

for constants b, which depend only on a and not on X.
Proof. This is a direct application of Corollary 2.5.21 and Proposition 2.5.23. O
Theorem 2.5.25. Consider (Q%)fl the ample line bundle on D and let

Po(£) = D dim(H'(D, (023)™))

be the associated Hilbert polynomial. Suppose T is a neat arithmetic subgroup and X is a smooth toroidal compactifi-
cation of X = T\D with n' = dim(YBB — X). Then for £ > 2 we have:

dim(Se(I')) = Volga (X) Py (¢ — 1) — Ex(0).

See [Mum?77, Prop 3.5].
Remark. A remark is in order on the issue of the weight of a modular form. The weight ¢ in the above theorem is
what is known as the geometric weight. This differs from the arithmetic weight by a factor of dim(X).
Notation 2.5.26. Denote the boundary of X by A = X — X and write [A] = Y_[D;] as a decomposition into its
irreducible components [D;]. Denote by Ay the kth elementary symmetric polynomial in the [D;]. Moreover, for o a
partition denote by A® =], A,,.
Proposition 2.5.27. Let X be an n dimensional complex manifold and suppose A = X \ X is a reduced normal
crossings divisor. Denoting by Qly(log) the subsheaf of Q with log-growth near A. Then:

J

¢ (%) = S (—1) e (0% (10g)) A .

i=0
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Proof. This is proven is similar to [Tsu80, Prop 1.2]. It follows from considering the following two exact sequences:

1 1
0 QL QL (log) ®0p

Corollary 2.5.28. For a partition « of j we find:

(@) =1 (Z(—lwiczv(sz;((log)mw_i)

y4 =0

= Zd 7/3)7(: log))A

where the da,g, depend only on o, 8, and not on X.
Corollary 2.5.29. We have that:

Ex(0) =Y Oler(@%00g)] Y ba| D dapac®(Qk(log)AT |,

=0 |a|=n—1i 18] <|e]
IvI=lal—18]

where the coefficients b, and du g~ depend only on o, B,y and n and not otherwise on X.
Remark. We have the following remarks about the above:
e All of the intersections in the above formula take place in the boundary, since |y| > 0 for every term appearing
in the formula.
e There are only finitely many connected components of boundary components and finitely many inequivalent
orbits of boundary component.
e Boundary components are of the form:

Tp\F x (Z*™\C™) x O(o)

for the various boundary components F' and cones o.
e Intersections between adjacent F’s in X% is understood by the spherical Bruhat-Tits building of G over Q.
e The intersections of two cones in F' are either another cone of F' or a cone of an adjacent boundary component
F’ contained in the closure of F'.
e The Chern classes generally ‘descend well’ to adjacent boundary components, see [Tsu80, Lem. 5.1].
In general [Tsu80, Sections 3,4,5] provides guidelines for computing these intersection numbers.
Remark. The above results combine to reduce the issue of computing dimension formulas to the following steps:
1. Computing the Hilbert polynomial Py. These are known in all the basic cases.
2. Computing the volume Volg s (X). This depends on the choice of T', the formulas typically involve special values
of L-functions.
3. Computing the terms by, dn, g,,. This is a formal, though unpleasant calculation and in high dimensions it is
probably best left to computer algebra software.
4. Computing the intersection numbers of all the terms appearing (see the previous remark).
2.5.4 The Orthogonal Case
The following discussion follows closely that of [GHS08, Section 2].
Theorem 2.5.30. Let D be the symmetric space for an orthogonal group of signature (2,n), then:

X(03(=1)) = x(Opn+1(=nl)) = X(Oprnt1(—nl = 2)) = ("H7n) — (n=1=nt).
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Proof. We have describe D as a quartic in P"*! with canonical bundle Oj(—n). The adjunction formula places it
into the following exact sequence:

0 = Opnt1(—nl = 2) = Opnia(—nl) — O — 0.

This allows us to compute the Hilbert polynomial of Oy from that of Opn+1. In particular using the fact that
dim(H®(Opn+1(k))) = ("+1+F) allows us to check the result. O

The non-trivial volume forms on a Hermitian symmetric domain D are induced by the Killing form and the
identification of p with Tp ., where z is any base point. Up to scaling this form is unique.
For the group Og,, it is shown in [Hel01, p. 239] that the tangent spaces for D and D are respectively:

0 U 1 0 U
ut o) " Ut 0

in the Lie algebra of G. The killing form is Tr(M;M4) which induces the form 2 Tr(U,US). Fix a lattice L in the
underlying quadratic space. In [Sie67] Siegel computed the volume of O(L)\D relative to Tr(U;U}) as:

20 (L, L) | D(L)| 712 (H 7 M (k/2) ) (H T km)

k=1 k=1

where aoo (L, L) is the real Tamagawa volume of O(L). The computations of [Hua79] when combined with the above
yield the formula:

Vol(D (ﬁw’fﬂr k/2)~ ) <H 7 R2T(k/2) ) (ﬁ w_k/QF(k/2)> .

k=1

Combining these results we find:
Proposition 2.5.31. The Hirzebruch-Mumford volume for an orthogonal symmetric space is:

Vol (SO(L)\D) = ae (L, L) | D(L)| /2 (ﬁ W?r(wﬂ)) .
k=1

In order to compute s (L, L) we use several facts.
Proposition 2.5.32. For an indefinite lattice of rank at least 3 the genus equals the spinor genus.
This follows from [Kit93, Thm 6.3.2].
Proposition 2.5.33. The weight of a lattice depends only on its spinor genus.
This is discussed in [GHS08, p224]. See also [Shi99, Thm 5.10].
Now using the fact that the Tamagawa volume of SOy (Q)\ SOy (A) = 2 we may conclude:
Proposition 2.5.34. For an indefinite lattice of rank at least 3 the following formula holds:

L, L
H“” |spn+<L>\

or equivalently:

2

where spnt (L) is the proper spinor genus of L.
Remark. It is known (see [Kit93, Cor 6.3.1]) that |spn™(L)] is a power of 2. Moreover, by [Kit93, Cor 6.3.2] computing
|spnt(L)| can be reduced to a finite computation.

The local densities o, (L, L) can also be computed. These computations are explained in Chapter 4. Note that
oy, differs from 3, by a factor of grank(L)v(2),
2.5.5 Non-Neat Level Subgroups

An important aspect of the above discussion was the appearance of the term ‘non-singular’. In order to obtain
a non-singular variety from a locally symmetric space one is forced to take blowups. This process is not (trivially)
well-behaved with respect to the existence or dimension of sections. The above machinery only works directly, without
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the need for any modifications, when the locally symmetric space is non-singular. Consequently, an important result
is that every locally symmetric space has a non-singular finite cover. This result follows from the following:
Theorem 2.5.35. Suppose pt ®p(1) and deg(D,) < n for all ¢, then T'(p) C GL,(Z) is neat.

See [Bor69, Prop. 17.4].

Two natural questions now arise:
Question 1. What does it mean to have a modular form on a singular space?
Question 2. How can one compute the dimension of this space from the corresponding dimension of the cover?
Remark. The reason the first question is important is that line bundles may not descend to a desingularization of
the quotient. Notice that the desingularization of (SLy(Z)\ H) is PL. If the line bundle of modular forms of weight 2
descended, it would by necessity have global sections. Moreover, even if the line bundle does descend, it is not clear
that I-invariant sections will descend to holomorphic sections.
Notation 2.5.36. Suppose we have a normal subgroup I'' C T" with I” neat. Denote by Si(I") the space of weight k
cusp forms on X (I"). Define S (T') = Sk(I")" to be the space of T-invariant cusp forms. Define Si(T') € Si(T) to be
the subspace of cusp forms which extend to holomorphic forms on a desingularization X (T') of X (T') = I'\ X (I").
Proposition 2.5.37. With the notation as above we can compute:

dim(Sp(D)) = Y tr(3]Sk(I")).

~eT /T

The proof is a standard argument. A generalization of the Riemann-Roch theorem by Atiyah and Singer [AS68]
allows this to be computed.

We first introduce the following notation:
Notation 2.5.38. Suppose v € T', x is a character of I and § € C*. Denote by X7 = {z € X | z = y(z)} and by
N, = Nx_ the normal bundle of X7 in X. For a vector bundle £ denote by &, (6) the 6-eigenspace of v and by £(x) the
X-isotypic component. Suppose ¢;(€) = [[(1 — z;t), then set U%(€) = [[(125%:) and ch(&)(y) = > X(7) ch(E(x)).
Theorem 2.5.39. Suppose k is sufficiently large so that H' (X, Q¥ (log)*=1) =0 for i > 0 then:

This is a polynomial in the weight k of degree at most X7.
See [Tai82, Sec. 2] and [AS68, Thm. 3.9].
Remark. The contribution of the identity element of T" in this formula gives us the Riemann-Roch theorem for Si(T').
To evaluate this formula one needs a complete understanding of the ramification locus of the quotient map.
On the issue of the relation of Sy (I") to Sy(I") we have the following result.
Proposition 2.5.40. Let X(I') be a non-singular model of X(T') and let X((v,T')) be the non-singular model of
X ((~,T")) which covers it. A T"-invariant form extends to X (T') if and only if it extends to X ((,I")) for all v € T.
See [Tai82, Prop. 3.1].
Definition 2.5.41. Let v act on X with a fixed point # € X. Suppose the eigenvalues for the action of v on Tx
are e?™ for j =1,...,n. We say the singularity at  is y-canonical if Zj a; — o] > 1

Proposition 2.5.42. FEvery invariant form extends to X((’y,F}) if and only if all the singularities are v*-canonical
for all v¥ # 1d.

See [Tai82, Prop. 3.2].
Remark. Forms which have sufficiently high orders of vanishing along the ramification divisor will still extend even
if the singularities are not canonical.
Theorem 2.5.43. Let L be a lattice of signature (2,n) with n > 9 and let T C IV be as above. There exists a toroidal
compactification of X(T') such that all the singularities are y-canonical for all v € T’.

See [GHS07, Thm 2].
Remark. The results of [GHS07] are slightly more refined. They show that for n > 6 the only source of non-canonical
singularities on the interior are reflections. For n > 7 the reflections no longer give non-canonical singularities. For
the boundary, they show the 0-dimensional cusps never present non-canonical singularities (by a choice of toroidal
compactification). They also show that the 1-dimensional cusps may only have non-canonical singularities over the
usual points i,w € H and these points present no problems if n > 9. Moreover, from their proof one can compute
lower bounds on ¢ such that I'(¢) would only give canonical singularities.

The computations involved in obtaining these results use the structure of singularities that we will discuss in the
following section.
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2.6 Ramification for Orthogonal Shimura Varieties

The purpose of this section is to describe the nature of the ramification between different levels for the orthogonal
group. The only other discussion of this topic with which we are familiar is the work of [GHS07, Sec. 2]. Some of the
results here are motivated by their constructions.

Let L be a Z-lattice of signature (2,n). Recall that:

D =K ={[Z] € P(L®zC)|q(2) =0, b(z,2) > 0}.
Denote by Oy, the orthogonal group of L. For I" a subgroup of O (Z) we set:
XL(F) = F\DL

When T is neat X (T") can be given the structure of a smooth quasi-projective variety. We also wish to think about
X.(T) when T is not neat. It will be a quotient of X (I") for some neat subgroup I'' C T by a finite group of
automorphisms. The quotient certainly exists as a stack (though we shall not discuss this further). However, one
often expects that one can make sense of it as a scheme, in which case the cover 7t : X (IV) — X (T') will be a
ramified covering.

The first thing we shall do is describe the structure of some ‘explicit’ ramification divisors. We will next explain
why this captures all of the ramification.
2.6.1 Generalized Heegner Cycles

We now define a class of cycles on our spaces. This is essentially the same definition as the cycles considered in
[Kud04], see also [Kud97a].
Definition 2.6.1. Let S C L be a (primitive) sublattice of signature (2,n’). Then S= is a (primitive) negative-definite
sublattice of L. Define:

Dr.s = {[Z] € DL | b(Z,%) = 0 for all ij € S*}.

This is a codimension rank S+ subspace of Dy, defined by algebraic conditions. Moreover, we see that:
Dg ~ DL,S Cc Dy.
Let &g = {S' | 8" = S for some v € I'}. Define:
H == U D ’
LS = g op bS

to be the generalized Heegner cycle associated to this set of (primitive) embeddings of S into L. Its image in
X1 (T) will be an analytic cycle. A more careful analysis and a precise definition can result in obtaining an algebraic
cycle (see [Kud04)).

Remark. In the definitions above we could just as well have taken S C L#, the dual of L, or in fact any lattice in
L ® Q. However, for our purposes, since (S+)* N L would give a primitive lattice generating the same Dy, s, there is
no real loss of generality in assuming this for our purposes.

We should remark that if S has corank 1 then Hy, s = Hz, 4(»,) is just a usual Heegner divisor (see [Bru02, p. 80]).
This justifies our choice of name. It is not our intent to imply that there is (or is not) a relation to the generalized
Heegner cycles arising from certain Kuga-Sato varieties (see [BDP10]).

2.6.2 Ramification near Dy, g

We introduce the following notation (for any non-degenerate S):
I's={yel|ySCS},
s = {y € Og | lifts to I'}, and
fs = {’y elg | ’YlSJ_ = Id}

Remark. It would be convenient if T'g ~ T'g, however, this is hard to guarantee if L # S @& S*.
We return to the setting where S C L is a sublattice of signature (2,n/), so that S* is a negative-definite lattice.
It follows that I'g., and hence I'g.1, are both finite groups. We find that I's X I'g. — Op, while I's X I'g1 may not.
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We have the following maps:
Xg(fs)(—) (fs X fSL)\DL

| |

Xg(Tg) ——— Xz (I).

Remark. If we want the bottom map to be injective we would need that for each o € Or with z,0(x) € Dp, g1 then
there exists 7 € Og with 7(z) = o(x).
We wish to explain the local ramification near Dy, g. Fix e; and es isotropic vectors spanning a hyperplane in
S ® K, where K is a totally real quadratic extension of Q. Note that we cannot always take e; and es in S. We may
then choose to express the spaces Dg and Dy, as tube domains relative to the same pair eq, e2. In particular we may
write:
Dy ={i €Uy = (e1,e2)" C L®C | q(3(@)) > 0}

with Dy, ¢ in Dy, being precisely:
Drs = {i € Us = (e1,e2,5)" C LaC | q(S(@) > 0}.
Thus we see that in a neighbourhood of Dy, s in D, we can express
D =Drs® (ST ®C).

Then T 5. acts on the complementary space S+ ® C. We see that the cycle Dy, is the generic ramification locus for
this action. That is, Dy, s is maximal among cycles fixed by this action (with respect to inclusion among cycles).
Remark. We remark that for some points of Dy, g the group I's. =I'g may also cause ramification in the quotient.
This ramification will not in general be generic, and it will typically restrict to some sub-cycle of Dy, 5.

Indeed, a group element g fixes 7 € Dy, g if and only if 7 is an eigenspace of g. Thus g can only fix all of Dy, g
if S is an eigenspace. This would imply that 7 acts as —1 on S. Such an element acts trivially on Dg as this is a
projective space. The effect of the quotient by g is the same as by —g € Og..
2.6.3 Generalized Special Cycles

We will now introduce another type of cycle on the spaces X = I'\Dy, which play a role in ramification. We will
call these generalized special cycles because of their relationship to special points (see Section 2.7). Some of the
constructions we shall perform will become more natural with the material in Chapter 3.

Let F/Q be a CM-field and consider the CM-algebra:

E=F¢=FD ... x p(n)

Denote complex conjugation for both F' and E by ¢ . View E as an F-algebra under the diagonal embedding of F' into
E. Label the embeddings Hom(F, C) as {p1, 71, - - - pm; Pm }- Pick A = (AD ... X)) € (B7)* such that p; (A1) € RT
but p; ()\(i)) € R~ for all other combinations of ¢, 7. We now consider the rational quadratic space (V,qg ) given by
V = FE and

qe,.ox(T) = %TrE/Q(/\a:a(x)).
Notice that the signature of the quadratic form is of the shape (2, ¢). We define also the F-quadratic space (V' ¢ , ,)
given by V/ = F and

0p.ox(2) = 3 Trp/r(Azo(z)).

Notice that ¢z (%) = Trr/q(dg (7). We have the tori Tr , and Tr, defined by:

}
}

Tgo(R)={z € (E®qgR)" | zo(x)
Tpo(R)={z € (F®qR)" | zo(x)

b
)

1
1

as well as maps:

TF,O’ <£> TEJ — ReSF/Q(OqL, . )\) — 0

4dE,o,\"

where the first map A is the diagonal embedding. Now suppose further that: ¢ = gg o) @ gt and consider the
inclusion:
0) — Oy

4dE,oc,\
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Definition 2.6.2. The generalized special cycle associated to the inclusions Tr , — 2 — O4 as above is:
Dy ={[Z] € &} | 97 = po(g)Z for all g € Tr(R)}.
For any lattice L in the quadratic space of ¢ this gives us a cycle in Dr. Set ® = {y " 1¢y | v € '} and define:

Hy = U Dy.
¢ ¢€q>¢

The image of Hy in X =T'\Dy, is a cycle on X of the form:
F,\'D¢ = F/\ReSF/Q(OqE,a,A)(R)/KE“”)"

where IV = ' N Res g (O )(Z) and K 5 » is a maximal compact subgroup of Resg;q(Og,  )(R). Note that:

’
9E,0,2

Resp/g(Og, - )(R) 2 Oz m—2(R) X O (R)4 1,

oA

Remark. If d =1 then the special cycle will be a special point.
2.6.4 Ramification Near Dy
Notation 2.6.3. Denote the group of N roots of unity by py and a choice of generator by (y.
The group py has a unique irreducible rational representation 1. The representation ¥y is precisely the
©(N)-dimensional representation of py acting on the rational vector space Q({x) by multiplication.
For each a € (Z/NZ)* the generator (x acts on:

Ta= Y (¥ P eQUn) @ YN

bEZ/NZ

by multiplication by (%. We shall denote this (a)-isotypic eigenspace by ¥n(a) C Q({n) ® ¥n-
Conversely, we recover the rational subspace Q¢4 as being spanned by:

S (G (a),

where the sum is over v € Gal(Q(¢n)/Q). The vectors (% for a € (Z/NZ)* form a rational basis for ¢y .

Now consider the special case of the previous section where F' = Q({x) and E = Q(¢x)". Assume that ¢ = ¢g oz
Moreover, assume that the integral structure on E = F? is of the form L = ®L;, where the L; are fractional ideals
of F(. This requirement is equivalent to saying the integral structure is such that via uy C Tp C O, we find
v € 0,(Z).

Proposition 2.6.4. The cycle Dy is the ramification divisor for pun under this action. Moreover, locally near Dy we
have that:

'DLZD¢ X H CT(CL—I),
a€(Z/NZ)*\{1}

where the action of uy on C"(a) is via x*.

Proof. We identify the tangent space near 7 € Dy with:
Topr =75)7 = @a(L @ C)(a)/T.

Without loss of generality (or rather by choice of () we may suppose 7 is in the (y-eigenspace. The above then
becomes:
t/r = Tp, /T gl ((L® C)(a)/T).

We see that the action of yx on (L® C)(a)/7 is by (% ', where the —1 comes from the action on 7. We thus see that
in a neighbourhood of 7 around D, the group pn acts non-trivially, whereas it clearly acts trivially on Ds. O

Remark. As with the previous case, points 7 € Dy may have other sources of ramification.
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2.6.5 Ramification at 7
We will now explain why the situations described above are in fact the only source of ramification. Fix 7 € Dy,.
We define a lattice S C L by setting:
S = ({R(r), S(1)}H)*.

Note that the lattice S+ is a potentially 0-dimensional negative-definite lattice. We observe that 7 € C ® S. We wish
to consider the stabilizer of 7 € Dy. This is precisely:

I'; = {v € T | there exists A\, € C* with (1) = A\,7}.

We immediately obtain a homomorphism x, : I'y — C* given by x,(7) = A,.
We have the following key results from [GHS07, Sec. 2.1].
Proposition 2.6.5. With the above notation we see the following:
e There is an inclusion I'; C I'g.
e The kernel ker(x,) equals Dge.

e The image of I+ /Tg1 is a cyclic subgroup of I's.
Proof. The first point follows immediately from the definition of S and I's.
To see the second point, notice that the inclusion I'g1 C ker(x,) is apparent from the discussion of Section 2.6.2.
Now for the reverse inclusion, if g € ker(x,) and = € S we see:
(1.2) = (g7, 97) = (7, 92).
This implies that:
(T7x_g$) = (7,,% —gl’) = 07
and thus, z — gz € S*. However, S* is negative-definite and thus:
Snst=(SsHtnst=o.
For the final point notice that: ~
F'r/FSl = XT(FT) = pr, C c*.

Thus the natural map: B
I's —T'g

takes F-,—/fsj. to a cyclic subgroup of I's. O

It follows from the proposition that the group ',/ [g. gives an action of fr.on S.
Proposition 2.6.6. There are no trivial eigenvectors for the action of p,.. on S.

Proof. Suppose ¥ is a nontrivial eigenvector and that g € p,. is a nontrival element. Then we write:

(r,2) = (97, 97) = X+ (9)(7, 7).

Likewise since T is also an eigenvector we find:

(7, 2) = (97, 97) = X+ (9) (T, 7).
Therefore, x € S+ NS = {0}. O

It follows from this proposition that S = gbffT as a representation of y,_.
Proposition 2.6.7. We can decompose S = gbfT in such a way that q is non-degenerate on each factor and this is an
orthogonal decomposition with respect to q.

Proof. First we observe that we can proceed by induction provided there exists at least one non-degenerate factor.
Indeed, if gy, is non-degenerate it follows that uy stabilizes (¢ ). We may thus proceed inductively on d.
Next we observe that the restriction of ¢ is non-degenerate if and only if it is non-trivial. This follows from two
key facts:
1. Gal(Q(¢r.)/Q) acts transitively on eigenspaces, and
2. b(zg, ) =0if a # b1
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It follows that if o(r;) > 2, then q‘dm is non-degenerate since there are no isotropic spaces of size larger than 2.
For the case of ¢(r;) = 2 it is not possible to have d = 1. Tt follows that there exists a pair of ¢, such
that the restriction of ¢ to 7@ @ (b?(E) is nontrivial. If ¢ restricts trivially to each factor, set yi(l) = xl(-l) + x§2) and
(2 _ (1) _ (2 (4)
Y, =T Ly i
Proposition 2.6.8. If x,(I';) ¢ {£1} then 7 is on a special cycle Dy of Ds, where F = Q(x(T';)). Hence, T is on a
generalized special cycle of Dy,.

. The restriction of ¢ is then nontrivial on span(y,’’) ~ ¢,._. This completes the argument. O

Proof. Because the Q-span of ¢,_(u,.) C End(¢,,) is equal to Q(¢,.) we may extend the action of p,_ to one of Tr
on each factor. This implies by way of the results of Chapter 3 that we are in the setting of the previous section. In
particular, there exists a unique factor which is not negative-definite, and for it there exists a unique R-factor which
is positive-definite. O

Claim. If x.(I';) = {£1} then the image of I'; acting on D, s acts trivially on all of Dy, g.
Proof. This follows since the entire space is the (—1)-eigenspace. O

Remark. From Propositions 2.6.5 and 2.6.8 it follows immediately that the ramification of Dy, consists entirely of
the ramification along Dy s coming from f‘SL, and the ramification along Dy C D s coming from the action of uy
on D¢.

Note though that if Tg: # T'g then the quotient action by i does not act trivially on the S+ ® C component
of the tangent space to Dy, g. This phenomenon can only arise if L # S & S=+.
2.7 Explicit Class Field theory (and Canonical Models)
2.7.1 Shimura Varieties and Hermitian Symmetric Spaces

There is an important relation between Shimura varieties (or at least their points over C) and Hermitian symmetric
spaces. More details of this relation are found in the notes of Milne [Mil05] or the work of Deligne [Del71]. The following
section illustrates this connection.
Notation 2.7.1. We shall denote by S = Resc/r(G,,) and S! C S the subtorus consisting of the norm 1 elements.
Concretely this means:

S(R) ~{(% %) |a,be R} and SH(R) ~ {( %) | a,b € R, a® + b = 1}.

For a reductive group G denote its centre by Z(G) and let G* = G/Z(G) be the associated semi-simple group.
Definition 2.7.2. A connected Shimura datum is (G, X), a semi-simple algebraic group G defined over Q and a
G*(R)™T conjugacy class of maps p : S} — G&d satisfying the following axioms:

1. The only eigenvalues that appear in the representation of S' on Lie(G??)¢ induced by p are a + bi,a — bi and 1.
2. Conjugation by p (( _01 91 )) is a Cartan involution of G4,
3. G has no Q-simple factors G; such that G;(R) is compact.
A Shimura datum is (G, X), a reductive algebraic group G defined over Q and a G(R) conjugacy class of maps
p : Sg — Gp satisfying the same axioms.

As per the introduction on Hermitian symmetric spaces (Section 2.2) such a conjugacy class is equivalent to a
Hermitian symmetric space. One must be careful about the normalizations of h versus p to obtain the above conditions.
Definition 2.7.3. We shall denote the finite adéles of Q by Af .

Let (G, X) be a connected Shimura datum and K be the maximal compact subgroup associated to the Cartan
involution coming from p € X. The connected Shimura variety associated to (G, X) is the inverse system:

Mc(G, p)(C) = lim T\G™(R)/K = lim G*}(Q)\G*(A)/K x K,
r Kr

where the T' run over all ‘congruence’ subgroups of G(Q) and the K/ run over compact open subgroups of G(A7).
For (G, X) a Shimura datum the Shimura variety associated to (G, X) is:

Me(G, p)(€) = lim GQ\X x G(Ay)/K”,

Kf

where K7/ run over compact open subgroups of G(AY).
Given (G1, X1) and (G2, X3) together with a map f : G; — G2 such that f(X;) C Xs, one obtains a morphism
of Shimura varieties.
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Remark. What we have just defined is the ‘complex points’ of the Shimura variety. The Shimura variety should
be viewed as the associated complex scheme, or inverse system of complex schemes associated to this system. Such
schemes exist by the theorem of Baily-Borel (see [BB66]).
The adelic description makes it clear that there exists an action of the finite adéles on a Shimura variety.
2.7.2 Shimura Reciprocity
In order to explain the context of our results concerning special fields we must first introduce the notions of special
points and Shimura reciprocity. We give here a very terse description of the ideas at work. We will follow fairly closely
the format of [Del71] where you may find a more thorough exposition.
Definition 2.7.4. Let 7 : E — C be a number field with a complex embedding and let M¢(G, p) the complex model
of the Shimura variety associated to G. A model over E of M¢(G, p) consists of:
1. a scheme Mg(G, p) over E, endowed with a continuous action of G(A/), and
2. an isomorphism Mg (G, p) @, C ~ Mc(G, p) compatible with the action of G(AT).
To give a scheme M over E together with a continuous action of G(Af) amounts to giving:
1. a scheme g M over E for every open compact subgroup K of G(A'), and
2. a homomorphism Jy, ;¢ () : kM — M for every pair K and L of compact open subgroups of G(Af) and for
each x € G(Af) with zK2~! C L. These homomorphisms must satisfy:
() Jar,L(y)Jr,k(2) = Jar,k (yz).
(b) JK7K(.’E) =Idifz e K.
(¢) For K a normal subgroup of L, the map Jg i defines an action of L/K on xM, and moreover, Jy, i(e)
defines (L/K)\xM — M.
Let F' be a finite extension of F, together with a complex embedding extending that of E. If Mg (G, p) is a model
of Mc(G, p) over E, we denote by Mp(G, p) = Mg(G, p) @ F the model of Mc(G, p) over F.
Given a model Mg(G, p) there is an action of Gal(E/E) on M%(G, p), and thus on the profinite system:

mo(Mg(G, p)) = limmo(xk Mg (G, p)) = mo(Mc(G, p))-

Likewise the group G(AY) acts on mo(M%(G, p)). The action factors through:
m(G) = m(G(A)/G(Q))

and again through its quotient 7(G)/mo(K ). This makes mo(M%(G, p)) into a principal homogeneous space under
the commutative group 7(G)/mo(Koo) (see [Del71, 3.4]). As these two actions commute this induces a map:

Ay Gal(E/E) — 7n(G) /7o (Kso)-

For a number field F, class field theory identifies the largest abelian quotient of E/E with the group mo(Tg(A)/Te(Q))
and the above map can be interpreted as:

At Gal(E/E)® = 10(Te(A) /Tr(Q)) — 7(G)/mo(Keso)-

We shall call this morphism the reciprocity map.
Remark. It would be a very desirable property of models that morphisms should descend to them.

Given a pair of Shimura data (G, p1) and (G, p2) together with models Mg, (G, p1) and Mg, (G, p2) over Eq
and Fs, respectively. Suppose there is a morphism f : (G1,p1) = (G2, p2) that descends to the models:

fEl : MEI (thl) — MEQ(G27/72)'

The immediate implication is that Es C E;. It also follows immediately that the Galois action on Mg, (G2, p2) must
induce reciprocity on Mg, (G1, p1).

Example. The simplest example of a Shimura datum comes from taking the group G = T a rational torus such that
T(R) is compact. In this case the varieties x Mc(G, p) are finite sets. Thus to give a model over any field E which
splits T is equivalent to giving a Galois action on this set.

Definition 2.7.5. The canonical model for the Shimura variety of a rational torus Tg is the unique model for
which the reciprocity morphism is the reciprocity morphism of class field theory. There exists a minimal field E(T, p)
over which this model can be defined. It is often called the reflex field or special field of the point. We shall say
that a field F is a special field for a Shimura variety if it is the special field for a special point on that variety.
Definition 2.7.6. A point h € M¢(G, p) is called a special point if h is in the image of some Mg(T, p’).
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Definition 2.7.7. For a Shimura variety Mc (G, p) a model Mg (G, p) over E is said to be weakly canonical if for
every special point h that is associated to Mc(T), p') the inclusion from the canonical model Mgy (T, p') is defined
over the composite field E(T, p')E.

The model is said to be canonical if the field E is the field of definition of an associated Hodge filtration (see
[Del71, 3.13]).
Theorem 2.7.8. Given any Shimura variety a canonical model exists and is unique.

For many types of Shimura varieties this theorem follows from an explicit construction for a canonical model for
the Siegel spaces (see [Del79, Sec. 2.3]). More generally see [Mil83].
2.7.3 Special Fields for the Orthogonal Group

From the concrete descriptions of the structure of the Hermitian symmetric spaces associated to orthogonal groups
(see Section 2.2) and the structure of tori in orthogonal groups we shall describe later (see Chapter 3), we easily obtain
the following characterization:
Proposition 2.7.9. A CM-field L with totally real subfield K is a special field for the Shimura variety associated to
Oy if there exists a CM-algebra E containing L as a direct factor, ie. E = E' & L, for which the associated algebraic
torus Tg , embeds into Og4 in such a way that the trivial eigenspace of Ty, o C Tk o is negative-definite.
Remark. It is not immediately clear to what extent the condition “the trivial eigenspace of 17, , is negative-definite”,
which does not appear in the general conditions for embedding tori, places any new restrictions. This condition might
appear to present an obstruction to the local-global principle for the embedding of algebras. As such a remark is in
order on the obstruction to the local-global principal (for a more detailed discussion see [PR10] and [BF13]). The
source of the local-global conditions is precisely the requirement (see proof of Corollary 3.5.4):
We can divide the Hasse-Witt conditions between the factors in such a way that each factor can control the ones it is
giwven and each factor is given an even number.
This is not an obstruction if:
For each pair i,j there exists a non-split quaternion algebra A which is split by Efb’ and Efj for all CM-types ¢; of
Ez’ and d)j Of Ej.
or equivalently:
For each pair i,j there exists p a prime of Q and p;,p;|p primes of E;, E; such that both p;,p; do not split respectively
over EY , EY.
For each factor E; of E the Chebotarov density theorem tells us that the density of primes of Q that have a factor in
E? that is inert in F; should be at least 1/[E; : Q]. If E; were Galois, this ratio can be more explicitly computed as:

|{7 € Gal(E;/Q) | ¢ = o™ 'v"a for some a, 7}| /|Gal(E;/Q)| .

The formula is looking for elements where a power of Frobenius is a conjugate of o. If C, is the largest cyclic 2-group
in Gal(F;/Q) containing o and I'y is a Sylow 2-subgroup, then this ratio is at least ‘C[” IJI It follows that if the E; are
chosen at random then we expect infinitely many primes to prevent any local-global obstructions. Moreover, given an
extension F; the conditions one needs to impose on Fs to make E; @& F> not satisfy the local-global principle places
many restrictions on Fy. It is not at all apparent that such an E5 can even exist. Nonetheless, examples do exist
where the local-global conditions will fail when E; is degree 4 and Es is degree 2 (see [PR10, Ex. 7.5]).
Claim. Let E = E;FEy be the normal closure of the composite field. If there exists op € Gal(E/k) such that o
fori=1,2 then E1 & E5 satisfies the local-global principle.
For a more precise statement about CM-algebras see [BF13, Cor 4.1.1]. The key point here is that when Frob, =
o it must also restrict to both og|g,, and consequently, the associated primes over p in each factor are inert.
Theorem 2.7.10. Suppose (V,q) is a quadratic space over Q of signature (2,¢) with ¢ even. Suppose that (E,0) is a
CM-field with complex conjugation o and that [E : Q] =2+ {. Then Ty, — Oq if and only if:
1. E? splits the even Clifford algebra CS for all CM-types ¢ of E, and
2. D(q) = (_1)(2+€)/25E/Q~
If this occurs then E is a special field.
See Theorem 3.1.2.
Theorem 2.7.11. Suppose (V,q) is a quadratic space over Q of signature (2,¢) with £ odd. Suppose that (E,c) is a
CM-field with complex conjugation o and that [E: Q] =1+ {. Then Ty, — Oq if and only if:
1. E? splits the even Clifford algebra CS for all CM-types ¢ of E.
If this occurs then E is a special field.
See Theorem 3.1.2.
Theorem 2.7.12. Suppose (V,q) is a quadratic space over Q of signature (2,¢) with ¢ even. Suppose that (E,0) is a
CM-field with complez conjugation o and that [E : Q] = £. Set d = (fl)z/zD(q)éE/Q. Then Tg o — Oq if and only if:
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1. E? splits Q(\/d) ®q Cg for all CM-types ¢ of E.
The field E can always be made a special field.

Proof. It is apparent that the condition to have E embed into O, is that T PoQ(Vd),e Og4. From this the only
conditions that remain then are the splitting conditions and the local-global conditions.

The local-global conditions here are automatic because complex conjugation on each factor is induced by an
element of the Galois group of the composite field. Note that E is not always a special field but it is for certain
embeddings Tr , < Oy. O

Theorem 2.7.13. Suppose (V,q) is a quadratic space over Q of signature (2,¢). Suppose that (E, o) is a CM-field
with complex conjugation o and that [E : Q] < £. Then Tg , — Oy in such a way that E is the special field for the
corresponding special point.

Proof. Picking A € E? with precisely 1 positive embedding we claim that we may write:

4~ qEor®q.

Indeed, such a space ¢’ would have dimension at least 3. Quadratic forms of dimension 3 are universal for discriminants,
Hasse invariants and signatures. That is the form:

Dqx3 + Haj + —qHz3

has discriminant — D, and Hasse invariant (D, —1)(q, DH). We can thus easily satisfy any imposed discriminant, Hasse
invariant and signature conditions by picking H, g, D appropriately and noting that the sign of D must be compatible
with the signature conditions that we are imposing. O

Example. The special fields for Shimura curves attached to quaternion algebras over QQ are precisely the quadratic
CM-fields which split the quaternion algebra. In this case the quadratic form is the one coming from the reduced
norm restricted to the trace 0 elements.

The special fields for Hilbert modular surfaces are either degree 2 or 4. The degree 4 CM-fields are precisely those
which satisfy the discriminant condition. In this case we use the quadratic form:

2 _ .2, 2 2
2] — x5 + 23 — Dxj.

The even Clifford algebra is trivial, and hence there is no splitting condition. To investigate degree 2 extensions notice
that the form is isomorphic to:
22 + Dy — Dya? — D22

Hench, any quadratic extension Q(1/D;) can be made a special field.
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CHAPTER 3
Characterization of Special Points of Orthogonal Symmetric Spaces

The main content of this chapter has been published in [Fiol2].

It is available at http://dx.doi.org/10.1016/j.jalgebra.2012.08.030.

The version here contains some minor corrections and changes.

3.1 Introduction

Given an algebraic group G defined over Q and its associated symmetric space G(R)/K, where K is a maximal
compact subgroup, one is interested in the special points (see [Del71, 3.15]). They correspond to those algebraic tori
T C G which are maximal, defined over Q and for which T'(R) is compact. To such a torus T' one can associate a field
F which is the special field for the corresponding point. This special field appears as part of an étale algebra F which
is naturally associated to the torus. We wish to answer the following:

Question. Given a quadratic form ¢ with its corresponding orthogonal group O,, what are the conditions on an étale
algebra F such that I is associated to a maximal torus T' of O47

This problem is taken up, to some extent, by Shimura in [Shi80]. Some work on the problem also appears in my
masters thesis [Fio09] as well as several other papers. This work is in fact complementary to my masters thesis where
an abstract classification in terms of group cohomology is given. The relationship between those results and these
will be the subject of future work (see Chapter 5 for further details). The most useful description for our current
purposes is the work of Brusamarello, Chuard-Koulmann and Morales [BCKMO03], from which one can extract various
necessary and sufficient conditions on the algebra E. In this paper we rephrase the conditions which can be derived
from [BCKMO03].

The primary goal of this work is thus to prove the following:

Theorem 3.1.1. Let (V,q) be a quadratic space over a number field k of dimension 2n or 2n + 1 and discriminant
D(q), and let (E,0) be a degree 2n field extension E of k of discriminant gy, together with an involution o. Then
Oy contains a torus of type (E, o) if and only if the following three conditions are satisfied:

1. E? splits the even Clifford algebra Cg for all o-types ¢ of E.

2. If dim(V') is even then 0/, = (—1)"D(q).

3. Let v be a real infinite place of k and let s be the number of homomorphisms from E to C over v for which o
corresponds to complex conjugation. The signature of q is of the form (n — 5 + 2i,n+ 5 — 2i), if the dimension
is even and either (n — 5 +2i+1,n+4 5 —2i), or (n—5+2i,n+ 5 —2i+1), if v((=1)"D(q)dg /i) is respectively
positive or negative when the dimension is odd, where 0 <1 < 3.

Moreover, for any E satisfying condition (2) we have that \/D(q) € E? for every o-type ¢ of E.

The notion of a o-type will be introduced in Definition 3.2.2.

We remark that the conditions in the theorem above are independent of the choice of similarity class representative
for the quadratic form that defines O,. We also note that one can replace the first condition of Theorem 3.1.1 by the
condition that for all primes p of k where the even Clifford algebra is not split, there exists a prime p|p of E? such
that p does not split in E. The equivalence of these conditions is the content of Lemma 3.5.9 and comes up in the
proof of the main theorem.

We would also like to point out that the theorem above, which holds for fields with involutions, does not extend
to arbitrary étale algebras with involution. It follows from our proof that the conditions in the theorem are sufficient
to ensure that there exist local embeddings for all of the places of k. Thus, the only obstacle to generalizing to étale
algebras is the existence of a local-global principle. We would like to thank Prof. Eva Bayer, for pointing out the
recent work of Prasad and Rapinchuk [PR10] on this problem. In their paper they provide both a counterexample
to the local-global principle for étale algebras as well as giving a sufficient condition for when a local-global principle
still holds. We also refer the reader to the forthcoming work of Eva Bayer [BF13] which gives a complete description
of the obstructions to the local-global principle.

The original motivation for this work came from the problem of determining which CM-fields could be associated
to the special points of a given a orthogonal group. The following corollary answers this question.
Corollary 3.1.2. Suppose in the theorem that k = Q, the signature of q is (2,€) and (E, o) is a CM-field with complex
congugation o. Then Oy contains a torus of type (E,o) if and only if:
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1. For each prime p of Q with local Witt invariant W(q), = —1 there exists a prime p|p of E7 that does not split
in E.
2. If £ is even, then D(q) = (—1)*t9/265 . (No further conditions if  is odd.)
Corollary 3.1.3. Suppose that k = Q and the signature of q is (2,¢). Let F be a totally real field. Then there exists
a CM-field E with E° = F, such that the orthogonal group Oy contains a torus of type (E, o) if and only if:
1. No condition if £ odd.
2. If £ is even, then (up to squares) D(q) = Npji(6) for an element § € F which satisfies the condition that for all
primes p of k with W(q), = —1 there is at least one prime p|p of F' such that 6 is not a square in F},.

As a final application, we have the following which recovers classical results concerning the classification of CM-
points, and answers the more recently raised question of classifying almost totally real cycles on the Hilbert modular
surfaces associated to real quadratic fields (see [DLO03]).

Corollary 3.1.4. Let d € Q be a squarefree positive integer. Consider the quadratic form:

qa = 73 — 23 + x5 — drj.

This implies Spin,, (R) ~ SLy(R)? is associated to the Hilbert modular surface for Q(Vd). Let (E,o) be an algebra of
dimension 4 with involution o. Then O4 has a torus of type (E, o) if and only if the o-reflex fields of E all contain
Q(Vd). In particular, the algebras associated to tori in Spin,, all contain Q(V4d).
3.2 Preliminaries

We begin by recalling a few of the basic notions relevant to the statement of the theorem.

For this section let k be a field of characteristic 0, fix an algebraic closure k and let I' = Gal(k/k) be the absolute
Galois group.
3.2.1 Etale Algebras

By an étale algebra F over k of dimension n we mean a product of finite (separable) field extensions F;/k where
the dimension of F as a k-module is n. The discriminant 6(E/k) or dg/, is the product of the field discriminants
0p,/k- We have that F ®j k ~ xpEep, where the e, are orthogonal idempotents indexed by p € Homk_alg(E,E).
The isomorphism is given by the map x ® a — > ap(z)e,. The Galois group I' acts on the collection {e,} by
Te, = €rop. This action, together with the natural action on coefficients, corresponds to having I' act on E ®y, k via

the second factor so that (E @y E)F ~ E. Thus, the descent data needed to fully specify the k-isomorphism class of
an n-dimensional étale algebra is the Galois action on the collection {e,}. For a more detailed discussion of the theory
of Galois descent, in particular how it applies to this setting see [KMRT98, Ch. 18]. The key result is:
Proposition 3.2.1. There exists a bijective correspondence between isomorphism classes of étale algebras over k
of dimension n and isomorphism classes of I'-sets of size n. The correspondences being E — Homk,alg(E%) and
Qi (xpeake,) .

We will often use this result to construct étale algebras by specifying a I'-set.

By an étale algebra with involution (E, o) over k we shall mean an étale algebra F over k together with
0 € Auty_qi9(E) of exact order 2. We will denote by E? = {z € E|o(x) = x} the fixed étale subalgebra of 0. The
action of o on E induces an action on idempotents given by o : e, — €p00. We see immediately that this action
commutes with the Galois action. Now, consider the disjoint collection of sets Homy,_q,(E, k) = L{p, po o}. Since
the actions of o and T' on Homy,_ 4, (E, k) commute we find that I" acts on the collection of sets {p, poo}. We can thus
consider the étale algebra whose idempotents come with this action. It is the subalgebra E of E under the inclusion
map €, sos} = €p + €poo-
Convention. For the remainder of this paper we restrict our attention to the case where dimy(E?) = [ng(bﬂ)-‘ . For

the most part we shall also assume that dimy (F) is even. Unless it is otherwise specified, all algebras with involution
satisfy these additional properties.

We will now introduce the notions of o-types and o-reflex algebras. These generalize the notion of CM-types and
CM-reflex algebras which are important in the theory of complex multiplication and have been extensively studied. We
shall only mention the notions which will be of use to us. For a more detailed exposition of CM-types and CM-reflex
fields see either [Lan83, 1.2 and 1.5] or [Mil06, 1.1, pp.12-19].

Definition 3.2.2. Let (E, o) be an algebra with involution. A subset ¢ C Homk,alg(E,E) is said to be a o-type of
Eif ¢ Ugo = Homk_alg(E,E). Denote the set of o-types:

b = {¢ C Homk,alg(E,E)W L ¢O’ = Homk,alg(E,E)}.
Then both I and ¢ act on ® and these actions commute. For a o-type ¢ € ® denote its orbit in ® under I" by I'¢p C &
and denote the stabilizer by I'y, = {y € I'|v¢ = ¢}.
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We define the o-reflex algebra of ¢ to be (E?, o), where E? is the étale algebra whose idempotents are indexed
by I'¢ UT'¢o with the induced action of I" and o.

We define the complete o-reflex algebra to be (E(I),O'), which is the étale algebra whose idempotents are
indexed by ® with the natural action of I and o.
Proposition 3.2.3 (Alternate definition of reflex field). Let ¢ be a o-type of E and define E? = EF¢. If T'¢ =Topo
then E? is a field and E? ~ E¢. Otherwise, if ['¢ # T'¢o then E® = E¢ x E$.
Proof. We claim that B¢ naturally has idempotents corresponding to I'¢. Indeed, the idempotents of Eé — EM
correspond to Homy, (EF¢,E), which is naturally identified with I'/T'y as I'-sets. The map sends vI'y to y o Id where
Id : EF¢ — k is the identity inclusion. Likewise we can identify I')Ty and T'¢ as I'-sets via the map Y[y — ~¢.

By the correspondence between I'-sets and étale algebras we conclude E? is isomorphic to the étale algebra whose
idempotents are I'¢p. If I'¢ = I'¢o this gives us the result. Otherwise, E? has idempotents I'¢ U T'¢po. As the action

of ' is from the left on I'¢o it follows that as I'-sets I'¢o is isomorphic to I'¢. Thus we conclude E¢ = E¢ x E¢. O

Definition 3.2.4. Let (F,0) be an étale algebra with involution over k and let ¢ be a o-type of E. There is a natural
map Ny : E — E? which is defined by:

N, <Z>= S (L] eo

pi€(TpUTdpo) \ pEP:

This map is called the o-reflex norm of the o-type ¢. 7 7 7
We want to show that this map, which a priori maps E ® k to E? ®y, k, actually maps E to E¢ = (E¢ @ k)L,
Since E = (E ®; k)' we have that for v € I" and >, apep € E the formula:

Z Ap€p =7 (Z apep> = ZW(%)GWOP

implies that v(a,) = @yo,. Using this we check that:

v Hap :H'V(ap):HaWp: H ap-

PED; pPEP; pPEP; pEY(¢i)

Finally we may check that:

7<N¢ <Zp:apep>>: S A ] | s

¢:€(I'¢UT ¢o) pPEP:

= Z H Qp | Ev¢s

#:€(TpUT¢o) \ pEy(¢:)
=Ny (Z apep> .
P

Hence we conclude that N (Zp apep) € (E? @i k)F = E2.
Proposition 3.2.5 (Computing o-reflex algebras). We summarize some results which allow for the computation of
o-reflex algebras. s
1. Let E be a field with o an involution of E and let ¢ be a o-type of E. Then E? = E?% as above.
2. Let F be an étale algebra and let (E,o) = (F x F,0), where o interchanges the factors F. Then there are a
number of different o-types of E:
(a) Let ¢ = Hom(F, k) C Hom(F x F,k) correspond to maps on the first factor. Then E® = k x k where o acts
by interchanging factors.
(b) Fiz one element p € Hom(F, k) and set ¢ = (Hom(F,k)\ {p})U{poc}. Then E? = p(F) x p(F) where o
acts by interchanging factors.
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(c) More generally one any choice of S C Hom(F, k) one can take ¢ = (Hom(F, k) \ S)USo. Then E® = Lx L

where o acts by interchanging factors and where L = E¢ C US im(p).
pe
3. Let (E1,01) and (Ea,02) be algebras with involutions. A o-type for (E,0) = (E1 X E2,01 X 09) is of the form

¢ = ¢ U ¢, where the ¢; are o;-types for E;. Then E% ~ Ef’lEgz and so the factors of E¢ are the composite
of those of the Efl

Proof. In each case the proof amounts to a direct application of Proposition 3.2.3 together with a computation of I'y.
For case (1), where E is a field, Proposition 3.2.3 is the complete result. For case (2) where E = F X F and the factors
are interchanged by o, we note that the orbits of I' on Homy,_ 44 (F, k) can be decomposed into those factoring through
the first F factor and those factoring through the second. Thus 'y is just {y € T' | vS = S} where S C Hom(F, k)
is the set describing ¢ as in each of the subcases of (2). It is then clear that I'y, contains N,ecs Gal(k/im(p)). From
this one concludes the result in the special cases of S = @ or S = {p}. In case (3) where E = F; x Es, it is clear that
I'y =Ty, NT'y, which implies the result. O

Corollary 3.2.6. Write (E,0) = x;(E;,0;) as a direct product where each E{* is a field. Then E® is a product of
even degree field extensions if and only if E; is a field for at least one 1.

Proof. If every factor E; is of the form EY x EY with o, interchanging factors then E = F' x F for F' ~ x;E{ with
o interchanging factors. Then by the proposition above there exists ¢ with E? = k x k and thus one of the direct
factors of E® is k.

Conversely, by the computations above every factor of E? is formed as a composite extension of Ef’ ¢, If there

exists a factor E; which is a field then for all ¢; the field Ef * is even degree. It follows that every factor of E® contains
an even degree subextension of the form Ej) “ and so E® is a product of even degree field extensions. O

Proposition 3.2.7 (Localization of Reflex Algebras). Suppose k is a number field, p be a prime of k (finite or
infinite) and let k, be the completion of k at p. By the localization of (E,o) and (E?,0) at p we mean the algebras
(E, = E ®j kp,0p) and (E?), = B¢ ®j kp,0,). Let G = Gal(k,/k,)\I'/Ts, then:

(E?), = x (Ep)(ﬁ“z’)?,
gea

where g is any representative of the coset g. In particular, (E®), = (E,)%».

Proof. The idempotents of E, and (E¢)p are in natural bijection with those of E and E?, respectively. That is, by
fixing a single map k < &, we obtain a Galois equivariant bijection Homy_a4(E, k) ~ Homy, —aig(Ep, k) with respect
to the associated inclusion T', = Gal(k,/k,) — Gal(k/k). This naturally induces a bijection between the set of o-types
for (E,o) and op-types for (E,,0p). However, because I',, is only a subgroup of I, the Galois orbit of ¢, in ¢, under
I', may be strictly smaller than the Galois orbit of ¢ in ® under I'. Hence, it may happen that (FE,)?% # (E¢)p. In
order to capture all of the orbits recall G =T',\I'/T'y so that:

T = U Ty(90).

where g is any representative of the coset g. It follows that:

(Ed))p =X (Ep)(g¢)p-

geG

3.2.2 Algebraic Tori
We now recall some basic properties of algebraic tori in linear algebraic groups.

Definition 3.2.8. A k-algebraic group is an algebraic torus T if it satisfies any of the following equivalent properties
(see [Bor91, 8.4 and 8.5] for a proof of the equivalence):

1. T is connected and diagonalizable over k.

2. T is connected, abelian and all its elements are semisimple.

3. k[T) is spanned by X*(T) = Homg(T, G,,).

4. Ty ~ Gy, for some n.
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Given any k-rational representation of 7" into GL,, there exists a collection 2 C X*(T') of characters that appear
once the representation is diagonalized over k. We may consider the map:

T — H Gm  t (X(t))xea
XEN

where the natural Galois action of T on T is by permuting the x as per the action of I' on X*(T'). The descent data
needed to recover the isomorphism class of a k-torus of rank n from its k-isomorphism with G”, is the specification of
the Galois action on X*(T') >~ Z"™. See [PR94, 2.2.4] for a discussion of Galois descent as it relates to the classification
of tori. The key result is:
Proposition 3.2.9. There exists a contravariant equivalence of categories between k-isomorphism classes of algebraic
tori of rank n and Z[T']-modules which as Z-modules are torsion free and of rank n. The equivalence takes T — X*(T).
Specifying a Galois action on X*(7T) is equivalent to specifying the Galois action on any Galois stable spanning
set Q C X*(T), in particular those spanning sets arising from faithful representations. Moreover, for a fixed reductive
group G of rank n and for any two k-conjugate tori T}, T» C G, the sets Q7,, 7, can be identified (non-canonically).
In particular, to classify the k-isomorphism classes of maximal tori contained in G, it suffices to consider a single such
spanning set {2 C Z". Then any k-torus in G gives a Galois action on {2 which in turn gives rise to a representation
I' = GL,(Z). One may then study the tori knowing only that they arise from a I'-set Q which spans Z™. One should
note that the condition 7' C G may impose further conditions on which I'-actions on 2 are possible.
Proposition 3.2.10. Let Q be a finite I'-invariant set of generators of X*(T'). Let E = Eq be the étale algebra whose
idempotents are the I'-set Q. Consider the torus T := Resg/p(Gy), that is, the torus such that for any k-algebra R
we have Tg(R) = (E® R)*. Then T — Tg.

Proof. First we note that X*(Tg) = Z®. We thus obtain a natural Z-linear map from X*(Tg) — X*(T) by taking
Q, the basis of X*(Tg), to Q as a spanning set of X*(7T"). This map is surjective and I'-equivariant thus inducing a
surjective map k[Tg] — k[T] which corresponds to an injective map T < Tg. O

Definition 3.2.11. If F is an étale algebra over k we say a k-torus S is of type E if S — Tk and E contains no
proper subalgebras with this property.

Note that any embedding of S < T (where S is of type F) arises as above. To see this consider the representation
of S arising from the regular representation of T on E. Note also that the Galois closure of the composition of fields
which comprise E is a minimal splitting field for the torus S.

Example. Let L C E be étale algebras over k and consider x € Homy(Tg,TL) corresponding to x = Ng/z,, then
Ker(x)? C Tg is a torus of type E.
Definition 3.2.12. Let (E,0) be an étale algebra with involution over k and put x = Ng,go. Then we define:

Tg.o, = Ker(x)" = {t € Tg|to(t) = 1}.
We remark that under the natural action of T on E as a k-vector space, Tk, , preserves the bilinear forms defined by:

B ox(z,y) = Trg/p(Azo(y)),

where A € E7. Moreover, T , is a maximal torus in the orthogonal group attached to this bilinear form.

In the case where F is of dimension 2n+1 but E° has dimension n, we find that F = E’ x k, where o acts trivially
on the k£ summand. The only difference with the even case is that one must then take the connected component of
the identity to ensure the resulting group is connected.

Proposition 3.2.13. Let q be a quadratic form over k and let O, be the associated orthogonal group. Let T C Oy be
a mazimal k-torus. Then there exists an étale algebra with involution (E,o) over k such that T = Tg .. Moreover,
suppose T » C Oq is a mazimal torus. Then q(z) = qp x(z) = § Trg/p(Azo(x)) for some choice of X € (E7)*.

Proof. We shall give a sketch of the construction that all tori are of this form, for details see [BCKMO03, Prop. 3.3].
As in the discussion relating descent data of tori to étale algebras we observe that for any T' C O, the set of characters
Qr which appear in the representation is of the form:

QT:{Xla"WXnaXl_la"'aX:Ll}

(including also the trivial character with multiplicity one if dim(q) is odd) with the y; forming a basis of X*(T"). One
checks easily that on the étale algebra FE which has idempotents indexed by (27 one can construct an involution o
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by interchanging x; and x; ! for each i. It is straightforward to check that 7" = Tk -, and o restricts to the adjoint
involution with respect to q.

The statement concerning the structure of quadratic forms preserved by such tori is the content of any of [Shi80,
Prop. 5.4],[BCKMO03, Prop. 3.9] and [Fio09, Thm. 4.4.1]. We present the argument of [BCKMO03]. By interpreting
the quadratic space as a rank one E-module, we may consider the adjoint maps for the two quadratic forms (that is, ¢
and ¢g 1), both of which are preserved by T, as being isomorphisms from E to its linear dual. Hence, composing one
with the inverse of the other, o = ad(gg 1) "' oad(q) : E — E gives an E-automorphism of E which must correspond
to multiplication by a unit A. We may then conclude that ¢ = gg,». O

3.2.3 Clifford Algebras
Definition 3.2.14. Let (V,q) be a quadratic space over k. We define the associated Clifford algebra to be:

Co= BV /(z®a - q(x)).
i>0
The involution v — —v on V induces an involution of C,. We define the even and odd parts of the Clifford algebra to
be respectively the +1 and —1 eigenspaces for this involution and denote them Cg and C;.
The structure of the Clifford algebra as a graded algebra is well known; in particular we have:

Theorem 3.2.15. If m = dim(V) is odd then:

1. Z(C,) ~ k(V/d), where d = (—1)™=Y/2D(q) and D(q) is the discriminant of g,

2. Cg is a central simple algebra over k and Cq =~ Cg ®Z(C,) (where ® is the graded tensor product), and

3. Cy is a central simple algebra over Z(Cy) (if the centre is not a field we mean C, ~ Cg X Cg}.
If m = dim(V) is even then:

1. Cq4 is a central simple algebra over k,

2. Z(Cg) = k(Vd), where d = (—=1)™2D(q) and D(q) is the discriminant of q, and

3. if Cqg ~ My(A) (where A is a division algebra) then Cg ~ M (A® Z(Cg)).

Proof. The above theorem is essentially the content of [Lam05, V.2.4-5]. The final statement in the even case is not
explicitly stated in [LamO05] but follows from the proof of [Lam05, IV.3.8]. O

Definition 3.2.16. Let (V,q) be a non-degenerate quadratic space over k of dimension m with an orthogonal basis
{e;}, where we write q(e;) = a;. We then define the following invariants:

e The discriminant D(q) = [[, a; viewed as an element of k*/(k*)2.

e The Hasse invariant H(q) = [](a;,a;), where (a;,a;) is the Hilbert symbol (see [Ser73, Ch. III] and [Ser79,

i<j
Ch. XIV]), viewed as an element jof Br(k) = H*(T, +1).

[C)], m=1 mod 2,
[Cql, m=0 mod 2

The Witt invariant W(q) = { , where [B] denotes the Brauer class of B, viewed as an

element of Br(k) = H?(T, £1).
The signature (7,,s,), at each real infinite place p of k.
The orthogonal discriminant D! (q) = 5(Z(C(q))/k;) viewed as an element of k*/(k*)2.
e The orthogonal Witt invariant W't (q) = [Cg] viewed as an element of Br(Z(Cg)).
Remark. The first four invariants are properly invariants of ¢, indeed when k is a number field they entirely determine
g. The latter three are invariants of the orthogonal group associated to ¢. That is, O, determines ¢ only up to similarity
(rescaling by k*). Likewise, the signature, orthogonal discriminant and orthogonal Witt invariant determine ¢ up to
similarity.
The last two invariants are not standard.
Proposition 3.2.17. Let m = dim(V). We have the following relations among the above invariants:
i D (-1)(m=Y/25(Z(C,)), m=1 mod 2,
P@O=1Cyme sz, m=0 mod2,
2. H(q) = W(q) - (=1,D(q))m-Dm=2)/2 . (_1, —1)(mA)mm=1)(m=2)/8 “yhere the product is in the Brauer group,
3. W (q) = [W(q) ® Z(Cy)].
These properties are the content of [Lam05, V.2.5, V.3.20 and V.2.4-5], respectively.
Theorem 3.2.18. Let (E,0) be an étale algebra with involution over k such that Tg » — O as a mazimal subtorus.
Then E® embeds into Cg as a mazimal étale algebra stable under the canonical involution of C,. Moreover, the
canonical involution restricts to o on E®.
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Proof. We claim that it is sufficient to consider the case of dim(V') even. Indeed, if dim(V') is odd then we can
decompose V = V' @ span, (¥) where Tg, acts trivially on ¢. With ¢’ = ¢|v and Tr, — Oy and using that
Cy — C, we obtain the result.

We may identify the space V with E. Thus V ®j k is identified with E ®; k. Suppose under the isomorphism
of V with E we have that q(z) = 3 Trg/x(Azo(z)). We use {ep}pGHomk_az,g(E,E) as the generators for the Clifford

algebra after base change to k. We note that we recover both Cg and V as the Galois invariants of Cg ®rk and V @y k,
respectively. Moreover, as the inclusion V' < C, is k-rational, the Galois actions on the {e,} viewed as elements of
V ® k or as elements of C, ®pk is the same.
For each p € Homy_q4(E, k) set 6, = ﬁ
. The action of o on d, agrees with the canonical involution of Cg,
. (5§ = 0p,
. 0,0(0,) =0and d,+0(d,) =1,
4. the J, all commute, and
5. the Galois action on {d,} is the same as that on {e,}.
Now for each o-type ¢ € ® of E set §5 =[], ., 9, These elements then satisfy the following properties:
1. 535 = 0,
2. (5¢1(5¢2 =0 for Q51 7’5 (2527
3. 2406 =11,(0p + 0pos) = 1, and
4. the Galois action on {04 }sce is the same as that on {¢}gca.
Thus the 6,4 are Galois stable orthogonal idempotents and hence by taking Galois invariants give an étale subalgebra
of Cg. As the Galois action on idempotents matches that of E®, this gives an embedding of E? into Cg. Moreover,
this algebra is preserved by the canonical involution of C,4, and the involution restricts to o on it.
The algebra is maximal as an étale subalgebra for dimension reasons. O

ep ® €pos € Cg. These elements satisfy the following properties:

W N =

pEP

Remark. We have the map ¢ : E — Cg given by:

¥ (Z xpep) = Z H Tp | 0p = H (@p0p + TpoaFpoc)

PED \ pEd pEP’

where ¢’ is any o-reflex type of E. It is a multiplicative map (it is the reflex norm followed by the inclusion). Moreover,
the image of T lies in the spin group, with ¢ being a section of the natural covering map ¢ : Spin, — O,. Indeed,
we have 0(o(>, 7,¢,))(1E) = >, zpx,0€,. Note that T, consists of those elements where z, = x and hence
fo¢p=ax%on Teo-
3.3 Computing Invariants

In this section we will compute the invariants of the forms Trg/,(Azo(x)).

Recall that for L/F a finite extension of fields and O an order of L, the discriminant dp,0, of O is that of the
F-quadratic form Q(z) = Trp,r(2?) on O.
Lemma 3.3.1. Let F' be a number field or a p-adic field and let L = F(z) be an algebraic extension of degree m with
[2(X) € Op[X] the minimal (monic) polynomial of z. Let 01,p(2) be the discriminant of the order Op[z] C L. Let
A € L* and consider the quadratic form Q(x) = Try p(Aa?). Then:

D(Q) = Nr;r(Ndop(z1/0x(2)

poo

= Moy | TT0(2) = (=)

i<j
= Npye(A\) (=)™ V2N e (fL(2)),
where p; are the m embeddings L — F.

Proof. These are well-known equalities. To compute det (Tr L/ (227 )) 0 factor the matrix as:

(TrL/F(/\ZKZj))gj = (pi(A29),, - (pi(27)),; = diag(pi(N)) - (pi(2)%) 4 - (pi(2)7)

ij "

By applying the Vandermonde determinant formula and a comparing the result to Ny ,p(f.(2)) yields the result. [
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Lemma 3.3.2. Let L/F be an extension of either number fields or local fields. The corestriction (or transfer map)
Corp,/p : Br(L)[2] — Br(F)[2] satisfies:

Corp/r((a,b)r) = (a, Npyr (b)) F

forallae F*be L*.
This is [Ser79, Ex. XIV.3.4].
The second part of the following result is the main theorem of the paper of Brusamarello-Chuard-Koulmann—
Morales and will be important in the sequel.
Theorem 3.3.3. Let (E,0) be an étale algebra with involution over k of dimension 2n and let A € E°*. Then the
invariants of qp () = 5 Trg/(A\zo(z)) are:
1. D(gex) = (=1)"0p/k;
2. H(gex) = H(qe,1) - Corpo k(A 0p/p7),
8. W(gen) = W(ge,1) - Corge /i (A, 6p/p- ).

Proof. The first statement is well known, though we include a proof for the convenience of the reader. By writing
E = E°(Vd) := E°[y]/(y* — d) we may write x € E as 2 = s + tv/d. Then we observe that gg \(z) = Trge /5(As?) +
TrEa/k(—)\dt2). Set Q,\(S) = TI‘Ea/k()\SQ) and Q_)\d(t) = TrEd/k(_AdtQ) so that qEN ~ Qx ® Q_gn. We thus have
D(qe ) = D(Qx)D(Q—-xq)- By Lemma 3.3.1 this gives:

D(qE7,\) = NEa/k(/\) . 6Eo‘/k . NE“/k(_/\d) . 5Ea/k
= Npgoji(—d) = (—1)"Ngoji(d) - (mod (k)?).

By observing that dg, = Npo/k(0p/E)0%.  (see [Ser79, Prop. IIL4.8]) and that 0. (/5 pe = d (mod (k*)?) we
conclude the result.

The second statement is the content of [BCKMO03, Thm. 4.3]. The final statement follows from the first two
statements by using Proposition 3.2.17. The proposition states that the Hasse and Witt invariants differ by a constant
depending only on the discriminant. As D(gg,x) = D(gg,1) the second and third statement are thus equivalent.  [J

The above theorem, together with some easy special cases, is largely sufficient for the proof of our main result (see
the proof of Lemma 3.5.5 for how it comes into play). However, we would like to give more precise formulas for the
Hasse and Witt invariants that can be directly computed from the data describing the fields. This has the advantage
of giving the information we need in the special cases, as well as being of interest in its own right. The first step is a
lemma which is useful for explicitly calculating traces.

Lemma 3.3.4 (Euler). Let L = F(z) be a finite separable extension of F' of degree m with f,(z) € Op|z| the minimal
(monic) polynomial of z. We then have:

2t 1 f=m-—1
Tr 2 ) ="
L/F(f;(2)> {o, 0<l<m—1.

This is [Ser79, II1.6, Lem. 2].

The next step is to show that the fields in which we are interested are always primitively generated in a simple
way.
Proposition 3.3.5. Let F'/k be any finite separable extension of infinite fields of characteristic not 2, and let E/F
be a quadratic extension. Then there exists o € E such that E = k(a) and F = k(a?).

Proof. Suppose E = F(y/3) with 8 € F and F = k(y). We claim it suffices to show that there exists an £ € k
such that F' = k((¢ + ~v)?8). Indeed, if F' = k((¢ + ~)?83) then F C k((¢+ ~)v/B) and so v € k(({ +~)v/B). Hence

VB € k((€ +~)y/B) and thus F(v/B) = k((¢ +v)v/3). Consequently, taking a = (£ + )/ gives the result.
Now let £1,0s,l3 € k be distinct values such that k((¢; +)?3) are all the same field, say L. Since all these values
are in the same field, so are their linear combinations. We compute that:

(61 +7)28 et (s +7)%8
(b2 = 1) (ls = b1) (61— L2)(ls — L2) (01 — L3) (L2 — {3)

This shows that 8 € L. We then observe that:

= 8.

Wigl) (o +7)? = (s +7)%) = b2 — b1 = 2.
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This proves that v € L, and hence L = F = k((¢; + 7)2p). O

The following lemma combines the above two results to show that for a particular choice of A € E? the invariants
of ¢g,» can be computed explicitly.
Lemma 3.3.6. Let F'/k be an extension of number fields of degree m. Suppose F = k(z2). Let E = F(\/z) = k(\/2)
and o be the non-trivial element of Gal(E/F'). Let f, be the minimal (monic) polynomial for z over k. View E as a
2m-dimensional k-vector space equipped with the quadratic form Q(x + y/z) = qp,—f; ()1 (v + /2y). Then:
1 H(Q) = (=1, =1 " V2 (Npyi(2), —1) ", and
2. W(Q)=1.

Proof. Let E = F(v/—2) = k(v/—2) and notice that fy=(X) = f(=X?) is the minimal polynomials of v/—z. Hence
f:/jz(X) = —2X fl(-X?), in particular f:/jz(\/—z) = —2v/—zf.(2). Therefore under the identification of F' x F,
using its natural basis, with E under the basis 1,v/—z and writing w = x 4+ y/—2 we compute:

4B, ()1 (@ + V2y) = Trpyy, (%(af — zyZ))

1
=T (2f;(z> “’2>

- Tr- ﬂuﬂ
P\ L= )

Now, by Lemma 3.3.4, for any extension k(«)/k of degree n, the matrix for the quadratic form

~ Q
O(x) = Trian <x)
@\ fi (o)
in the basis {1,«,...,a" '} has the shape:
0 1 a
1 ayp a2
1
1 ay
ayp az ce Gp
for some values a; € k. Note that the form is non-degenerate on the span of {1,q,...,a" 2} and let 3 be a generator
for the orthogonal complement. Then {1,c,...,a" "2, 3} is a basis and the matrix for () with respect to it is:
0 . 1 0
1 ay 0
A= ,
1
1 al
0 0 Y
for some Y € k.
Lemma 3.3.7. The matrices:
0 e 1 0 . 1
1 al 1
and
1 : 1
1 a ay 1 0 0
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represent the same quadratic form. In particular, denoting by (y1,...,yn) the diagonal form with diagonals y;, the
quadratic form associated to either matriz is isomorphic to one of:

1,-1)"T @ 1) or (1,-1)%

depending on the parity of n.

Proof. This is a simple inductive argument using the similarity-transform defined by:

1 0 0
—aq 1
—a9 0
—0n-1
—%an 0 1

It follows from the lemma that é is isomorphic to one of:

n—1

1,-1)"2 @ (1,Y) or (I,-1)"7 & (Y).

Next, by Lemma 3.3.1 we know that the discriminant of é is:

Nita) /5 (@) Ny /1 (Fo (@) ™ )0ka) /i = Nisgay i () (=)™ D72,

We conclude that Y = Nk(a)/k(a)(—l)”_l up to squares. In particular, in the case a = y/—z, we can immediately see
that the Hasse invariant of the quadratic form is:

m(m—1)/2 m—
H(Q) = (=1, =D 2 (Ny ey (V=2), =)
= (=1,-1)p b (Ni(zyr(2), =1
Moreover, since the quadratic form has discriminant (—1)" Ny (.)/x(2) we compute using Proposition 3.2.17 that the
Witt invariant is:
m— m(m—1)/2
W(Q) = ((~1)"™ Niayy(2), =D~ - (=1, =)= D/2.
m(m—1)/2 m—
(_L_l)k( V '(Nk(z)/k(z)?_l)k !
=1.
O

Combining the above two results, we may now give a general formula for the Hasse and Witt invariants for the
forms gg .
Theorem 3.3.8. Let F' = k(z) be an extension of degree m, let E = k(y/z), and let A € F. Consider the quadratic
form qp (%) = 3 Trg/i,(ANgp(z)). Then:

1. H(gpn) = Corpp((=AfL(2), 2)r) - (N w(2), —1) - (=1, =172 and
2. W(gex) = Corp/p((=Afl(2),2)F).

Proof. From Theorem 3.3.3 we have the following two equations:

H(QE,A) = H(qE,l) . COrp/k(()\, Z)F)7 and
H(qp,—f1(2)-1) = H(gp,1) - Corpyr((=fL(2), 2)F)-

Solving for H(gg,1) and substituting the results of Lemma 3.3.6 yields:

H(qr ) = H(qp,—f(z)-1) - Corp/i(MfL(2))
= (=1, =17 "2 (Npyp(2), 1)~ - Corp((—AfL(2), 2)r).
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The Witt invariant computation follows similarly. O

3.4 Local Invariant Computations for Tr(\z?)

The above gives us a global cohomological description of the invariants of the quadratic forms in which we are
interested. However, the quadratic forms Tr(Az?), which were studied extensively by Serre (see [Ser84]) and others,
are not in general covered by the previous section. Moreover, we have further interest in a detailed local description
of these forms as this has applications to computing local densities and discriminant groups. Similar calculations can
be found in the work of Epkenhans (see [Epk89, Lem. 1]). The current section gives a description of these quadratic
forms in terms of basic combinatorial data regarding the ramification structure of the field extensions involved.
Lemma 3.4.1. Let F/k be an unramified extension of non-Archimedean local fields of degree f, with residue char-
acteristic different from 2. Let m be a uniformizer of k. Let Qp be any quadratic form on a vector space V over F
of dimension n. View V as a k-vector space via restriction of scalars. The form Qr(x) = Trp/,(Qr(x)) on V has
moariants:

D(Qk) = Np/i(D(QF))05 )y, and
F(f=1)/2 VWF(D(QF))

H(Qr) = HQF) | (Tk; N/ (D(QF)) k(T 01 )k (Thy — 1)

(By abuse of notation we identify the 2-torsion in the Brauer groups of F' and k via the natural isomorphism.)

Proof. Tt suffices to check the formula for a member of each isomorphism class of quadratic space over V. If n > 3 by
checking the Hasse invariants and discriminants one finds that every isomorphism class of non-degenerate quadratic
space over V is represented by one of:

()" 3 @ (b, Ty, abm) or  (1)""2 @ (b, abmy,),

for some a,b € OF. We refer to these as the first and second cases. In either case by decomposing the form into the
diagonal pieces with trivial and non-trivial valuations we may write:

TrF/k(QF) = My, & mp M.

In the first case, M; has discriminant 5;17,3N 7/k(b) and dimension f - (n — 2), whereas Mj has discriminant Ng,(ab)
and dimension 2f. One then computes in the first case that:

H(Qr) = (mr, —1)] - (N(ab), 7
= (7, —1)F - (ab, m) F

= H(QF).

In the second case, M; has discriminant 6;7;Np/k(b) and M, has discriminant 6z, Np/p(ab). Thus we have:

H(Qr) = (mr, Nesi0)i - (7, Nejr(@) L+ (e, 0 i) - (i —1)£(f_1)/2
= (s Npy(@) ™ - (e, 0 - (e, = 1)V 7072

= H(Qr) | (7h; Ny (D(Qr)k - (s Ok )i - (ks fl)i(f_l)”] _

Here we have used the fact that 5{: /k is a square in k for an unramified extension.

For the cases n = 1,2 we must check that similar formulas hold for: (b, abmy), (1, a), (a), (amy). We omit these
calculations. 0O

The results on the structure of trace forms for ramified extensions will rely on the following lemma.
Lemma 3.4.2. Let L/F be a totally ramified extension of local fields. Let z = wy, be a uniformizer of O and f.(x)
be the minimal (monic) polynomial of z. Then f, is an Eisenstein polynomial and the collection 1,z,2%,... 2™  is
an Op-basis of Or, and N, p(z) is a uniformizer of F.

See [Ser79, Prop. 1.6.18] for a proof.

Before proceeding with the next two lemmas we will introduce some notation. Let L/F be a totally ramified
extension of local fields of degree m. Let 7z be a uniformizer of L and set 7 = Ny, p(7L) to be a uniformizer of
F. Let f = fr, be the minimal monic polynomial of 7, over F. Suppose u € O}, v € O, 0 <{ <m, k € Z and
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i
set A = #}“,(m We remark that if the residue characteristic is not 2, then for any given A € L* there exists
L

corresponding u, v, ¢, k. Now denote by Q(z) the F-quadratic form on L given by Q(z) = TrL/F()\:Ez) and consider
M, = span{uvz?,... uvz™ "'} and My = span{v,...,vz""'} as quadratic subspaces of L.
Lemma 3.4.3. With the notation as above, we have the following properties of @Q, My, My:

1. The discriminant of Q is D(Q) = (—1)™(m=1/2¢=mgmhk=t,

2. The decomposition L = My ® Ms is orthogonal with respect to Q.

3. The discriminants of éQ|M1 and ?{1Q|M2 are respectively:

1
D(WTQ|M1) — (_1)(m—€)(m—€—1)/2um—€ and
F

1
F

(71)€(€+1)/27mzu7€.

Hence these forms are unimodular.
4. The Hasse invariant is:

2 2
H(Q) — (7TF7’U/)(m_Z)€ . (7TF7 _1)k(m (m—1)/2+¢ (l—m))—f(m—f)(m—é—l)/Q.

Proof. The formula for the discriminant of ) is Lemma 3.3.1. The orthogonal decomposition is an elementary calcu-

lation which follows from Lemma 3.3.4 and Lemma 3.4.2.
Next, noticing that v € F' we can use Lemma 3.3.4 to compute that the matrix representations of T%le A, and
F
ﬂk—l,lQ| M,- We see that they are respectively:
F

0 0 1 *

*

* a 0
* a 0 0

* = O
*

0
1
where a = % = (—1)™. One can explicitly calculate the * terms from the coefficients of f, but what is of particular

importance is that in both cases one finds that a;; = a;; whenever i+j = [+ k. As a consequence of this using Lemma
3.3.7 we can explicitly find a change of basis matrix so that the result is of form:

0 0 1 X 0 0
0 1 0 0 0 1
U 0 and — Lo
0
01 0 0 1
1 0 0 0 1 o0 0

The determinants of the matrices are then:
(_1)(m—€)(m—é—1)/2um—l and (_1)(@—1)(@—2)/2u—é‘X7

respectively. Thus knowing D(Q) we have that up to squares X is:

X = (_1)(Z—l)(2—2)/2+€(£+1)/Q—mZU—Z—m—Z+m _ (_1)m£+1.

The computation of the discriminants of the M; and then the Hasse invariant of () are direct calculations. O

Remark. If the residue characteristic is not 2 the above gives us a method to calculate the invariants of forms
Trp/r(Az?) for an arbitrary A.

We now restrict ourselves to the case that the residue characteristic is not 2. In addition to the above notation,
suppose that E/L is a quadratic extension with involution ¢. Fix w a non-square element of Of. Writing z =

54



71 + T2,/0p/p- consider the quadratic form on F

qe/rA(T) = %TrE/F(/\xa(x)) ~ TI'EU/F(A.’I;%) — TrEd/F()\éE/Eaxg).

Then set \' = Mg g, k' = k and choose v/,v', ¢’ so that X' = ,,27;7?},() Let @', M] be defined similarly to
u' vy T
Q, M; using )\ instead of A so that gg/p\(z) = Q(z1) — Q'(72). Now define N; = M; & —M; and N; = #Nl and
F
Ny = Wkl,l N5 their unimodular rescalings.

Lemma 3.4.4. With the notation as above we have the following:
1. If dg/p- = w then £’ = £ and v’ = wu. Then:

D(N}) = (—1)"™w"™ and D(N;) = (—1)~‘w ™.

It follows that:

(— 1)mwm7riﬂ(mk7e) , and

D(qp/px(x)) =

H(qg/pa(x)) = (7F, w)km=¢,

2. If 0p po = mpe then £/ =€ —1 and v’ = u. Then:
D(Ny) = (=1)u and D(Ns) = (—1)™* 1w,

It follows that:

(—1)"‘7r12,(m}€%)+17 and

D(QE/F,A<x)) =

H(qg/pa(7)) = (7F,u) - (TF, —1)kl=m—T)tmt(e+1)/2,

8. If 0p/ge = wrge then ' ={ —1 and v’ = wu. Then:
D(Ny) = (~Lyuw'™"*" and D(Ny) = (=1)"  uw' ",

It follows that:

D(qg/pa(x)) = (,1)mwm7r;(mk_g)+17 and

)(mé—m—[z—l) . ( _1)k(l—m—1)+m+€(€+1)/2.

H(qp/pa(z)) = (TP, u) - (TF,w T,

4. If E°/F is still an extension of fields but E = E° x E?, 6g/ps = 1, then ' = { and v’ = u. Then:
D(Ny) = (=1)*"™ and D(N2) = (-1)".

It follows that:
D(qE/F)\(x)) _ _1)mﬂ_i_‘(mk75)7 and

Proof. The proof is a direct, although tedious, calculation based on Lemma 3.4.3. O

Remark. By combining the results above for totally ramified extensions with those of Lemma 3.4.1 one obtains
results for arbitrary extensions.

In the formulas above the parameter m is determined by the ramification degree of E?. The parameters k and ¢
are controlled together by both the higher ramification degrees of £ and the valuation of A. Finally the square class
of u is controlled by the square class of A.

The following two lemmas are direct computations.
Lemma 3.4.5. Let F/k be an extension of local fields of residue characteristic 2. Then when viewed as a quadratic
form on F x F the Witt invariant of Trp/k(az2 —y?) is 1.
Lemma 3.4.6. Let F =R or F = C, then as a quadratic form on F x F the Witt invariants of TrF/R(xQ +y?) and
TI“F/R(132 —y?) are 1, and the Witt invariant of TrF/R(—$2 —y?) is —1.
3.5 The Main Results

We recall the main result:
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Theorem 3.5.1. Let O, be an orthogonal group over a number field k defined by a quadratic form q of dimension 2n
or2n+1, and let (E,0) be a field extension of k with an involution and of dimension 2n. Then Oy contains a torus
of type (E, o) if and only if the following three conditions are satisfied:

1. E? splits the even Clifford algebra W™ (q) for all o-types ¢ of E.

2. If dim(q) is even then 0/, = (—1)"D(q).

3. Let v be a real infinite place of k and let s be the number of homomorphisms from E to C over v for which o
corresponds to complex conjugation. The signature of q is of the form (n — 5 +2i,n+ 5 — 2i), if the dimension
is even and either (n— 5 +2i4+1,n+ 5 —2i), or (n— 3 +2i,n+ 5 —2i+1), if v((=1)"D(q)0g/1) is respectively
positive or negative when the dimension is odd, where 0 < ¢ < %

Moreover, for any E satisfying condition (2) we have that \/D(q) € E® for every o-type ¢ of E.

By Proposition 3.2.13 the entire theorem is reduced to showing that the conditions are equivalent to the existence
of X € (E?)* such that the quadratic form gg x = % Trg/x(Azo(x)) has the same invariants as ¢. We now proceed
with a series of lemmas which will conclude with the result.

Lemma 3.5.2. Let (E,0) be an étale algebra over k with involution and let A € E°. For a real infinite place v of k
the quadratic form qp,\ = 5 Trp/,(Azo(z)) has signature (n+% — 5, n— 5+ %), where s (respectively r) is the number

2
of real embeddings p € Homy_q14(E,R) of E° which are ramified in E with p(X) > 0 (respectively p(X) < 0).

Proof. This is an immediate check. O

Lemma 3.5.3. Let F' be a number field, let e, = 1 be a collection of numbers indexed by the places of F', and let
0 € F. Then there exist X € F with (X\,0), = e, if and only if the following three conditions are satisfied:

1. All but finitely many e, are 1.

2. An even number of the e, are —1.

3. For each v there exists A\, € F, with (A\,,0)r, = e€,.

Proof. This is well known. For the result over Q see [Ser73, Thm. 2.2.4], for the result over an algebraic number field
see [O’MO00, 71:19a].
O

Corollary 3.5.4. Let (FE,0) be an extension of a number field k of degree 2n together with an involution. For each
place v of k let e, € {£1}, and for each infinite place let (s,,7,), be such that s,,r, € N and s, + r, = 2n. Then
there exists A € E° with qg x having signatures (s,,r,), and Hasse invariants e, if and only if the following three
conditions are satisfied:

1. All but finitely many e, are 1.

2. An even number of the e, are —1.

3. For each v there exists A\, € EJ such that H(gg, »,) = €, and moreover, the signature of qg, , S (Su,7,), if v

s an infinite place of k.

Proof. Supposing there exists a A, then conditions (1), (2) and (3) are immediate.
Let us prove the converse. For p € (E?)* denote by Qg g ,(x) = 3 Trg/pe (uxo(z)) the E-quadratic form on
E. First we recall Theorem 3.3.3 tells us that:

H(qE,H)V = H(QE,I)V H H(QE/E",;A)M

ul|v

where the u run over places of E7 over v. Now for each place u of E7 define f,, € {£1} as follows:
e If ulv is an infinite place, set f, = H(Qg /g2, )u-
o If ulv is a finite place and H(¢p 1)ve, =1, set f,, = 1.
o If u|v is a finite place and H(qg,1)ve, = —1, set fu = H(Qp g~ A, )u-

We now notice that for each place v of k we have:

pr = HH(QEV/Eg,)W)u =H(qe1)vH(qp, ) = H(ge1)ves

ul|v ulv

and moreover, that only finitely many f,, # 1. It follows that [], fu = [, H(¢g,1)ve, = 1. Finally we have that if
fu# 1 then f, = H(QEg/go ), )y = (M\,05/E7)u- The values f, thus satisfy the conditions of Lemma 3.5.3 and we
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conclude that there exists A € E7 with (A, 0g/g- )y = fu. By the choices of the f, we find:

H(gea)v = H(qea)w [[ H(Qp,/ps 0w = H(ge)w [ [ fu =ev-

ul|v ulv

Finally, by Lemma 3.5.2 the signature of gg \ at a real infinite place v is given by:

%Zmu(H(QEV/Eg,,\)u +1),3 Zmu(H(QE,,/Eg,—)\)u +1) 1,
u|v

ulv

where m,, = 1 if £, = R xR and m,, = 2 if E,, = C. Since H(Qg, gz \)u = H(QE, /B7,x, )u for all u it follows that
the signature of gg » at v is the same as that of gg, »,, which is to say it is precisely (s,, 7y ).. O

Lemma 3.5.5. Let (E,0) be an étale algebra with involution. Let B, = x;Ey; be a decomposition into a product of
fields. Then there exists values Ay, \_ € E° such that the p-adic part of the Hasse invariant for %’ITE/;C()\ixU(m)) is
respectively +1,—1 if and only if the involution o restricts to an automorphism of Ey; for one of the constituent fields
E,; of the étale algebra E,. Moreover, if W(qg ), is independent of A then W(gg x)p = 1 for all \.

Proof. From Theorem 3.3.3 recall that we have:
W(QE,/\) =Cg- CorE”/k((Aa 5E/E”)E”)v

for some constant Cr which does not depend on A. Thus, both A4 exist if and only if CorEg/kp ((\, 5Ep/Eg)Eg) is not
constant as a function of A. Writing EJ = x;EJ. let p; be the projection of EJ onto the jth factor. Using the fact
that the cohomology and the corestriction maps factor as products we have:

Corpgg /i, (A, 0m, /g mg) = [ [ Corez sk, (05 (N), 03 (08, /55)) 15, )-
J

We thus conclude that both Ay exist if and only if for at least one j the function COTE;;J./kF ((pi(N), pj (5EP/E3))E33_)
is not constant with respect to A. The corestriction map being injective for local fields, this is equivalent to
(Aj»pi(0E, /Eg)) e being non-constant. This last assertion is the same as saying that p;(dg, k) is a non-square
or that o acts as the non-trivial field automorphism on the factor Ey; of E} that is over Ey ..

For the second part, we need to show that whenever W(qg, ), is independent of A then W(gg ), = 1. In-
deed if W(gg,x)p does not depend on A, then by the first part of the lemma F,/Ey has no factors which are
field extensions. Thus the element z appearing in the formula in Theorem 3.3.8 is a square and this implies
W (ge)p = Corig sy (—ML(2), 2)m7) = 1. O

Corollary 3.5.6. Let E/k be an extension of number fields. Let g be a quadratic form of dimension 2n. Then Oq
has a torus of type (E, o) if and only if the following three conditions are satisfied:
1. For all primes p of k where none of the factors of Ey are proper field extensions of factors of EY, we have
W(g)p = 1.
2. We have (=1)"0g/, = D(q) (equivalently (=1)"6g, /r, = D(qp) for all p).
3. The signature conditions of Theorem 3.5.1.

Proof. By Proposition 3.2.13 we have that O, has a torus of type (E,o) if and only if there exists A € (E?)* such
that the quadratic form gg ) = %Tr B/k(Azo(x)) has the same invariants as g. Thus we must show that the existence
of such a A is equivalent to the conditions of the corollary.

For each place v of k set e, = H(q), and for each infinite places set (s,,7,), to be the signature of q. Then the
ey, (Sy,7,), satisfy (1) and (2) of Corollary 3.5.4 as they arise from the quadratic form g. We thus have by Corollary
3.5.4 that the question of existence is local.

We now check that conditions (1), (2) and (3) are equivalent to the local conditions on the existence of A, for all
places v of k. For a finite place v of k a \, exists with g, », ~ ¢ if and only if a A, exists with both D(gg, »,) = D(q)
and H(gg, »,) = H(q),. Theorem 3.3.3 tells us that (2) (at v) is equivalent to the discriminant condition and Lemma
3.5.5 tells us that (1) (at v) is equivalent to the Hasse invariant condition. For an infinite place v we have by Lemma
3.5.2 that the existence of a \, is equivalent to (3) at v. Note that for infinite places (3) implies (1) and (2). We have
thus shown that the existence of a global A is equivalent to (1), (2) and (3) for all v, which completes the result. [
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Corollary 3.5.7. Let E/k be an extension of number fields. Let q be a quadratic form of dimension 2n + 1. Then
Oy has a torus of type (E, o) if and only if the following two conditions are satisfied:
1. For all primes p of k where none of the factors of E, are proper field extensions of factors of ET, we have
W(g), = 1.
2. The signature conditions of Theorem 3.5.1.

Proof. We proceed as in the previous corollary, except we now have the added flexibility of choosing what the orthogonal
complement of the sub-quadratic space gz x looks like. In particular, O, has a torus of type (E,o) if and only if
q ~ qgx ® (a) for some X\ € (E?)*. In order for ¢ and gg » & (a) to have equal discriminants it is necessary that
a=(=1)"D(q)/0g/x- As this can always be done there is no discriminant condition in this case. Again as above, by
Corollary 3.5.4 the question of the existence of A is local.

We must find the local condition on Witt invariants. Knowing the discriminants of ¢g x and (a) we see that
H(qex @ (a)), depends on X if and only if H(gg,), does. Hence this also holds for the Witt invariants. Furthermore,
the obstructions to changing Witt invariants arise at the same places as in Corollary 3.5.6. Now, we compute that
W(qg)p = W(—agen)p = W(—1)""'D(¢)0g/kqe,x)p (see [Lam05, V.2.9]). Next, by Theorem 3.3.8 we know that if
the Witt invariant of gg » is independent of A then W(gg ), = 1 independently of A, and consequently independently
of rescaling. In particular it follows that W(q), = W((=1)""'D(q)dg/kqer)p = 1. This gives us the condition on
Witt invariants (1).

Finally, the signature conditions (2) are precisely those of Lemma 3.5.2 together with the sign contribution that
is dictated by the (a) piece at each v. O

Remark. The condition “F) contains no field extensions of factors of EJ,” can be rephrased as “for all constituent
fields E; of I/ and all the primes p,; above p in EY, there exists at least one p; which does not split in E;.”

This condition thus says that for some computable collection of primes which divide the discriminant of the
quaternion algebra, none are totally split between £ and E. We point out that there is no condition on the behaviour
of these primes between k and E?. We also point out that primes which divide the discriminant of £ to odd degree
ramify for at least one place, and so automatically satisfy this condition.

Lemma 3.5.8. Let (E,0) be an étale algebra with involution. Then every reflex algebra of (E, o) contains an element
y such that y* = 0B /k-

Proof. Suppose E = E?(y/x) with x chosen so that 0g,g- = x. Then we have dg/, = (—1)"N(x). Let ¢ be a o-type

of E. Then let:
y=[]r(vz) € E?,
pEP

and moreover, we see that o(y) = (=1)"y and yo(y) = N(z) = (=1)"g/. The result follows. O

Lemma 3.5.9. Let (E,0) be an étale algebra over k with involution, and let A be a quaternion algebra over k. Then
E? splits A for all o-types ¢ of E if and only if we have [Ay] =1 for every place p where E,, contains no factors which
are quadratic extensions of factors of EY.

Proof. We first state some facts concerning the splitting of quaternion algebras. A quaternion algebra is split by an
étale algebra FE if it is split by each factor. A quaternion algebra is split by a field L if it is split locally everywhere,
that is, for each prime py, in L. A local field L splits a nonsplit quaternion algebra if and only if L contains a quadratic
subextension.

Thus, every reflex algebra E? splits a quaternion algebra A if and only if E® does. This happens if and only if
E;I’ splits A for every prime p of k. Consequently E® splits a quaternion algebra A if and only if for each p we have
that A, nonsplit implies (E,)? has even degree for all ¢.

It follows from Corollary 3.2.6 that (E,)? has even degree for all ¢ if and only if at least one factor of E,/E] is a
field extension. Thus, the only condition for E® to split A is that if A, is not already split, then E,/ EY must contain
a field extension. O

Proof of Theorem 3.5.1. What remains to show is that the conditions of Corollaries 3.5.6 and 3.5.7 in the even and odd
cases, respectively, are equivalent to those of Theorem 3.5.1. We see immediately that the conditions on signatures and
discriminants are the same and that the additional data about discriminants in the even case is provided by Lemma
3.5.8. What remains to show is that the Witt invariant conditions agree.

Lemma 3.5.9 tells us precisely that the condition of the corollaries (for all primes p of k where none of the factors
of E, are proper field extensions of factors of EJ, we have W(q), = 1) is equivalent to the statement that all the
o-reflex fields of E split W (q). Thus we want to show that we can replace W (q) by W°'*h(q) in the condition of the
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previous sentence. In the odd dimensional case there is nothing to show as these are equal. For the even case, since
Werth(q) = W(q) @& Z(Cy) and Z(C)) C E? it follows that:

Worth(q) @y, B? = W (q) @k Z(C)) @x B¢ = (W (q) @1, E®) @ (W(q) @k E?).

It follows that E? splits W (q) if and only if it splits W°'*®(g). This gives us the equivalence of the final condition of
the theorem with those of the corollaries and thus completes the proof. O

3.6 Applications
One of the primary motivations for this work is to understand the possible special fields associated to the special

points on Shimura varieties of orthogonal type (see [Del71]). We now give some applications in this direction.
Corollary 3.6.1. Suppose in Theorem 3.5.1 that k = Q, the signature of q is (2,£) and (E,0) is a CM-field with
complex conjugation o. Then Oy contains a torus of type (E,0) if and only if:

1. For each prime p of Q with local Witt invariant W(q), = —1 there exists a prime p|p of E7 that does not split

n E.
2. If ¢ is even, then D(q) = (—1)(2”)/26]3/@. (No further conditions if £ is odd.)

Proof. We have put ourselves in a situation in which the signature condition is automatic. We thus must check only
the remaining conditions. The discriminant condition remains the same, and the Witt invariant condition is precisely
that of Corollary 3.5.6. O

Corollary 3.6.2. Suppose that k = Q and the signature of q is (2,¢). Let F be a totally real field. Then there exists
a CM-field E with E° = F, and the orthogonal group O, containing a torus of type (E,o) if and only if:
1. No condition if £ odd.
2. If £ is even, then (up to squares) D(q) = Npyi(6) for an element § € F which satisfies the condition that for all
primes p of k with W(q), = —1 there is at least one prime p|p of F' such that 6 is not a square in F},.

Proof. In this case we are now looking for any CM-field extension.

The norm condition in the even dimension is precisely the condition required so that we have a quadratic extension
of the desired discriminant and the desired primes are not totally split. To eliminate entirely the Witt invariant
conditions in the odd case we note that we can simply force these to be ramified in the quadratic extension. O

Remark. In order to satisfy the condition that the primes where W(q), = —1 will not split in the quadratic extension
for § one is looking to modify § by an element of square norm which is not a square modulo some prime p over p.
Elements of square norm tend to be contained in quadratic subextensions. Let L C F be a degree 2 subextension. We
claim that L contains an element which is not a square in Opy,. Indeed, if p is ramified or inert over L one may take
any representative of a nonsquare in Or/(p N Or). If p is split take any representative of a uniformizer of O yno,)-
Corollary 3.6.3. Let d € Q be a squarefree positive integer. Consider the quadratic form:

2_ .2, 3 2
ga = 7 — x5 + x5 — dxy.

This implies Spin,, (R) ~ SLa(R)? is associated to the Hilbert modular space for Q(Vd). Let (E,o) be a field of
dimension 4 with involution o. Then O4 has a torus of type (E, o) if and only if the o-reflex fields of E all contain
Q(Vd).

Proof. Firstly, a computation using Proposition 3.2.17 together with the fact that H(gq) = (=1, —d) shows W(qq) = 1.
Thus all the o-reflex fields E® automatically split the even Clifford algebra. Since Theorem 3.5.1 already states that if
Oy has a torus of type (E, o) then Vd € E? for all ¢. It thus remains only to show, that under the present conditions,
Vd € E? for all ¢ implies both the discriminant and signature conditions of Theorem 3.5.1 hold. To this end, we
introduce some further notation.

Let m € Q be such that E7 = Q(y/m), let 7 be the non-trivial automorphism of E? and let 6 = a+by/m € E? be
such that E = E?(\/3). Let N be the normal closure of E over @, then one checks that N = Q(y/m, 1/67(8), /) has
degree 4 or 8 over Q. Set M = Q(1/97(5), V6 +1/7(5)) € N. Notice that o extends to N and that on its restriction
to M we have M7 = Q(/07(9)).

We now must divide the argument into two cases depending on Gal(N/Q). In the first case suppose Gal(N/Q) =
(Z/27)). Then we may assume 6 € Q and so the two o-reflex fields of E are M = Q(v/9) and Q(v/md) with their
intersection being Q. It follows that v/d € E? for all ¢ implies d is a square. Moreover, as E is biquadratic, 6z /Q is
a square and F is either CM or totally real. Thus v/d € E? for all ¢ is equivalent to d = dg o mod squares. (Notice
that the case of d a square is technically excluded from the statement of the corollary.)
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Now in the second case suppose Gal(N/Q) # (Z/2Z)?. Then Gal(N/Q) is either Z/4Z or Dg. In either case a
check shows that M is (up to isomorphism) the unique o-reflex field for E and M? is the only quadratic subextension
of M. Moreover, the discriminant of E is 05/ = 07(6) and M° = Q(+/67(5)) hence Vd € E? for all ¢ is equivalent
to d = 67(0) = dp/g mod squares. Finally, since b>m = (a* — 7(8)) it follows that § = a + \/a? — 67(d). Thus using
that 67(8) = r2d > 0 we find that E is either totally complex or totally real.

We have thus shown that in all cases, vd € E? for all ¢ implies that d = so and that F is either totally
complex or totally real. One now observes that E being totally complex or totally real implies the signature condition
and this concludes the proof. O

Remark. It follows that the tori in Spin, are all associated to algebras which are two dimensional over Q(+/d). This is
well known for the tori associated to CM-points, but we have shown the analogous fact also holds for those associated
to so-called almost totally real cycles (for the definition see the discussion following [DL03, Prop. 2.4]). It is worth
noting that these F can never be ATR extensions, that is extensions with only one complex place. It is the reflex
fields of these E which may be ATR extensions.
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CHAPTER 4
Representation Densities for Hermitian Lattices
4.1 Introduction

The issue of computing local densities goes back decades to when they were first introduced by Siegel [Sie35].
These types of computations have many applications beyond those originally envisioned (see for example [GK93,
Kud97b, SP04, GHS08, GV12] among others) and formulas for them have been worked out to cover many cases (see
for example [Pal65, Wat76, Kit93, CS88, Shi99, Kat99, SHO0, GY00, Yan04, Chol2]).

The primary application we have in mind in the present work is for computing the arithmetic volumes of the
orthogonal groups that arise from Hermitian lattices. These lattices arise in the study of special points on orthogonal
Shimura varieties and these arithmetic volumes relate, by way of the Hirzebruch-proportionality principle and the
Riemann-Roch theorem (see [Mum77, GHSO08]), to the dimensions of spaces of modular forms on the associated
Shimura varieties.

Another important application is their use, by way of the Siegel mass formula, as part of a stopping condition
when enumerating the genus of a lattice. This has important applications in the theory of algebraic automorphic
forms on orthogonal groups (see [Gro99] and [GV12]). The sections of this paper are organized as follows:

2) We introduce the general theory of lattices so far as it is needed in the sequel.
3) We discuss specifically lattices over p-adic rings.
4.4) We introduce representation densities and develop formulas for computing them.
4.5) We obtain results about the structure of lattices under transfer.
4.6) We develop formulas for the representation densities of Hermitian lattices in terms of the invariants of the fields
involved.
(4.7) We discuss the concrete example of Q(u,).

Almost none of the introductory content (Sections 2 and 3) is new, however, we present it in the format we intend
to use in the sequel. Many results on representation densities are known:

e The work of Pall, Watson and the book of Kitaoka [Pal65, Wat76, Kit93] give formulas for 8,(L, L) over Z, for

arbitrary L and p.

e The work of Conway and Sloane [CS88] corrected minor errors in the above work verifying their formulas by
checking many cases.
Katsurada [Kat99] computes §,(L, M) over Zs.
Shimura [Shi99] computes formulas for 5, (L, L) when L is maximal, over O, any finite extension of Z,.
Hironaka and Sato [SHO0] computes 3, (L, M) over Z, when p # 2.
The work of Gan and Yu [GYO00] gives a high level machinery for computing £, (L, L) when p # 2 the recent
work of Cho [Chol2] extends this to work to cover unramified extensions of Zs.
However, formulas for all cases do not yet exist. Our results (Section 4) cover the case of computing 3,(L, L) where
L is unimodular over any finite extension of Z,, (including especially p = 2). This is the content of Theorems 4.4.11
and 4.4.18. We also give clean reduction formulas to compute 5, (L, L) for arbitrary L in terms of the collection of all
of its Jordan decompositions. This is the content of Theorem 4.4.28.

By a Hermitian form we mean a quadratic form of the shape:

(4.
(4.
(
(
(

qea(z) = Trg/(Azo(x)),

where F is an étale k-algebra with involution o and A is a unit of E?, the subalgebra of elements fixed by . By a
Hermitian lattice we mean a fractional ideal A of Og in E. In order to study the representation density problem
specifically for Hermitian lattices we must first obtain structure theorems for lattices that arise from transfer. That
is, we compute properties of the Jordan decomposition for lattices whose quadratic forms arise as Trg, /g, (¢r,). This
is the content of Section 5. Having done this, we can convert the usual formulas for representation densities, which
are expressed in terms of combinatorial data about Jordan decompositions, to formulas that express the density in
terms of properties of the fields involved. This is done in Section 6.
4.2 General Notions of Lattices

In this section we introduce the general theory of lattices. Many good references exist which treat this topic in
a varying degree of generality. See for example [Kit93] and [O’MO00]. We shall initially work quite generally, adding
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more structure as it is required. We shall eventually be most interested in the theory of lattices over Oy, the maximal
order in a number field k. Note that these are not always PIDs, however, their localizations always are.

Definition 4.2.1. Let R be an integral domain and K be its field of fractions. By a lattice A over R we mean a
projective R-module of finite rank, together with a symmetric R-bilinear pairing;:

bAZ./\XA—},K7

which induces a duality Homp (A, K) = A @ K. We shall sometimes denote bp(x,y) = (z,y) when the pairing ba
is understood. A lattice is said to be integral if (z,y) € R, even if (z,z) € 2R and unimodular if the pairing
induces an isomorphism Hompg(A, R) = A, or more generally a-modular if the pairing induces an isomorphism
Hompg(A, R) 2 a=!A (for a a projective R-module of rank 1, that is, an invertible fractional ideal of R). Notice that
a-modular is equivalent to having Hompg (A, a) = A by noting that:

Homp(A,a) =2 a®r Homg(A,R) Za®a 'A XA,

We will refer to a lattice as modular if there exists some a for which it is a-modular. Note that not all lattices are
modular.

We shall sometimes denote the bilinear form as b (-, ) when we need to specify the underlying lattice.
Remark. By requiring Homg(A, K) =2 A ® g K we are explicitly requiring that all lattices be non-degenerate with
respect to the bilinear form by. If the pairing on the ‘lattice’ might not induce an isomorphism the ‘lattice’ shall be
referred to as a module or submodule.

We will at times consider symmetric bilinear forms on an R-module M valued in another R-module M’, that is,

()t M x M — M.

We may even consider such pairings when R is not an integral domain. These do not fit into our definition of lattices
though many notions remain valid. The most common examples of this would be either taking M’ = R/I, for any
ideal I of R, or reducing all of R, M, M’ by I.

We will also need the following notion in order to deal with certain complexities in characteristic 2.
Definition 4.2.2. Let R be a ring and let M’ be an R-module. We define a quadratic module M over R (or
more precisely an M’-valued quadratic module) to be a module M over R together with a function ¢ : M — M’
satisfying q(Az) = A\2q(x) for all x € M and X\ € R and such that

Bu(z,y) = q(z +y) — q(x) — q(y)
is a bilinear pairing. For a quadratic module M we define:
M* :={x € M| By(z,y) =0 for all y € M} and
Rad(M) := {z € M+ | g(x) = 0}.
A quadratic module is said to be regular or non-degenerate if Bj; induces a duality with the dual module.
Remark. In the above, one typically takes M’ = R or M’ = K, the total ring of fractions or M’ = R/I.
Notation 4.2.3. Given a lattice A, by ga or simply ¢ we shall always mean:
ga(z) = by (z, ).

To a lattice we may also associate another bilinear pairing;:

Ba(z,y) = qa(z +y) — qa(x) — qa(y).

Note well that Ba(z,y) = 2ba(x,y) and that ga(z) = ba(x,x) as these conventions vary by author. Notice also
that in characteristic 2 one may not recover by from ¢, as this would involve dividing by 2 whereas if 2 € K* then
non-degenerate quadratic modules and lattices are equivalent.
Remark. For both lattices and quadratic modules L & M shall always mean an orthogonal direct sum.
This level of generality is too much for many of our purposes. Having the following additional constraints gives
major simplifications to the theory:
1. If A is free we may express (-, -) by a matrix.
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3.
Note

. If R is a principal ideal domain, the theory of modules simplifies. In particular, every lattice is free. We may

often replace R by its (completed) localizations to attain this.
The theory is simpler if 2 is not a zero divisor in R.
that some of the results which follow are true without some (or all) of the above constraints, however, for

simplicity of presentation we may sometimes assume them. Note that these assumptions hold when we work over Z,

Q, Zy

for all p, IF, where p # 2, or the many finite ring extensions of these. These assumptions may fail for Dedekind

domains; however as our study of these is done almost entirely with their localizations this will not be an issue. We
will occasionally still need to work in characteristic 2 and it will be apparent when this is happening.
Definition 4.2.4. Assume that A is free and let X = {x1,...,2,} be a basis for A. We write:

A= Ax = ((z;,7;))

9

for the matrix corresponding to this lattice and choice of basis.
Definition 4.2.5. Given a lattice A we define the dual lattice to be:

A ={zc A K |(z,y) € R forallyc A}

together with the induced pairing.
Definition 4.2.6. A submodule L C A is said to be primitive if KLNA = L.
A collection of elements {x1,...,z,,} is said to be primitive in A if the collection can be extended to a basis for

A

Proposition 4.2.7. Suppose R is a PID, then a collection {x1,...,zm} is primitive if and only if (x1,...,2m)r C A
18 primitive.

Proof. The forward direction is clear. For the converse we set:

L: <$1,...7$m>R

and consider the exact sequence:

l-L—>A—-A/L—1.

Since L is primitive, A/L is torsion free, hence free. We may thus split the sequence and write:

A=La&(A/L).

A choice of basis for A/L gives us the desired extension of the basis for L. O

Definition 4.2.8. A submodule L C A is said to be isotropic if (-,-) | = 0. It is said to be anisotropic if it has no
isotropic submodules. A projective submodule is said to be pseudo-hyperbolic or if it has an isotropic submodule
of half its rank. A projective submodule is said to be hyperbolic if it is generated by two isotropic submodules.
Definition 4.2.9. Lattices A have the following invariants:

For A projective, the rank r, of A as an R module.

For A integral, the discriminant group Dy = A% /A together with the induced pairing mapping into K/R.
For A free, the discriminant §, = det(Ax) € K/(R*)? for a choice of basis X.

If A is not free we have at our disposal the discriminant D(q) of A ® K which is an element of K/(K*)?, and the
discriminant ideal which is the R ideal generated by det(Ax) running over all maximal linearly independent
subsets X of A. Alternatively, for a projective module over a Dedekind domain, one may take the discriminant
ideal to be the product of the local discriminant ideals.

For A integral, the level or stuffe of A is N, the annihilator ideal of Dy. More precisely:

Na={\€ R| Az €A for all z € A¥}.

Over a PID this is the ‘minimal’ N such that NA)_<1 is integral.
Supposing A ® K is isomorphic to the diagonal form (a;); and denoting the Hilbert symbol by (-, )k, the Hasse
invariant is

H(A) = H(q) = [[(ai,aj)xc € H*(K,{£1}).

1<j

(See [Ser73, Ch. III] and [Ser79, Ch. XIV].)
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e The Witt invariant, W(A) = W(q) is the class in H?(K,{£1}) of either the Clifford algebra or the even
Clifford algebra of A when the parity of r, is, respectively, even or odd.

e For each embedding R — R we have an associated signature (the dimension of any maximal isotropic R-
submodule of A ®g R).

e The norm ideal M, is the R-ideal generated by {(z,z) | z € A}.

e The scale ideal &, is the R-ideal generated by {(z,y) | =,y € A}.

Note that 9Ty C G5 and 26, C Ny,

e The norm group ny is the group: {(z,z) | © € A} + 26,, it is an additive subgroup of K.

e If R is Noetherian consider my C np the largest R-ideal contained in ny. Then for 7w an ideal of R, define the
m-weight ideal to be the ideal tvy » = mmp +26,. When we are working over a local ring we shall denote this
by top as 7 is understood to be the unique maximal ideal.

Remark. It is clear that the above are all invariants as they are defined naturally. The extent to which these determine
a lattice depends largely on the setting. They are typically insufficient to characterize a lattice in the context in which
we are working.
Proposition 4.2.10. If X = {x1,...,2,} is a basis for A then X# = AL X = {z¥ ... 2#} is a basis for A* with
bA(aci,ac;#) =0;; and Axs = A}l,

This is a straight forward check.
Proposition 4.2.11. If L C A is isotropic then L' = K - LN A is isotropic and primitive.

This is clear.
Proposition 4.2.12. Suppose R is a PID. If L C A is pseudo-hyperbolic, then (—1)"2"*(1)/25; is a square.

If L C A is isotropic, then there exists L C L' C A with L' pseudo-hyperbolic and primitive (L' need not be an
orthogonal direct factor of A). Moreover, 6r/|04.

Proof. Suppose L C A is isotropic and without loss of generality primitive. We wish to find a basis for A with respect
to which the matrix for the bilinear form is of the shape:

0 A0
(A‘ X Y) .
0Y'Z
To do this, first select an arbitrary basis {91,...,9¢} for L and an extension {g1,...,9¢, 21,...2m} to a basis for A.

Next, perform an invariant factor decomposition (see [Jac85, Thm. 3.8]) of the matrix:

(bA (y~“ ZNJ))” .

This corresponds to an elementary change of basis of both the span of {y1,...,9¢} and the span of {71,..., 25}
The new bases {y1,...,y¢} and {z1,..., z;,} combine to provide one in which the bilinear form has the desired shape.

We now take L' as the span of {y1,...,9¢,21,...,2¢}. The assertion about discriminants is now a consequence of
elementary fact that the determinant of the block matrix (Azf 5{ %) is (—1)"det(A)?det(Z), where Ais n by n. O
Remark. The above proof gives us slightly more information about what assumptions can be made about the shape
of the matrix for the bilinear form.

In some circumstances one may be able to obtain even more refined structure theorems. We have for example the
following claim:
Proposition 4.2.13. Quer Z there exist two isomorphism classes of integral pseudo-hyperbolic lattices of dimension
2n with square free discriminants. Letting H be the hyperbolic quadratic module whose matriz is given by (9§) and H'
be the pseudo-hyperbolic quadratic module whose matriz is given by (9 1), then the isomorphism classes are precisely
H" and H" '@ H'.

This is a straight forward check.
Proposition 4.2.14. Every unimodular sublattice L C A of an integral lattice is an orthogonal direct summand. More
generally, if Gx = a then every a-modular sublattice L C A is an orthogonal direct summand.

Proof. We first give a concrete proof assuming R is a PID. In this case the second statement reduces to the first by
rescaling the form. We remark that L is primitive.
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Let X = {z1,...,2;} be a basis of L, and Y = {z1,...,2;,y1,...,yx} be an extension of X to a basis for A.

. Ax 'V . C1iss o L . .
Write Ay = ( X ) Since A XlV is a matrix with entries in R we may use the change of basis matrix:

vt U
Id, —AY'V
0 Idy, '
This corresponds to a basis {z1,...,2,91,...,yx} and we find A =L L (y1,...,Uk)-
Working more generally, that is without assuming the lattice is free, given any z € A the assumption that Gy = a
implies bp(z,-) € Hompg(A,a). It then follows that b(z, )| € Hompg(L,a). Now, by the a-modularity of L we have

Hompg(L,a) ~ L and thus by (z,-)|, € Homg(L,a) ~ L. We may therefore conclude that there exists z € L with
ba(z — )| = 0. It follows that z — 2 € L+ and hence z = x + (2 — x) is a decomposition of A into L & L*. O

4.3 Lattices over p-adic Rings

Here we enter into the improved setting of having R a (complete) local ring whose maximal ideal is principal,
generated by w. More specifically we intend to work with a p-adic ring, by which we mean the maximal order of a
p-adic field (a finite extension of Q,). We shall denote by v = v, the m-adic valuation.

In this context we have the following important result to recall:
Theorem 4.3.1. A quadratic module over a p-adic field K is entirely determined by its rank, its discriminant and
its Hasse invariant.

See [O’M00, Thm 63:20].
Notation 4.3.2. For a,b € R, with ab # 1, we shall denote by L, ; the binary lattice whose bilinear form has matrix
(31).

For 0 # ¢ € R we shall denote by U, the unary lattice whose bilinear form has matrix (c¢).

For a lattice L and an element r € R we shall denote by rL the lattice whose underlying module is L but whose
bilinear form is r times that of L, that is, b,.;, = rb.

Lemma 4.3.3.
1. Loy =Uc @ U, if and only if one of a, b or 2 is in R*.
2. The discriminant of Lap is —(1 — ab).
3. The Hasse invariant of Lqp is (a,1 — ab), = (b,1 — ab),.
4. Let M be any integral lattice, suppose B = bys(x,x) for some x € M and uw € R*, if Loiy—1p, is unimodular
then:
uLa,b @ M = ULa+u—1B,b EB M/

for some lattice M'. In the case b =0 then uLqy,-15 is unimodular and moreover M’ ~ M.

Proof. For the first point, in the forward direction use the fact that every unimodular sublattice is a direct summand,
together with the determinant of the matrix. For the other direction, use the fact that if none of a,b or 2 is a unit,
then Ny, , # R and is unimodular whereas if U, © Uc, is unimodular then Ny, gv., = R.

The second point is a direct calculation. For the third, notice that over K we have the change of basis:

Lo D)6 )60 5)

Thus the Hasse invariant is (a,b —a™ '), = (a,1 — ab), (using that (a, —a), = 1).

The argument for the forth point is [O’M00, 93:12]. If z, y is the basis for uL,;, and z € M satisfies bas (2, z) = S,
then the lattice spanned by x + z, y is isomorphic to uL,1,-14, and as it is unimodular we have by Proposition 4.2.14
that it is a direct factor of uL,p @ M. For the special case of b = 0, consider ¢ : M — uL,,~15, & M’ given by
¢(u) = u — (u, 2)y. One checks easily that this is an isometry, and that the image of M is in M’. The existence of an
inverse map ¢'(u) = u + (u, z)y mapping M’ to M implies ¢ is an isometry between M and M’. O

Lemma 4.3.4. Every lattice A over a p-adic ring R can be expressed as:
A=LaAN,
where L has rank 1 or 2. Moreover, L can be taken to be a-modular for some a. Note that neither L nor A’ are unique.

Proof. Pick either x € A such that gp(z)R = G, or x,y in A such that (z,y) R = G5. This is possible since as we are
working over a discrete valuation ring, and &, has generators {ba(z;,y;)}, the principle of domination tells us that
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there exists a single pair (x;,y;) with ba(x;,y;) R = S,. If for such a pair g (z;)R = &, work only with z;, otherwise,
work with the pair (z;,y;).

In the first case, the lattice spanned by x is an & x-modular direct factor. In the second case, the lattice spanned
by x,y is an G-modular direct factor. Here we are using that in the respective cases the matrix is of the form:

a,n_r+1 s
@ e (T )
where Gy, = "R and a,b € R and that these matrices give 7"-modular lattices. The sublattice then splits as a direct
factor by Proposition 4.2.14. O

Theorem 4.3.5 (Existence of Jordan decompositions). Fvery lattice A over a p-adic ring R can be expressed as:
A~ @Ll,
3

where the L; are a;-modular, with the a; distinct. Such a decomposition is called a Jordan decomposition. Note
that such decompositions are not in general unique, but see Theorem 4.3.14.

Proof. This follows immediately by induction from the lemma above, and by grouping the factors which have the same
modularity. O

Example. As an example, the above results and some straight forward computations allow one to check that every
lattice over Zy is a direct sum of lattices of the form 28U, and 2*L,, for k € Z, ¢ € Z5 and a,b € {2,4,6,8}. See
Theorem 4.3.12 for a more thorough classification.

It should be remarked that in spite of the following “Witt type theorem,” a decomposition A = L1 &K = Lo B K,

with Ly ~ Lo does not imply K7 ~ K.
Theorem 4.3.6 (Kneser). Let R be a local ring with unique mazimal ideal p. Let L1, Lo C A be submodules of A and
F C A be a subset satisfying:

1. 1qa(F) and ba (F,A) are both subsets of R,

2. Hom(L1, R),Hom(Lg, R) C {ba(x,-) | x € F'}, where by (z,) is viewed as a map from A to R, and

3. 0 : L1 — Ly an isometry such that o(x) —x € F for all x € L.
Then o can be extended to an isometry of A which acts trivially on F+. Moreover, if F contains an element z such
that:

1. ga(z) € 2R* and,

2. if the residue field is Fo, then also (F,z) C p,
then o is induced by products of reflections in elements of F.

Proof. See [Kit93, Thm 1.2.2] or [Kne(02, Satz 4.3].

We may reduce to the case where we have the ‘moreover’ assumption as follows: adjoin a hyperplane H, spanned
by z,y, to A and R(x +y) C H to F, Rz to both L; and Ly and extend o by setting o(z) = z. As (z + y)* would
include x — y, the isometry which the theorem guarantees exists must be trivial on both x and z — y and hence y and
thus on H. Hence o has a restriction to the original A , though no longer coming from reflections in F.

Now we suppose we satisfy the ‘moreover’ assumptions. First we claim that for all ¢ € L; there exists f € F
such that 1q(f),(f,?),(f,0(¢)) € R*. Indeed, let z; be the element from the moreover statement, 2o be such that
(¢,22) € R* and z3 be such that (o(f), z3) € R*, and if |R/m| # 2 suppose a? # 1 (mod 7) then one of:

(0(l) =€), 21,22, 23,21 + 22,21 + 23,22 + 23, 21 + 22 + 23,021 + 22,021 + 23,021 + 22 + 23
satisfies the condition. One uses the fact that if a does not exist we have (x, F') C 7.
For an element y € A with £¢(y) € R* define the reflection in y as 7,(¢) = £ — 2(y, )q(y) ~'r.

We proceed by induction on the rank of L;. Suppose the rank of L, is 1 and that it is generated by ¢. There are
two cases. If we may take f = o(¢) — £ to be the element above, then we find:

Otherwise, let f be the element from above and set g = o(¢) — 7/(¢). One then computes that $¢(g) € R* and

7(75(0)) = o (0).
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This completes the rank 1 case.

Suppose L has rank r. Let ¢ € Ly be a primitive element, and suppose f is the element guaranteed to exist as
above. Set L) = {y € L1 | (y, f) = 0}. Since (f,¢) € R* then L] is primitive of rank » — 1. By induction there exists T
generated by reflections in F' such that 7[., = o|r,. Now, taking instead 7~ 'o for o, F'N L) for F and Ly = Rl, we
find that we again satisfy the conditions of the theorem. Hence there exists 7/ with 7/(¢) = 7='o(£). Since L' C F*
we have 7'|1, = Id. It follows that 7o 7’|, = 0. O

Corollary 4.3.7. Suppose R is a p-adic ring. Let My, My be integral R lattices and N1 = No unimodular lattices
with Ny, C (2). Then Ny @ My ~ Ny @ My implies that My ~ Ms.

Proof. Identify A := Ny & M, with No @ M, via any isomorphism. In the notation of the above theorem, take L1 = Ny,
Lo = Ny, and F = A. The map which identifies N7 and Ns thus extends to an isometry of A which necessarily maps
MlleLtONzl:MQ. O]

Lemma 4.3.8. For p # 2 every unimodular lattice A over a p-adic ring R with rank at least 3 has a hyperbolic
sublattice.

Proof. Using Hensel’s lemma and the existence of an isotropic vector mod m we conclude there exists an isotropic vector
in A. By Propositions 4.2.12 and 4.2.14 and the unimodularity of A we conclude that A has a pseudo-hyperbolic direct
factor. An easy calculation shows that since 2 is invertible all unimodular pseudo-hyperbolic lattices are hyperbolic. [

Corollary 4.3.9. For p # 2 and a p-adic ring R, the isomorphism classes of unimodular lattices A over R are
classified by their rank and discriminant.

Proof. See [O’M00, 92:1].
By induction, we may show A = H™ @ L, where L is unimodular and has rank 0,1 or 2. It then suffices to observe
that the discriminant classifies binary and unary unimodular forms when p # 2. O

Lemma 4.3.10. Suppose p = 2, then the isomorphism classes of unimodular lattices A over R are determined by
their rank, discriminant, Hasse invariant and norm groups.

Proof. See [O’M00, 93:16].

We assume that L and K have the same rank, discriminant, Hasse invariant and norm groups. By Corollary 4.3.7
we may replace L and K by L @ H and K ® H, respectively, so that we may also assume that ¢ (L) = gk (K) = np.
We will show that:

LoH™ ! =Lo-LOoL=Ko-LoL=KaoH*"

and hence hyperbolic cancellation (Corollary 4.3.7) on H™ L will allow us to conclude K = L. Indeed, both K & —L
(respectively, L & —L) is pseudo-hyperbolic. Now using that q(K @ —L) C g(L) (respectively, ¢(L & —L) C ¢(L) and
q(L®—L) C q(K)) we may change the bases for K ® —L & L, by Lemma 4.3.3 (4), so that K @ —L® L = H*kL g [
. In the respective cases the same argument shows L & —L @ L = H**L ¢ L and K & —L & L = H*"kL ¢ K. This
concludes the result. O

Lemma 4.3.11. For a lattice L over a 2-adic ring letting an® be an element of minimal valuation in ny, we find:
_ ot P2
ny =an'R*+toy.

Proof. See [O’M00, 93:3].
Certainly we have an®R? C ny,, and by definition w; C nz, hence:

a7TtR2 +twr Cng.
Conversely, any element z € ny, of valuation at least ¢ has an expression of the form:
z=ar'z? + ar'™y?  (mod 27t).

Since artz?, 27t € ny we have ar'tly? c ny.

We claim 7!t1y2z € ny, for all z € R. Indeed, write 7/T1y%2 = antu? + an'*1y?v? (mod 27!) with u,v € R. By

the subgroup structure of ny we find 7'*1y?z € ny.

We now claim ar'y?z € ny, for all z. By solving the equation:

t, 2

ar'y?z = ar'v?  (mod 7'T)
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we see that as am’v? € ny, by the subgroup structure of ny we find wly?z € ny. It follows that 7'y? C my . Therefore
mt*tly22 € roy. This concludes the result. O

Theorem 4.3.12. Let L be a unimodular lattice over a 2-adic ring R with uniformizer m. Fiz o € R* such that
0 = —(1 + an™) modulo (R*)?, such that furthermore either r is odd or r = v(4). Fiz also a € R* such that
art € qr,(L) is an element of minimal valuation represented by L. Then toy, = (%), where r —t > s >t and s +t is
odd or s = v(2). Let p € R/mR be such that 2% + x + p is irreducible mod .

Then L is isomorphic to precisely one of:

" w1 ar’ 1
1. H @(1 O>@( 1 _a—laﬂ.'r'—t):

n m° 1 (1 —
arn’ 1

P\ —atant) o7

6. ((1—ar")).

Proof. This is essentially the content of [0’M00, 93:18].

This is a consequence of Lemma 4.3.10. One only needs to observe that these examples cover all possible
combinations of ranks, discriminants, Hasse invariants and norm groups. Lemma 4.3.11 allows one to check we
have all of the possible norm groups. The observation that (1 + 4p, 7), = —1 allows one to check we have all possible
Hasse invariants. O

Corollary 4.3.13. FEvery unimodular lattice A over a 2-adic ring R with rank at least 5 has a hyperbolic sublattice.
See also [O’M00, 93:18v].
It should be emphasized before stating the following result that Jordan decompositions over 2-adic rings are not
typically unique.
Theorem 4.3.14 (Uniqueness of Jordan decompositions). Let A = %lLi = }%IKJ- be two Jordan decomposition of
= j=
a lattice over a p-adic ring with L; being a;-modular and K; being bj-modular, a;, |a;, for i1 < iz, and bj1|bj2 for
j1 < jo. Then:
1. rL ="To,
2. a;, = bi,
3. rank L; = rank K,
4. Np, = a; if and only if Nk, = a;, and
5. ifp#2 then L; ~ K.

Proof. See [O’MO00, 91:9].
Let a € R. Consider A = {z € A | (x,A) C (a)} = aA# N A. Observe that forming (*) commutes with
orthogonal direct sums, and that for a modular lattice L(*) = L if and only if L is a-modular. Otherwise L(®) C 7 L.
It follows that the sublattices L; and K; which are the (7")-modular in the Jordan decomposition are characterized
modulo 77! by the reduction modulo 7 of %(L(”TV)). In particular, the rank, discriminant, and whether or not the
diagonal contains a unit modulo 7 are determined. This completes the proof. O

4.4 Local Densities

We now move from general theory to a more particular problem, that is, we now focus our attention on what are
called interchangeably representation densities, local densities or arithmetic volumes. Throughout this section we shall
continue to assume that R is a p-adic ring, with maximal ideal p. We shall denote by 7 a uniformizer and ¢ = |R/pR)|
the size of the residue field, which is finite by assumption. We shall fix an additive Haar measure on R, normalized so
that the volume of R is 1. In this context we continue to have that all lattices are free.
4.4.1 Notion of Local Densities

Fundamentally the notion of representation density has to do with assigning a volume to sets of the form:

ISOHI(Al,AQ) = {¢ € HomR(A17A2> | ba, ((b(ﬂ?), (b(y)) = by, (Qi,y)}7

the isometric embeddings from A; to As. Such sets are typically infinite, so simply counting elements is insufficient.
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This problem can be approached both locally and globally and there are a number of different ways to formulate
the notion. The various definitions are typically, up to constants, equivalent. We take the following definition of local
density; for some the « definition is more natural.

Definition 4.4.1. Let L and M be lattices over a p-adic ring R, with bilinear forms by,by;. Consider the map
Fy, : Homp(M, L) — Sym?(M") which takes the maps from M to L to the space of symmetric bilinear forms on M
given by (Fp, (¢))(z,y) = br(p(x), ¢(y)). Some references define the local density at R to be:

. Fow) dX
an(bar,be) = an(M, L) = 5 lim —4——
U

Here dX = Hij dz;; and dT' = Hz‘g j dt;; are the standard measures when viewing the spaces as matrix spaces with

respect to some chosen basis. The limit is being taken over the directed family of open subset U of Symz(M V)
containing bys. By [Han05, Lemma 2.2] this does not depend on the choice of integral basis.
We define the local density to be:

ﬁR(Ma L) _ (q* 1rank(M)v,,(2))C¥R(‘]\4—7 L)

When R = O, one often denotes the local densities by 3, rather than Sg.

The above definition may seem quite unwieldy and difficult to compute. The following proposition gives a more
concrete interpretation of these values.
Proposition 4.4.2. Let R be a p-adic ring with residue field F, and uniformizer w. Let M and N be two quadratic
modules over R of ranks m and n, respectively. Fiz h € 7 sufficiently large so that 7" lqy (M%) € (2) and
7 lqn(N) € (2), and let r,r" € 7 be such that r,r’' —v(2) > h. Denote &, = (¢")™m+TD/2=mn then define Br(M, N, r)
to be:

& - |{¢ € Homp(M,N/m"N) | bn(¢(x), d(x)) = bps(z,2) (mod 27")}|

and define Agr(M, N,r") to be:

& - |{0 € Homp(M, N/7" N) | b (¢(x), $(y)) = bar(z,y)  (mod 7")}.
These values are independent respectively of r and r'. Moreover,
Br(M,N) = Br(M,N,r) and ar(M,N) = Ar(M,N,r").

Proof. These results are reasonably well known, and can be deduced from [Han05, Lemma 3.2] and [Kit93, Lemmas
5.6.1 and 5.6.5] or from [Kne02, 15.3-5 and 33.5] or alternatively from the proof of [Kit88, Prop 1].

We first claim that our choice h is such that the isomorphism class of M is determined by the reduction modulo
r’ of the bilinear form. To this end, it suffices to show that this holds for any expression of M = &L;, where the
L; are binary and unary modular lattices. Notice that if there exists a unary factor (ant) (with v(a) = 0) then by
definition " > 2v(2) + t + 1. Hence, for unary lattices we can determine a modulo 47, and hence we can determine
the isomorphism class. Next, notice that if there exists a binary factor ' (27", 1.) (with v(a),v(b) =0, and s,u > 1)
then now by definition 7 > 21/(2) —min(s, u) +t+1 and hence we can determine the discriminant of (7", 1. ) modulo
47, the Hasse invariant and the norm group, and hence the isomorphism class.

We now show that Ar(M, N,r’) is independent of 7. Let bys; be a set of bilinear forms on M whose reductions
modulo 7" ! forms a complete set of representatives of bilinear forms modulo a1l (up to equality) whose reduction
modulo 7" equals by;. There are precisely g™ (mtD/2 gych barri. Let M; denote the lattice M with quadratic form
bar,i-

We claim Ag(M;, N, 4 1) is independent of 4. It suffices to show that GL(M/x"™ T M) acts transitively on the
bar,s, or equivalently that M; and M are isomorphic as lattices. This follows since the isomorphism class of M is
determined by its reduction modulo 7"". The value Ag(M;, N,7’ + 1) is therefore independent of i. It follows from
the fact that the map:

Ui{o € HOmR(Mi,N/ﬂ-T’+1N) | by (0(2), d(y)) = bar, (z,y) (mod 7T7~’+1)}
!
{¢ S HOIIlR(M, N/ﬂ-?”/N) | bN(¢($), ¢(y)) = bM<x7y) (mOd ﬂ.r’)}

69



is ¢"™" to 1 we may now conclude that Ag(M, N,r') = Agr(M, N,r’ + 1) and is thus independent of r'.

A similar argument covers the case of Br(M, N,r).

Next, we cover the claim that ar(M, N) = Ar(M, N,r’). For the integral definition one may take for U those
sets of the form by; + 7" Sym?(MV) as these form a fundamental neighbourhood system. For such U the collection
.Fly_Ll(U) becomes precisely the maps which reduce modulo 7" to those contributing in the definition of Ar(M,N,r").
The volume of U is then ¢" ™" r'm(m+1)/2 - From this we
conclude the result.

The difference between the definition of Ag(M, N,r’) and Br(M, N,r’) is entirely captured in a slight change in
flexibility on the diagonal. This leads to a difference of a factor of ¢= *k(M)v=(2) hetween the two terms. This allows
us to conclude that Sr(M,N) = Br(M, N,r). Notice in particular that an element of the set defining Br(M, N,r)

determines an element of the set defining Ag(M, N,r — v(2)) and that this mapping is ¢*2**(*)v=(2) to 1. O

whereas the volume of .Fb_;(U) is precisely Ar(M, N,r")q

Remark. It can be useful to think of the local density as counting the number of elements of Isom(M, N), or of it as
being the probability that a linear map is in Isom(M, N) (even though it is not literally either of those things, it is a
rescaling of these numbers when one thinks of L/zx" for large 7).

Proposition 4.4.3. Suppose that L = L1 & Lo and the following hypothesis is satisfied:

L1 ® Lo >~ My & My and Ly ~ My implies Ly ~ M.
Then for any lattice Ls we have the following formula:
Br(L1 ® L3, L) = Br(L1, L)Br(L3, L2).

Proof. This follows immediately from the description in terms of counting isometries and book-keeping the rescaling
constants. |

Remark. This type of ‘cancellation law’ does not hold in general, nonetheless, one can use cases where it does hold
(see for example Corollary 4.3.7) as a way to inductively prove formulas for representation densities.
4.4.2 Computing Local Densities
Computing local densities is in general considered to be highly technical. The resulting formulas become quite
complicated in the general case. In spite of this, in this section we will compute the local densities 8,(L, L) for an
arbitrary lattice over an arbitrary p-adic ring. The combinatorics behind actually carrying out the computation in any
given case will require detailed understanding of the isomorphism class of the given lattice. In particular one needs to
be able to compute the set of all possible Jordan decompositions. We will thus not present complete formulas for this
in the most general cases. Instead, we give a reduction formula in terms of these combinatorics and formulas for all
the terms that can appear.
The general structure of this section is as follows:
1. Reduce the problem for (7)-modular lattices to unimodular lattices. See in particular Proposition 4.4.4.
2. Reduce the problem for unimodular lattices to the special case of certain lattices of rank at most 4, see Theorem
4.4.11.
3. Compute the representation density for these special cases. This is done in a series of lemmas culminating in
Theorem 4.4.18.
4. Reduce the general problem for an arbitrary lattice to the combinatorial problem of understanding all the Jordan
decompositions together with the problem for modular lattices. See Theorem 4.4.28.

4 Rescaling
Our first step is an elementary lemma which allows us to compute the local density of rescaled lattices.
Proposition 4.4.4. Let R be a p-adic ring with field of fractions K. Let M and L be lattices over R and ¢ € K*.
The following formula holds:
Br(M, L) = || /2 gp(eM, L),

where m = rank(M).
Proof. This is an elementary computation, see [Han05, Lemma 3.1]. O

As a consequence of the above proposition, it is possible to compute Sr(L, L) in the case of a-modular lattices
simply by treating the case of unimodular lattices.
Remark. There is no reasonable formula for Sr(cM, L) or Sr(M,cL) in terms of Sgr(M, L) unless we make further
assumptions. In particular some of these could be 0 while the others are not.
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4 Unimodular Lattices
We now discuss the problem of computing the local density Sr(L, L) for a unimodular lattice.
Lemma 4.4.5. Suppose L is any unimodular lattice and L(e) is any even unimodular lattice. The following formula
holds:
Br(L(e) ® L, L(e) ® L) = Br(L(e), L(e) & L) - Br(L, L).

Proof. This follows immediately from Corollary 4.3.7 and Proposition 4.4.3. O

Lemma 4.4.6. Suppose L is a unimodular lattice and L(e) is any even unimodular lattice of rank 2n. Set A = L® L(e)
then define:
L® :={zeL|(z,z) € 2R} and A® := {z € A| (x,2) € 2R}.

Then L®) and A® are lattices, A?) = L(e) ® L®), and:
Br(L(e),A) = [L : L@ 72" Br(L(e), A®).

Proof. Denote by &, = (q’")"’2”2*2”5. Now pick 7 sufficiently large so that 7" L C L), Tt follows that Sr(L(e),A) is
given by:
& - [{¢ € Hompg(L(e), A/n"A) [ q(z) = q(¢(z)) (mod 27")}],

and Br(L(e), A®) is given by:
6+ [16 € Homp(L(), A® /2 (A®)) | 4(x) = a(9(a)) (mod 277)}].

Then because L(e) is even, it is clear that Sr(L(e), A) can be computed as:
& - |{6 € Homa(L(e). A® /27A) | a(x) = 4(é(2) (mod 227}

For each element ¢ € Hompg(L(e), A®® /7" A), there are precisely [L : L(®]?*" many extensions of ¢ to a map in
Homp(L(e), A® /a"A?)), all of which automatically satisfy ¢(z) = ¢(¢(z)) (mod 27") as that condition was already
well-defined. Comparing formulas completes the proof. O

Lemma 4.4.7. Suppose L is a unimodular lattice of rank ¢ and L(e) is any even unimodular lattice of rank 2n.
Define A, L? and A® as above. Consider the vector spaces Vi = L(e)/nL(e) and Vo = A®) /rA?) together with
the quadratic form Q;(z) = 1(z,2) (mod ) for their respective pairings valued in R/mR. Then the local density
Br(L(e),AP) is:

n—2n2—2n¢

{o:Vi = Vo | Qi(z) = Qa(o(x)) for all x}’ )
Proof. Firstly we observe by Proposition 4.4.2 that Bg(L(e), A?)) is:

n—2n%—2n¢

q

{o:L(e) = A®/7A® | ¢(z) = q(o(z)) (mod 271')}‘ .
Secondly, we observe that:

{05 L(e) » A®/mA® | g(2) = q(o(2)  (mod 2m)}| =
{o: Vi > V2 | Qi) = Qa(o(@))}].

The result then follows immediately. O

Remark. The space V5 may not be a regular quadratic module.
Definition 4.4.8. For a regular quadratic module V of dimension 2n we define:

1 V~H"andn>0
x(V) = .
—1 otherwise.

Lemma 4.4.9. Every quadratic module W over a field of characteristic 2 decomposes as:

Wo & W' @ Rad(W)
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with Wy a mazimal regular sublattice and W+ = W' @ Rad(W). Note that the isomorphism class of Wy is unique if
and only if W+ = Rad(W).

See [Kit93, Thm 1.2.1 and Ex. 1.2.2].
Lemma 4.4.10. Suppose V is a (non-trivial) regular quadratic module represented by W, that is, for which there
exists at least one isometry from V into W. Write W = Wy @ W+ as in Lemma 4.4.9 and set v = dim(V) and
w = dim(Wy). The number of isometries from V into W is:

w/2—1

quim(W)fv(v+1)/2 H (1 _ q72e) (1 _ X(Wo)qfw/2)£’
e=(w—wv)/2+1

where £ is given by:
¢ = 1+ x (V& —Wo)g@=)/2 W+ =Rad(W)
L+ x(Wo)g Wt # Rad(W).

See [Kit93, Prop 1.3.3].
Remark. Notice that the above formula, which appears to depend on a choice of Wy in W, does so only when

W+ = Rad(W).
Theorem 4.4.11. Consider a unimodular lattice A. Then A has a decomposition A = L(e) ® L, where L(e) is
a mazimal even dimensional even unimodular sublattice of A and L has rank at most 4. Let { = rank(L) and

2n = rank(L(e)). Then:
Br(AA) = [L: L) 7"¢Br(L, L) [[(1 - ¢7%),

where:

¢ = 2(1+ x(L(e))g™)~t L(e) non-trivial and independent of choices
1 otherwise.

Proof. Such a decomposition exists by Theorem 4.3.12. Lemma 4.4.5 gives us the formula:
Br(L(e) ® L, L(e) ® L) = Br(L(e), L(e) ® L) - Br(L, L).
Lemma 4.4.6 allows us to evaluate:
Br(L(e), L(e) & L) = [L : LA]72Br(L(e), L(e) & LD).

Lemma 4.4.7 then reduces the computation of Br(L(e), L(e) @ L?)) to a computation over the residue field. Finally,
Lemma 4.4.10 gives the precise formula for this computation. Combining the results allows us to conclude the
theorem. O

Remark. If L(e) is as above, then one has x(L(e)) = (7, (—=1)"/2D(L(e))),.
Corollary 4.4.12. Suppose p # 2 and maintain the notation of Theorem 4.4.11, then:

6(A3A):2 (17(]
R 61;[1 (=1

—2ey J (1 X(L(e))g™™)~t =0
1

Proof. When p # 2 all lattices are even and hence we have that L is either 0 or 1-dimensional. The result now follows

immediately from the theorem and the observation that for a 1-dimensional lattice the representation density is 2. [

¢ Unimodular Lattices of Rank at Most 4

We are now left only to consider the case where the residue characteristic is 2. Theorem 4.4.11 reduces this case
to that of computing Sr(L, L) and of understanding L(?, in the case of I unimodular of rank at most 4 with no even
unimodular factors. Such low rank unimodular lattices with no even unimodular factors are precisely those appearing
as L in Theorem 4.4.11. We first discuss the problems of understanding L(?).
Proposition 4.4.13. Consider L a unimodular lattice of rank at most 4 over a 2-adic ring with no nontrivial even
unimodular factors. Denote by W = L®) /xL®) with the induced form Q(z) = 1(z,z) (mod 7). Then we have the
following cases:
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e Casen = 4. WriteL:(‘”t 14)@( Lt ) witht < s <r—t,t+s is odd, and either r odd or r = v(4).

T
1 en” 1 4bw—°

Then Rad(W) # W+. Moreover,

log,([L: L®)) = v(2) — (s +t— 1)/2.

o Casen=3. Write L = (’Tls b7r'”<14>*3) ® (d) with v(2) > s >0 and s odd. Then Rad(W) # W=. Moreover,

log,, ([L : L)) =v(2) — (s —1)/2.

o Case n =2, Write L with matriz (“’ft Cﬂl,t) with either r >t odd or r = v(4). Then Rad(W) = W= unless

r—t <w(2) orv(2) —t is even. Moreover,

2
v(2) — (r—1)/2 otherwise.

log, (L : L®)) = {Wﬂ r—t>u(2),

e Casen =1 Then Rad(W) = W+ unless v(2) is even. Moreover,

log, ([L : L?]) = [%] :

Proof. In each case we will denote the basis with respect to which the matrix is given by {Z1,...,Z,}.
The argument shall use the following observation. If z,y € L are such that v,(q(z)) is odd and v, (q(y)) is even,
then since:

q(nz + 0y) = n°q(z) + 6%q(y) (mod 2),

the only way to have v (q(nz +0y)) > v:(2) is to have both 2v,(n) + vz (q(x)) > v (2) and 2v,(0) + v (q(y)) > vr(2).
The observation allows us to easily compute bases for the following three cases. In the case of n = 1 it is clear
that a basis for L) is:
{xlv=/21 71,

In the case of n = 2 a basis for L is:

(Al r@=0/21 7 Zmax(O,[we()=(r=0)/2]) 7},

In the case of n = 3 a basis for L? is:

(el r @92z g v (@203,

For the case of n = 4, we can eliminate some of the conditions by using that ¢,s < r —¢t. We do this by fixing n
and 6 so that:
nran’ + 6%7° = cr™t (mod 2).

Now a basis for L(® is:
{Wf(vw@)—t)/?] Ty, N1 + To + 0F3, 7l V=) =8)/ 21 7y ).

It is now an easy calculation to determine [L : L(?)]. Moreover, it is apparent that W=+ = W and thus Rad(W) =
W if and only if @Q is trivial. This is easily checked on the bases we have given. O

We now discuss the problem of computing Sg(L, L) for unimodular lattices L of rank at most 4 with no even

unimodular factors. The general strategy is as follows:

1. Describe a constructive process for enumerating and counting all choices of basis that give a bilinear form that

‘looks like’ the original.

2. Show that the number of ways of obtaining each possible form that ‘looks like’ the original is the same.

3. Count the number of possible forms that ‘look like’ the original.

4. Obtain the result.
The above is made more precise in the following proofs.
Lemma 4.4.14. Suppose L is a unimodular lattice of rank 1. Then:

Br(L,L) =2.
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This case is a simple check.

Lemma 4.4.15. Suppose L is the unimodular lattice of rank 2 over a 2-adic ring represented by (a;r cw1t> with

a,c € R*, 2t <r and either r < v(4) odd or r =v(4). Then:

4q(r=D/2-v2) < (2
Br(L,L) = —[(v(2)-t)/2] ?
2(] I/(Z) <r-—t.

Proof. By Proposition 4.4.2 we need to count the elements in the set:
o={¢: L—L/m"@L | qr(p(x)) = qr(z) (mod 7D
Consider the following sets:
X ={Ze L/m"@ L | qp(&) = ar® (mod 7vW~t+1)},
Vy={geL/m"@ L (Z,7) =1 (mod 7*@~*) v(q(7)) =r —t}, and
Y ={qr(7) (mod x| ge vz 7e X}

We claim that |Yz| is independent of the choice of Z € X. Indeed, letting Zy and g be the original basis it is
clear that:
Ye = {(@ (@y) ") |y = (@x! 7202, + go)},

where 2 runs over elements of R/7(2)~t+1=[(r=20)/21 R "Tf follows that:

‘Y£| _ qu(2)+17[r/21 )

We next compute ‘)7‘ The values of g1, (%) that can appear are precisely those such that:

—

1—aq(f)7" =1 —acr” (mod (R*)?)
as these are the values that give isomorphic quadratic forms. This is precisely the same as the number of elements

modulo 7™+ that are squares, and congruent to 1 modulo 7”. We thus have:

=q

’37‘ 1 v@+1-rr/21
2

We now compute |X|. We are counting solutions for z,y (mod 7*(2)=t+1) of:
ar'z? + 2zxy + e 'y? = ar’  (mod 7TU(4)7t+1).
We make the substitution x = 1 4+ = and this becomes:

ar'z?® 4+ 2an's + 2y + 2zy + en” 'y =0 (mod 7r”(4)*t+1).

By inspecting the valuations of monomials that result from such a switch (of x = x + 1), in particular the parity of
their valuations, it is apparent that we have:

2=0 (mod g®(@)=(=1/2[((2)=0)/21)) 4nq
y=20 (mod 7rmax(u(z)ﬂ—r,y(2)+t))7

where the first terms are maximal if and only if v(2) > r — ¢. If we perform the substitutions:

T = 7_‘_max(u(Q)—(r—l)/Z|’(y(2)—t)/2"|)m/ and y = 7_l_max(u(2)—}-15—1“,0)y/

the equation becomes:

ar?@ o2 4 2y +2nP(z,y) =0 r—t>wv(2), or
2y + 2cy? + 21 P(x,y) =0 r—t<wv(2)
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for some polynomial P and 6 € {0,1}. (Notice the only way we could have had both an z? and 3? term was if
r —t =1t =v(2) but we have excluded that case from consideration.) We observe that by dividing by 2 we may solve
for y in terms of . As the equation is non-singular, we may use Hensel’s lemma to find solutions and the total number
of solutions is equal to the number of solutions modulo 7. There are precisely 2 solutions modulo 7 if v(2) > r — ¢
and 1 solution otherwise. We thus find:

Yl 2q(r7t7t71)/2+1 v(2) >r—t
X1 = qgl@=0/2]+1 otherwise.

The set ® corresponds precisely to the fibre of
{(Z.9) | Te X, je Yz}

over ¢n”~* € Y. The automorphism group of L/mv@) =1L acts simply transitively on this fibre. However, noting
that the original choice of ex”~! is arbitrary, the automorphism group acts simply transitively on each fibre of:

{(f’:lj) | 56X7276Yf}

over Y.
It thus follows that:
_ I X[YE|
] = ———
7
Thus we find:
4q(r—t—t—1)/2+1 r—t< l/(2)

|®| = 2l v@=0/21+1  (9) < — ¢,

Combining terms completes the result. O

Lemma 4.4.16. Suppose L = Lt prvn— © U_q is a unimodular lattice of rank 3 over a 2-adic ring with t < v(2)
odd and b,d € R*, then:
Br(L, L) = 4q"=9/2,

Proof. By Proposition 4.4.2 we need to count elements in the set:
d={¢:L— L/m"PDL|qr(6(z)) = qp(x) (mod 7HF1)},
As in the previous lemma consider the following sets:
X={Ze L/m"WHL|q(Z) =x" (mod 7*H+1)},
Ye={je L/m"PTL (&) =1 (modn") v(q (7)) =vA)},
Y ={qr(7) (mod x*W*Y) | je Vs Ze X},
Zzg={Z (&Pt /m"PT | qu(5) = —d (mod 7"WF1)}.

We claim that |Yz| is independent of & € X. Indeed, letting Zy, %, Zo be the original basis it is clear for parity

reasons that: L
Vi ={(& (&, 9)y) |y = ar"@ 7 5y + §o + 2n?@==D2 5}

where z € R/n'T R and z € R/n(*~Y/2*1R. We thus find:

|Y£‘ — qt+(t71)/2+2'

Next we compute |V | = %q. The argument is identical to the previous lemma, except we note that the discriminant

of this block is well-defined modulo squares because it controls the Hasse invariant of the form.

Now |Zz 3| = 2 independently of Z, ¢. This follows as the orthogonal complement is isomorphic to U_ 4 by necessity
(again because the Hasse invariant controls the discriminant).

We now compute | X|. We are counting solutions for z,y, z (mod 7*(*)+1) of:

mta? 4 20y + 742 £ 22 =7t (mod 7 DHY).
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It is clear that we may replace z by 7/*(2/21z and get:
2% 4 Dty prr @202 | v DFAVR/2 -2 g (od gt (DL,
We now replace x by 1+ 7l (2)=t)/21 3 and the expression modulo 7*® =+ becomes:

o[/ =0/21 4 22(((2)=8)/212 | fv(@)—ty |
ABE@=0/2 gy L prr=20,2 | 2200(2)/21-t 2 _

This reduces to:
2m0x + 10a? + y + 7O gy 4 b @7ty o er =022 =0 (mod 7T,

0 v(2) odd
1 otherwise.

where § =

As in the previous case, this equation is non-singular in y, hence, for all values of z,z we may find a unique solution

for y. It follows that:
|X| — qLu(Z)/2J+L(u(2)7t)/2J7t+2 — qu(2)7(t+1)/27t+2'

As in the previous lemma it follows that:
-1
] = 2D/ X v 235 [ V]

We may thus conclude that |®| = 4¢®*(2)=3t=(t=1)/24+3  Combining terms completes the result. O
Lemma 4.4.17. Suppose L = L prv@y-s © Logt cxr—t 08 a unimodular lattice of dimension 4 over a 2-adic ring with

t<s<wv(2),abceR*, s—todd, and r <v(4) odd or r =v(4). In this situation:

q(’r‘—t—t—l)/Q—‘rl r—t S V(Q)

_ —3v(2)+2t—2—(r—t—s)/2
Br(L, L) =4q {quu(zw)/zm V(@) <7 —t.

Proof. We make the following definitions:

@ ={g e GLL/m WD) | g'g = (7, b ) @ (o7 b )
X={ZeL/m"@~ L | qp(x) =7° (mod v(4) —t+1)},
Ye={geL/n"D7 L[ (#5) =1 (mod xP~ ), v(qr () = v(4) - s},
V= {a(y) € R/m" VTR g€ Y, # € XY,

Zzg = {(Z.@) € @ g /7O | (Z@) =1 (mod 7" 71),w(qr(2)) = t},

Zig = {(aL(2), a (@) € (R/n" W R)? | (2,0) € Zaz g},
Zz = {A alattice modulo 7**~**1 up to isomorphism | L. 5 ® A ~ L}.

In the above we are taking § € Y.

Our first claim is that |Yz| = ¢*(?)=3t+3+s+(s+1=1)/2 and that this is independent of # € X. Indeed, we can
compute its value as follows:

Ve = {(@y)7"y | v(ar(y) = v(4) - s}.

Thus its size is the number of solutions to:
72?4 2z + an'z2? 4 22w + en” "tw? =0 (mod 779,
where z, z, w are taken in R/7¥(2)~**1R. In the event that r — ¢t > v/(4) — s then for parity reasons we must have:

=0 (mod 7@ *)and z=0 (mod x*@~(s+1=1)/2)
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One finds then that there are no further conditions and thus counting solutions we find:
|Yf\ _ qu(2)73t+3+s+(s+t71)/2'
Otherwise we suppose r — t < v(4) — s. Next we may choose 7, € such that:
nc+ e2ar = 1.
For parity reasons we again find:
=0 (mod 7" *"*/2yand z =0 (mod x("FD/27),
We may thus substitute:
x=707t79/25" and w = 2’ + w' and z = 7Y/ 2" (e 4 7).
The whole expression modulo 7% ~* then becomes:
o (r=t=9)/2 4 qr—tH1 2 gty 2 | v@+r—t=8)/241 p(p 4 2) = 0
for some polynomial P. It is now apparent that:
z=0 (mod 7Tf(l/(2)—(5'57"—5%—3)/2—1)/21) and w=0 (mod 71-T(V(Q)—(3T—3t—8)/2)/21)

and that z is determined modulo 7¥(2)=s=(r=t=5)/2 Ly the other parameters. One finds then that there are no further

conditions and thus counting solutions we find:

|Yz| = g D3ttt (sti=1)/2,

Next we compute ’}7’ Indeed, so long as there exist values o,y € R* such that:
L~ Lﬂ-s,ﬁﬂ-u(ll)fs D Lort ypr—t
then 8 € Y. The two conditions:

ny = aR?+ 7%, and

H(L) = (0, 0)(x", 61) (7,1 — )

can be solved for all g if r —t < v(4) — s. If however, r —t > v(4) — s then, since (a, ) cannot depend on «, only
half of the potential values for § will work. The other condition:

6 = (1 —ayr")(1 — Br@)  (mod R?)
can always be solved by ~. It follows that:

‘}7‘ _ ot 3 r—t>v(d)—s
1 otherwise.

We now claim that ‘Z@g is independent of £ € X and § € Yz. Indeed there are three conditions for (o, y) € Zz 5.

The first condition is:
H(L) = (a,80)(x",60)(7* ", 1 = qr ()" ™).

This condition cannot be unsatisfiable. Hence, it is either imposing a condition (independently of %), or is not imposing

a condition (independently of ). The second condition is:

ng, = aR? 4+ 7°.
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This condition is independent of . The final condition is:
0 = (1—ayr")(1 — g (@) (mod R?).

For each « satisfying the first two conditions we are imposing a condition on the variable . The number of values for
v satisfying the condition is independent of .

Now, we claim that |Zzg| is independent of ¥ € X and i € Yz Indeed, the value of |Zz 5| is precisely
’Aut((f, ml/ﬂu(4)—t+1)| ’Zf’g‘ )
the value is:

Our computations in Lemma 4.4.15 show this depends only on ¢ and r. Explicitly,

4q(r—t—t—1)/2+l r—t< V(2)
= AL w(a)—t+1y| _ =
’Aut(@,@ /T )‘ = {Qq\_(V(Z)—t)/QH-l v(2) <71 —t.

Next, we claim that ‘Zg‘ is independent of § € Y. Equivalence classes of lattices A € Zg have representatives of

the form L, where (a,7) € Zj",g‘ for some ¥ € X, i € Yz. We may thus represent A by W. Now, as the Hasse
invariant and discriminant of A € Zg are determined by ¢ and L, the only freedom to modify A is picking its norm
generator. In terms of (a,7) this amount to fixing the square class of @ module 7" ~2!. The first constraint on the
square class of « is that it must give the norm generator of L module 7°. This determines the square class of @ modulo

m5~t. This leaves us with precisely:
q(rftfs)/2

many options for such square classes. The only other constraint on « is that it must give the correct Hasse invariant.
As above, the Hasse invariant depends on « through (o, dr). Thus, it follows that:

_ (rts)/2{§ r—t<v(4)—s

g .
otherwise.

We now compute |X|. We are solving for x,y, z,w € R/7*?)~**1R in the following equation modulo 7*(4)~*+1.

v(4)— 2 s

wix? 4+ 2xy + b Sy +ar'z? 4 2zw 4 en” " tw? = w®.

Pick 7, € such that 7> + mae> = ¢ (mod 7¥(?)). We may then make the following substitutions:
e=1+nrl 7921y 4 2 and 2 = ex! THD/21 =ty 4 2

The equation then becomes:
oz 4+ 2y 4+ an'2? + 22w + 7TV(2)+1P(33, y,z,w) =0

for some polynomial P. For parity reasons we now see that:
=0 (mod 7T((v(2)—s)/21) and z=0 (mod ,ﬂ_((u(2)—t)/2])'

This equation is now solvable in y, and determines y modulo 7¥()~*+1 Counting solutions, we find that there are:

|X‘ — qy(4)—3t+3+(s+t—1)/2.

‘We now observe that:

~1—1
@] = 1X| [Vl | Zegl [V| | Zes

To see this, consider the map:
{(#.9.2,0) | ¥ € X, €Yz, (2,0) € Zz gt — (R/m" I R)®

given by (%, 4, Z, W) — (q.(¥), q1(2), qr. (W)) and observe that |®| is precisely the size of each fibre. We thus must show
that the size of the image is:

The image of this map is precisely:




This set is naturally fibred over:

{(:l], (a,w)) | g€ ?7 (avly) € Z@}

Moreover, the size of the fibre over (g, («, 7)) is precisely Zf’y*

where ¥ € X and i € Yz are any vectors such that

(a,7) € Zz 5. From this the claim about |®| follows immediately.
We, therefore, have that:

(T—t—t—l)/2+1 —t< (2)
v(4)—t+1 4 3v(2)—dt+4—(r—t—s)/2 ) 4 r v
Aut(L/m L)| =4q {qL(D(Q)—t)/ZJ-&-l v(2) <r—t

Combining terms gives the desired result. O

The above lemmas cover the final few cases we needed to completely solve the problem of computing local densities
for unimodular lattices over 2-adic rings. By combining the results we get the following theorem:
Theorem 4.4.18. Consider a unimodular lattice L of rank at most 4 over a 2-adic ring R with no even unimodular
factors. Let w be a uniformizer of R and q¢ = |R/7R|. Recall that L\?) = {x € L | (z,z) € 2R}. Denote by W the
quadratic module L® /x L) with the induced form Q(z) = 3(z,z) (mod 7). Then:

e Casen=4. Write L = (’“ft mi,t) @ (”1 4b71’5) witht < s <r—t,t+ s is odd, and either r odd or r = v(4).

Then Rad(W) # W. Moreover, [L : L(?] = ¢#@)=6+T=1/2 gnd the local density is:

Br(L,L) =4 —3u(2)+2t—2—(r—t—s)/2 gt 2HL e < y(2)
R\L, q glv@-0/2]+1 v(2)<r—t

e Casen=3. Write L = (’TS 7 ) & (d) with v(2) > s> 0 and s odd.

1 bgv (s
Then Rad(W) # WL. Moreover, [L: L®®] = ¢*®)=6=1/2 gnd the local density is:

Br(L,L) = 4¢1=9/2,

o Casen =2. Write L with matriz (’“{t mi*t) with either v >t odd or r = v(4).

Then Rad(W) = W unless r —t < v(2) or v(2) —t is even.
v(2)—t
Moreover, [L: L®)] = q[ ? 1 r—=t2v(2) gnd the local density is:

¢’@==1/2 " otherwise

4q(r=D/2-v(2)  p < (2
Br(L,L) = —[((2)—t)/2] ?
2q I/(2) <r-—t.

e Casen =1. Then Rad(W) = W+ unless v(2) is even.
v(2)

Moreover, [L: L®)] = q[ 2 W and the local density is:

Br(L,L)=2.

¢ The Case of Z,

Of course things are much simpler over Z,, or any p-adic ring except for 2-adic rings which are ramified over Zs.
In such cases there are in fact only a small number of possibilities for unimodular lattices L with no even unimodular
factors. In this context one can recover the results in Kitaoka’s book which give formulas for the local densities of
unimodular lattices over Z,,.
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Theorem 4.4.19. Let L be a unimodular Zy-lattice. Let L(e) be any mazimal unimodular (even dimensional) even
sublattice of L. We then have a decomposition L = L(e) @ L(o). Let n = rank(L) and n(e) = rank(L(e)) and set:

b 0 L is even
Cn-2 L is odd,

s and
1 otherwise;

22

P= H (1—p~%).

5 {(1 + x(L(e)p~™/2)  x(L(e)) is independent of choice of L(e),

Note that for p = 2 the isomorphism class of lattice L(e), and hence x(L(e)), depends on a choice if and only if
rank(L(0)) = 2 and the discriminant satisfies 01,y = 1 (mod 4), whereas for p # 2 one has L(e) depends on a choice
if and only if the rank of L is odd.

Then the local density is:
Bp(L,L) =2p~'PE~'.

Proof. This is the effect of carrying out the computations of [Kit93, Thm 5.6.3] for a single unimodular Jordan block.
Notice that we have renormalized F and that this is accounted for by t.

We now compare to our results. For the case p # 2 we are comparing to Corollary 4.4.12 and it suffices to observe
the equivalence between the condition x(L(e)) is independent of choice of L(e) and the statement that the rank of
L is odd. Indeed, any quadratic form in 3 variables over Z, with p # 2 represents both a hyperplane, and a two
dimensional unimodular lattice which is not a hyperplane. Hence when the rank of L is odd, when picking L(e) we
may make either of these choices so that L(e) depends on choice. When the rank L is even L = L(e) and there is no
choice.

For the case p = 2 we must apply Theorem 4.4.11 and Theorem 4.4.18. Theorem 4.4.11 gives us the formula:

B(L, L) = [L+ LO) " Oehr(L(0), Lio) [T (1 — a7,
e=1

where:

- 2(1+ x(L(e))g~™)~! L(e) non-trivial and independent of choices
1 otherwise.

The first thing to observe is that over Zy the classification of unimodular lattices (Theorem 4.3.12) implies that L(o)
has rank 0, 1 or 2. In the case of rank 0 the result is immediate as L = L(?) and there are no choices. In the case of
rank 1 Theorem 4.4.18 gives us that [L : L] = 2, Br(L(0), L(0)) = 2 and x(L(e)) is always independent of choices.
The factors then combine to give the desired formula.

Finally , in the case of rank 2, we first observe that in Theorem 4.4.18 the constant r is 1 if §, =1 (mod 4) and
2 otherwise whereas the constant ¢ must be 0. Consequently the theorem gives us that [L : L(?] = 2,

2 0,=1 (mod4)
L(0), L(0)) = a
Br(L(0), L(0)) {1 T8 e
and finally x(L(e)) is independent of choices unless §; =1 (mod 4). It is now an easy check to compare the resulting
formulas. O

Corollary 4.4.20. The local density of a unimodular lattice for a non-dyadic p-adic ring is determined entirely by its
rank and discriminant mod .

The local density of a unimodular lattice for a dyadic p-adic ring is determined entirely by its rank, discriminant
mod 4, Hasse invariant and norm group.

Proof. Over Z, this is apparent from the formulas above, though the result holds more generally. Indeed, for the non-
dyadic case this information determines the lattice. In the dyadic case, this follows by inspection of the computation
we performed.
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Concretely over Zy one can compute that x = 0 when n — n(e) = 2 and D = (—1)"(©)/2 (mod 4) otherwise ¥ is
given by:
(=1, -2 /8 g n = n(e)
= (D)2, (12D (—1, ~1)nOEO-D/5H  otherwise.

This is based on the observation that in the first case the isomorphism class is not well defined, and in the latter two
cases the Hasse invariant of the odd part is trivial, hence we can easily compute the Hasse invariant of L(e). Noting
that (9§) and (2 31) have different Hasse invariants allows us to distinguish them in this way. O

¢ General Lattices - Jordan Decompositions

Computing local densities is equivalent to computing |Aut(L/7"L)| which can be done indirectly by computing
the probability that a randomly chosen element of GL(L /7" L) preserves the quadratic form on L. Once one is working
in the realm of probabilities, it is natural to use conditional probabilities that are easier to compute to arrive at a
solution. This is the approach we shall take.

We shall use the following notation.
Notation 4.4.21. Let R be a p-adic ring, with uniformizer = and |R/m| = ¢. Suppose L is a lattice over R.

By a Jordan decomposition I of L we mean a decomposition:

L=aL!,

where the L! are modular and ordered by valuations of their scale ideals. Two Jordan decompositions, I and .J, are
considered isomorphic if L} ~ LJ for all i. We will denote by JD, the set of all Jordan decompositions of L up to
isomorphism.

We fix r sufficiently large so that the isomorphism classes of all of the L are determined by their reductions
modulo 7".

We shall say a matrix A which represents the quadratic form on L is in the Jordan form I € JDj (modulo
7" if A has a block diagonal decomposition ®A;, where the A; represent modular lattices in ascending order and A;
represents L! for some choice of basis for each i.
Lemma 4.4.22. Let A be any matriz representation for L. Then the probability that for g € GL(L/x"L) the matriz
gt Ag is in Jordan form (modulo ") is:

7

Pyp, = |GL(L/x"L)|™ (H \GL(Lf/W’“Lf)O q*,

where w =Y (2r — i)n; Y n;.
i i>i

Proof. The proof is an inductive exercise in book keeping. We first count the number of ways of finding a minimal
modular block. In order to pick a set of vectors which will span a minimally modular block one needs to select a
GL(L!/m"L}) combination of the vectors that were in the original minimally modular block. One can then give an
arbitrary contribution from the vectors which were complementary to the minimal modular block. This arbitrary
choice contributes a factor of ¢"™ 2i>i "

We then must proceed inductively on the space which is orthogonally complementary. The degree of freedom in
picking an orthogonally complementary space (modulo ") is precisely ¢{" =" 225> ™,

Taking products of number of choices at each inductive steps gives us the result. O

Definition 4.4.23. Let I € JDy,. Suppose that g € GL(L/n"L) is chosen at random. Suppose g Ag is in Jordan form
(modulo 77). Denote the conditional probability that the Jordan form J of gt Ag is equal to I as Jordan decompositions
(modulo 77) as given that gt Ag is in Jordan form (modulo 7") as:

Pr—j.

Lemma 4.4.24. Let A be any matriz representation for L. Let I € JDy. Fix a matriz A; representing the Jordan
form I. Define Pe, 1, to be the conditional probability that an element g € GL(L/n"L), for which the matriz g*Ag is
in Jordan form I (modulo 7" ), will have g* Ag = A; mod «". Then the conditional probability Peq 1, can be computed
as:

Aut(Lf/x"LT)
Peq,],r = H %
|GL(Li /WTLi)|

%
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Proof. The set of possible values of g'Ag is acted upon by [], GL(L!/7"L!) with the size of the stabilizer being

Aut(L!/Lizx"
H_L Aut(LI/L} 7TT)|. In particular, then the probability that we get any given representative is [, % O

Lemma 4.4.25. Let A be any matriz representation for L. Let I € JDy. Fix a matriz Ay representing the Jordan
form I. The absolute probability that an element g € GL(L/m"L) gives gt Ag = A mod 7" i

PAut,Lﬂ‘ = PJD,TPI:J,TPquJ‘-

Proof. This is a trivial statement in conditional probabilities. O

Remark. Notice that Pays,r,» and Pyp , are independent of the choice of I while P;—;, and Peq , depend on the
choice.
Lemma 4.4.26. With all the notation as above, we have the formula:

-1
—1
PAut,L,r = PJD,T ( E Peq,I,T) :

IeJDp

Proof. By observing that FPeq 1 # 0 for all I we may write:
Ptz Pog'r.r = PipaPr=s,-

By summing over I € JD we obtain:

Paut,L,r E quT =Pip,r E Pr—j,.
1€JD I€JD

Since ). Pr=j, =1 we obtain the result. O
I€eJD

Lemma 4.4.27. Suppose L is a lattice of rank ¢ then:
Br(L, L) = ¢~ 002 |GL(L/7" L)| Paus,zr-

Proof. This is immediate from Proposition 4.4.2 and the definition of the probability. O

Combining the above lemmas we arrive at the following very general theorem.
Theorem 4.4.28. With the notation as above we have:

BR(L,L>=qw<ZHﬁRL1L1 ) (ZHﬂRL’LI ) :

IeJD i IeJD 1

where L! is the unimodular rescaling of L1 and w,w are given by:

w—Zmz an ) and

7>

~Zw-i-z: ni(ni +1)/2).

Proof. This is a direct calculation. The only tricky part is the book-keeping on the exponents of q. O

Remark. In order to use this theorem to derive specific formulas for a given lattice one must understand the set
JDj,. For a non-dyadic ring there is a unique Jordan decomposition. The problem is thus fully solved in this case.

For the dyadic case it is worth remembering that most of the factors involved in the formula of local density for
a unimodular lattice do not depend on the isomorphism class. Hence there are many terms which can be factored
out of the sum appearing in the formula above. Moreover, whenever there is dependence on the isomorphism class
through x(L;(e)) it is typically symmetric and cancels out. Both of these phenomena can be seen in the structure of
the formulas over Zs in the next theorem.

We now state the formulas from Kitaoka’s book for Z, explicitly as they will be of use.
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Theorem 4.4.29 (Kitaoka). Let L be a Z,-lattice. Let L = @;L;, where the L; are non-trivial p* -modular lattices
with distinct a;. Let L;(e) be any mazimal even dimensional unimodular even sublattice such that we may write
L; = L;(e) ® L;i(0). Define the following values:

n; = I‘al’lk(Li)v
n;(e) = rank(L;(e)),

s={i|n; # 0},
w:Zami (n; +1)/2+ Z n; |,
7 a;>a;
and set

p # 2 and n; odd

p =2 and one of a; — 1,a; + 1 blocks is odd

p=2,L; odd ,n; even and D(L;) # (—1)"/? (mod 4)
x(Li(e)) otherwise.

x(i) =

o O O O

Forp#2sett=0and u=0, if p=2 set:

0 L; =0 and a; — 1,a; + 1 blocks are even
—1 L; =0, one of a; — 1,a; + 1 blocks is odd
t:Z 0 L; #0 is even
i |0 L; is odd a; + 1 block is even
L; is odd a; + 1 block is odd,

and

otherwise.

n; L; is odd
Finally set:
Ei=1+x(i)p™? and P(m)=][1-p¥).

j=1
Then we have the following formula for the local density:
By(L, L) =2~ pe = T P (| 242 ) .

Proof. This is only a slight modification of [Kit93, Thm 5.6.3], we have adjusted the definition of F, introduced the
value v and modified ¢t accordingly. O

Remark. The proof of Kitaoka is not in the spirit of the probabilistic argument we gave above. We will not fully
derive this result from our previous result; we will, however, explain why the formula is in the shape one should expect.

The first thing to notice is that the only way to have multiple Jordan decompositions is to have Jordan blocks
which are odd. This explains why conditions on the presence of odd Jordan blocks appear in the theorem.

The next thing to notice is that having a different isomorphism class for one Jordan block does not change which
formulas can appear for other Jordan blocks, even though it may change which precise isomorphism classes can occur.
The effect of this is that the sum over Jordan decompositions can be factored as a product of sums over the formulas
that appear for each Jordan block. The observation that (1 + ¢=¢) + (1 — ¢~°¢) = 2 then accounts for some of the
factors of 2 which appear in the formulas. The conditions in the definition of ¢ account mostly for these extra powers
of 2, as well as the number of Jordan decompositions. The parameter u accounts mostly for [L; : Ll@)]’”i.

The following corollaries are useful for computing explicitly local densities in special cases. They eliminate the
need to explicitly find all the invariants of the Jordan blocks.
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Corollary 4.4.30. Suppose p # 2 and Ly, is a Zy-lattice with exactly 2 Jordan blocks which are P, p? Tt modular and
of dimension nj,njy1, respectively. Then the Local density of L, is determined entirely by the ranks of the blocks, and
the discriminant D and Hasse invariant H of L.

In particular the local density is:

4 [n;/2]  Lngga/2) ,
4qj(nj+".7‘+1)(nj+".7‘+1+1)/2+nj+1(".7‘+1+1)/2 H (1- ) H (1— q—21)§7
i=1 =1
where:
(L+x(G)g /) A+ x( +1)g™+/2) ™1 nj,njpq even
¢ = (1+x()g"/?)~! n; even and njy1 odd
S (14 X+ 1)gr /)t n; odd and nj,q even
(1 +x( j i+
1 otherwise.
One can compute x(i) as:
0 n; odd

x(i) =< (p, —1),gl+1)(nj+nj+l)/2(p,D);‘HH both blocks even
(p, —1),(f+1)(nj i =D/2 g otherwise.

Proof. One only needs to check that the computations for (i) are accurate, otherwise this is simply evaluating the

Theorem 4.4.29 in this case. Checking x is simply a matter of computing the Hasse invariant for a diagonal form and

its rescaling by p. Then by observing the dependence on the discriminant of each block in the various cases we may

conclude the result. O

Corollary 4.4.31. Suppose p =2 and L, is a Zy-lattice with ezactly 2 Jordan blocks which are p’, p’*1 modular and
of dimension n;,n;y1, respectively. Then the Local density of L, is determined entirely by the ranks and parities of
the blocks and the discriminant and Hasse invariants of L,. Note that a method for computing the local densities is
made explicit in the proof.

Proof. We shall denote by D and H the discriminant and Hasse invariant of L, and by D; and H; the discriminant
and Hasse invariants of the ith modular block. We shall, as necessary, compute these in order to make implicit use of
Corollary 4.4.20. Set:

w = j(nj +njy1)(ng +ny+1)/24+nj1(nj40 +1)/2.

There are 4 cases to consider depending on the parities of the blocks.
1. Both the p? and p?*! blocks are odd.
There are at least 4 and potentially more Jordan decompositions. Importantly, each ‘formula’ appears equally
often so that the sums resolve cleanly and are independent of the isomorphism classes of blocks.
One can check that Kitaoka’s formula (Theorem 4.4.29) is independent of the isomorphism class of the blocks
and depends only on dimension. In particular the local density is:

nj(e)/2 - n41(e)/2 _
qw+n+5 H (1 _ p72z) H (1 7p727,).
1=1 =1

2. The p’ block is odd and the p?*! block is even.
In this case there are 2 Jordan decompositions. The formula for exactly one of the two blocks changes, cancelling
its contribution. We only need to know the contribution of the other block.
Without loss of generality the p?*! block is hyperbolic. Thus the p?*! block has determinant (—1)"f+1/ 2 and
Hasse invariant (—1, —1)¢“+2)/8 We can thus determine both the determinant and Hasse invariant of the p
block. The determinant is (—1)"+1/2D and the Hasse invariant is:

(-1, _1)"1+1(nj+1-*-2)/84-”#1/2(_17 D)"J’+1/2_
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Consequently, Corollary 4.4.20 tells us that x(j) = 0 if n; —n;(e) = 2 and D = (—1)"()+mi+1)/2 (mod 4), and
that otherwise x(j) is give by:

(2, D)JQ'("J""”J‘H_U (-1, ,1)(nj+1+nj(6))(nj+1+nj(€)+2)/8(D, ,1)§"j+1+nj(€))/2H.

Therefore, the local density can be explicitly computed as:

nj(e)/2 _ "J+1(€)/2
2w+nj+3(1 +X( ) TLJ(P)/Q) H (1 _p—Qz) —21
i=1 i=1

3. The p’ block is even and the p?*! block is odd.

In this case there are 2 Jordan decompositions. The formula for exactly one of the two blocks changes cancelling
its contribution. We only need to know the contribution of the other block.

Without loss of generality the p? block is hyperbolic. Thus this block has determinant (—1)* and Hasse invariant
(—1)” 2. We can thus determine both the determinant and Hasse invariant of the p/*! block. Consequently,
Corollary 4.4.20 tells us that x(j +1) = 0if nj11 —nj1(e) =2 and D = (—1)"+1(&+7)/2 (mod 4), otherwise
x(F+1) is:

(2, D)(j+1)(nj+nj+r1) (-1, _1)(n]’+n]‘+1(6))(n]‘+nj+1(6)+2)/8(D7 _1)g”i+”j+1(e))/2H

Therefore, the local density can be explicitly computed as:

nj(e)/2 ‘ njyi(e)/2 ‘
2t (1 x(j+ p @) T a-p7) [ -7
=1 i=1

4. Both the p? and p’*! blocks are even.
In this case there is a unique Jordan decomposition and the discriminants of the unimodular blocks are (—1)™/?
mod 4. As x(2) = (2, D;)2, the goal is to solve for (2, D;)s. We have that:

1= (DjaDj-H)a and H; = (QaDi)(*la 71)ni(ni+2)/8'
It follows that:
H = HjH;11(Dj, Dji1)2(2. D)3 (2, Dy )3
= (=1,-1)3"2%(2, DI (2, Dj )3

Thus we may solve:
x(i) = (=1, -1)5" (2, D)s H.

Therefore the local density can be explicitly computed as:

n;(e)/2 +1(€)/2
22 (14 x(j)p™ ) T A+ x(G + Dpr @) T (1-p?) %)
=1 i=1

O

4.5 Transfer of Lattices

Let Ry C Rz be a finite extension of rings. Given a quadratic module (Lg,,qr,) over Ry, one can construct a
quadratic module (Lg,,qr,) over Ry by viewing Lr, as a module over R; and taking qg, (r) = Trg, /g, (qr,(x)). We
shall refer to this as transfer.

The purpose of this section is to study properties of this process over p-adic rings. We are particularly interested
in the transfer of Hermitian lattices, that is, quadratic forms of the form:

qr, (%) = 5 Trgy/r, (Moo (1)) = Azo (),

where x € R3 a quadratic extension of Ry, o the nontrivial automorphism of R3/Rp, and X is a unit in the fraction
field of Ry. The subsection of this section are organized as follows:
(4.5.1) We give some basic results about trace forms for local fields.
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(4.5.2) We compute invariants for the forms gg, .
(4.5.3) We describe Jordan decompositions when p # 2 for both unary and binary forms.
(4.5.4) We describe Jordan decompositions when p = 2 for both unary and binary forms.
In the following section we shall use these results to compute local densities for Hermitian lattices over Q.
4.5.1 Trace Forms for Local Fields
The next few lemmas are important for various computations.
Lemma 4.5.1 (Euler). Let L = F(z) be a finite separable extension of F of degree m with f.(x) € Op[z] the minimal
(monic) polynomial of z. We then have:

T ( 2¢ > 1 £=m-1

by — | =

FE\F)) "o o<t<m—1.
See [Ser79, III.6 Lemma 2].

Lemma 4.5.2. Let L/F be a totally ramified extension of local fields of degree m. Let z = wr, be a uniformizer
of Or and f.(x) be the minimal (monic) polynomial of z. Then f, is an Fisenstein polynomial and the collection
1,z,2%,...,2"  is an Op-basis of O and Np,p(2) is a uniformizer of F.

See [Ser79, Prop 1.6.18].
Lemma 4.5.3. Let L/F be a totally ramified extension of local fields of degree m. Let z = 7y, be a uniformizer of Of,
and f,(x) be the minimal (monic) polynomial of z. Then for 0 < ¢ <m —1 and k any integer, we have:

(o ()

Proof. As mp = N p(2) is a uniformizer of F' we write 2 = urp. We see that:

km-+¢ k¢
R (Zf;(Z) ) =i T (?()) |

Moreover, this is an equality if £ = m — 1.

As uFzt € Of write:

with a; € Op. Then:

The result follows immediately.
To show we have an equality if £ = m — 1 write:

m—1

= E a; 2"
i=0

Then we compute that:

Lm= 144
Trr/p ( > Z a; Trp/p ( 70 ) =ag (mod 7p).
As vp(u) = 0 it follows that vp(ag) = 0, which concludes the result. O

Example. We have the following special cases of the above. Write the minimal monic polynomial f, of z as f.(X) =
>, a; X" Then:

— Q1 {=m
2t a2 L —apmo L=m+1
T — m—1 m
o (f’( >> 1/ag (=-1
ay/a? (= -2.

The results for other powers can also be computed directly from the coefficients.
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4.5.2 Invariants of ¢p,

The most basic of questions is to understand the standard invariants of the quadratic modules which result from
transfer.

The following Lemma is immediate.
Lemma 4.5.4. Transfer commutes with orthogonal direct sums.

¢ Discriminants and Hasse Invariants
Proposition 4.5.5 (Discriminants). Let Ro/R1 be an extension of p-adic rings or orders in number fields. Suppose
L is an Ro-lattice (and hence also an Rj-lattice) which is free over Re with quadratic form qgr,. Suppose that Ra is
free over Ry. Consider the form qr,(y) = Trp,/r, (qr,(y)) as a quadratic form on L viewed as an Ri-lattice. Then:

5QR1 = NR2/R1 (54R2 )5?%2/1%1’
where g, R, is the usual discriminant relative to the trace form.

Proof. If qr, is diagonalizable then by multiplicitivity of determinants and norms we may reduce the problem to
studying the unary case. In this setting we have the usual argument (see Lemma 3.3.1). The argument works
integrally. Note that in the argument cited one can use {2y}, any basis for the ring of integers, and this basis need
not be a power basis {z}.

More generally we need to work with lattices which may not be diagonalizable. Consider L’ C L a free diagonal-
izable lattice in the same quadratic module. There exists a basis for L and a matrix M = diag(ay,...,a,)U, where
a; € RS and U is an upper triangular unipotent matrix with respect to which L’ = M L. The discriminant of L’ differs
from that of L by []} a?.

Fix a basis for R over R;. For « € Ry let (x) denote the matrix for z acting on Ry as an Rj-module in this basis.

Passing to R; the matrix which realizes L’ as a submodule can be taken to have a block decomposition M’ =
diag((a1), ..., (an))U’, where U’ is the matrix whose blocks are (U;;). The determinant of (a;) = Ng, /g, (a;), and
hence the determinant of this change of basis becomes the norm of the original change of basis. We thus relate o, ¢y,
5L7¢IR27 (SL/,QRQ and 61/,!11?,1 by

0L,qr, = NRy/R, <H ai) 0L qn,

= NR2/R1 <H ai) NRz/Rl (5L/JIR2) 61%2/1‘%1

= NR2/R1 (5L»(IR2 ) 517%2/1%1 :
The formula thus holds for L. O

Theorem 4.5.6 (Hasse Invariants). Let Ro/R; be an extension of p-adic rings. Let L be an Ra-lattice of rank n with
quadratic form qr,. Denote by Qr,/r, »(7) = Trp, /g, (A\z?) and by d = Np,/r, (D(qr,)). We will consider the form
qr, = Trg,/r, (qr,). Continue to denote (-,-)r, the Hilbert symbol. We have the following results:

1. The form qr, has Hasse invariant:

Hg, (qr,) = Hr, (Qry/r,,1)" " Hr, (QRy/ Ry D(ary)) Orayr1» ) HR (R,)-

We view these all as being in the same cohomology group H?(K1,{+1}) by identifying the different groups with
{£1} or equivalently via corestriction, which is injective for local fields.
2. If p # 2 and the extension Ro/R; is unramified, then:

n(n— v D
HRI (qR1) = HRz (qu)(TrRN (_1) ( 1)/2632/R1d)}:§2( (qRZ))'

k
3. Consider the case p # 2, u € Ry and Ra/Ry is totally ramified. Let X = ﬂ#,, where f is the minimal

wf (TRry )T,
polynomial of Tr,. The form Qg, r, x has Hasse invariant:

n(n— n?(n— 2(1=n))—L(n—~£)(n—t—
Hp, (Qrasryn) = (TR w) i~ (mp,, — 1) (D20 A= OnmimD/2.
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4. Suppose p = 2 and the extension is Galois. The form Q(x) = Trg, /g, () has Hasse invariant:

(=1, -1/ n=1 )
(5R2/R s (= 1)(7L+2)/4)R1 n=2 (mod 4)
n=0 (mod4) and —1¢€ R3
)
)

1
HRl(Q)
(_17_1)R1(2,6R2/R1)R1 n=4 mod 8 ,—1€NR2/R1(R )

7(71,71)]{1(2,6132/}31)}31 n=4 (m0d8,71¢NRQ/R1(R)
(2, 5R2/R1 )R, otherwise.

The first and fourth statements are [Epk89, Lemma 1 and Theorem 1], respectively; the second and third are
Lemmas 3.4.1 and 3.4.3 | respectively.
Remark. The above theorem fails to provide a complete description of how to compute Hasse invariants for certain
dyadic fields. This is remedied for binary forms of the following special type.
Theorem 4.5.7. Suppose R is a p-adic ring with an involution o. Let z € Ry = RY be such that \/z generates Rg[%]

as a Rl[%]—algebm (note that by Proposition 3.8.5 such a z exists). View R3 as a binary Rg-lattice with quadratic
form:

ar, (x + yv/z) = M(z + yv2)o(z + yv/z)) = Aa® — 2\

so that D(qr,) = —z and H(qr,) = (\, z). Let [ be the minimal monic polynomial for z over Ry and m = [Ry : Ry].
Then:

H(qr,) = Corpym, (20 =AfL(2))Ra) - Ny /iy (2), = 1)t (=1, =1) =D/
See Theorem 3.3.8.

¢ Modularity
Proposition 4.5.8. Suppose that Ra/ Ry is an unramified extension of p-adic rings and that L is a 7"-modular Rg-
lattice with quadratic form qr,. Then L is also m"-modular as an Ry-lattice. Moreover, the valuation of the norm
ideal Ny, and scale ideal &1, are unchanged. In particular, Jordan decompositions are taken to Jordan decompositions.

Proof. 1t is clear that we have:

Ni/r, = Trpy/r,(Ni/r,) and &1 r, = Trp,/r, (61 /R,).

Indeed, picking an element z € L, where v(qr,(x)) is minimal write qg,(x) = un® with 7 a uniformizer of Ry and u a
unit. Then gg, (ax) = 7' Trg, /g, (ua?). For p # 2 the unimodularity Trg, /R, (ua?) implies that there exists a € Ry for
which this is a unit. For p = 2 notice that a — Trg, /g, (ua?) is surjective on the residue field. The claim for Nr/r,
follows immediately, the proof for & g, is similar.

The question of 7" modularity now follows from the observation that L is 7"-modular if and only if & = (7")
and & = (777). O

With the above result in hand, we shall for the time being restrict to the case of totally ramified extensions. We
introduce some notation before proceeding.

Let Ro/R; be a totally ramified extension of p-adic rings of degree m. Let mg, be a uniformizer of Ry and set
7R, = NR,/r,(TR,) to be a uniformizer of R;. Let f(X) = fr, (X) be the minimal monic polynomial of 7r, over
R;. Suppose u; € Ry, us € Ry, v € RS, 0<{¢<m, k € Z, set u=ujus and set:

A= i,
U1 Ug V2 7TR (7R,

We remark that if the residue characteristic is not 2, then for any given A in the fraction field of Ry there exists
(non-unique) corresponding values for uy,v, ¢, k with us = 1. Now denote by ¢g,(z) the Rp-quadratic form on Ry
given by A\x?, and by ¢g, (z) the Rj-quadratic form on Ry given by ¢g, (z) = Trr, /R, (Az?). Consider:

M, = span{wv, .. Uﬂ'R 11 and My = span{uerz, . ,uvﬁ}%_l}

as quadratic submodules of Ry. These submodules will play important roles in the construction of Jordan decompo-
sitions.
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4.5.3 Transfer Over Non-Dyadic p-adic Rings

The case of p # 2 is simpler for both unary and Hermitian forms. We thus present the results for this case
separately. We assume in this section that the constant us, as introduced above, is 1. The important feature we will
show is that in both the unary and binary cases we know that there are at most two Jordan blocks and that their
modularity differs by a power of 7r,. We may thus completely recover the invariants of the blocks as in Corollary
4.4.30.
Theorem 4.5.9. Suppose Ro/R; is a totally ramified extension of p-adic fields for p # 2. Let A\, qr,, M1 and M be
as above. Then Re = My & My is a Jordan decomposition with My and Ms being, respectively, 772:1 and 77%1 modular.
Moreover, the discriminants of $QR1|M1 and %qRJMQ are, respectively:

1 1

1 o
D( leR1|M1> = (_1)Z(Z+1)/2 Zu ¢ and
7TR1

1 —0)(m—L— m—
D <qu1|M2> = (_1)(m o ¢ 1)/2u f-
7TR1

See Lemma 3.4.3.
In addition to the above notation, suppose that R3/Rs is a quadratic extension with involution o. Fix w a
non-square element of R;. Writing x = z1 + x2,/0r, /R, consider the quadratic form on Rj given by:

QRy Ry (T) = § Trpy g, (Az0(2)) ~ Trp, g, (Az]) — Trg, /r, (MR, /R, 23).-

’ﬂ'k
Then set N = Mg, /r,, K = k, uy = 1 and choose uj,v',¢' so that N = ———"——_ Let g, > M; be defined

’U,I’L)/27Tg2 f/ (ﬂ-RQ )

snmlarly to qu,M usmg A" instead of A so that qr, /g, (z) = qr,(71) — ¢, (z2). Now define N; = M; ® —M; and
N1 e 1N1 and N2

TRy 1?1
Theorem 4.5.10. The orthogonal decomposition Rs = N1 ® Ny is a Jordan decomposition for Rs with the form
qRs/R,- The sublattices N1 and N2 are, respectively, Wﬁ:l and Wﬁl-modular. Moreover:

1. If /g, = w then D(N;) = (=1)~“w~" and D(Na) = (—1)*"w!~™.
2. If /g, = TR, then D(Nl) (—1)m+1u and D(N3) = —
3. If 0p/r, = wTR, then D( 1) = (=)™ tuw'=* and D(Ny) = —uw’~™+1,
4. ]f(SE/RQ =1, then D(Nl) = ( ) and D(NQ) ( 1)@— .
See Lemma 3.4.4.
4.5.4 Transfer Over Dyadic Rings
The case of p = 2 is more complex for a variety of reasons, the failure of diagonalizability being the most
prominent. The goal of this section is to attain results on Jordan decompositions similar to those of the previous

section keeping track of the additional information about norm ideals. In order to account for non-diagonalizability,
we must consider both unary and binary lattices.
k

As before we set A= — M with u; € R, ug,v € Ry, 0<{<m,k €Zand let f(X) be the minimal

uluszf’(ﬂRQ)wR2
monic polynomial of mr,. Consider:

their unimodular rescalings.

M, = span{u, .. ’U7TR Y and My = span{uer e ,uvﬂ'g;l},

as quadratic submodules of Ry. Note that we may no longer assume that ug = 1.
Proposition 4.5.11 (Unary Forms). Let qr,(z) = A\z? and set:

qr, = Trr,/r, (qR,)-

Then Re = My & Ms is a Jordan decomposition with My and My being, respectively, ngl and ﬂﬁl—modular. They

differ in modularity by a multiple of mRr,, hence their discriminants may depend on the choice of Jordan decomposition.

Set M1 = %M1 and M2 =
TR,

L_M,. We can in general only say if Mgz is Ri. We have the following cases:
Rl

o Ny C (mR,) if £ is even and up = :g,: (mod R37Y, ). Otherwise Ny = R
e Ny C (mR,) if m— L is even and uz = 1 (mod RQW}?;E). Otherwise Nyp = Ry.
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Proof. One easily checks by Lemma 4.5.1 that M; 1 Ms.
Moreover, the matrix for M; is of the form (a;;), ;, where the a;; satisfy:
1. a5, = 4,5, Whenever iy + j1 = iz + jo.
2. VR, (ai,g_,») =k-—1.
3. vg,(a; ) >k —1 whenever i 4+ j > £.

4,57

TRy
TR

4. If £ is even and ug = (mod R%W%Q), then vg, (a;;) > k—1 for all i. Otherwise there exists ¢ with v(a;;) = k—1.
The first statement is immediate, the second and third follow from Lemma 4.5.3. The last statement is seen as follows.
Firstly, the statement depends only on the square class of uy. This is true even though modifying us changes the basis
as the conclusion about the norm groups we are making is independent of choice of Jordan decomposition. We may
thus choose to write:

Uy =14 c1mp, + c3mh, + -+ (mod wfb)

with ¢; € R;. Now by taking x = ng)m and setting Trg, /g, (Az?) = 0 (mod 7 ) we can solve for ¢; mod g, in

terms of ¢; with j < ¢ (the equations involve the coefficients of f but these are constant). Explicitly we are solving:

¢i =, (Trry p, (77 7) + ) ¢ Trp, p, (77771)  (mod 7g,).

j<i

Lemma 4.5.3 tells us that the right hand side makes sense. As this is solvable we conclude that up to squares there
is a unique value of us modulo wfb which makes all values of the quadratic form be contained in mgr, R;. Observing
that up = 7g, /7, does this allows us to conclude the result.
The matrix for My is of the form (bij)z.’]., where the b;; satisfy:

bi1j1 = b’izjg whenever i, + J1 =12 + Ja2.

VR, (bi,m—f—i) =k.

VR, (b;;) > k whenever i +j > m — (.

= W

If m — ¢ is even and uy = :2 (mod RQW?;;;E), then wg, (b;;) > k for all . Otherwise there exists ¢ with

UR, (b“) =k. ’
The arguments are identical to those for M7 except that 1 is the necessary congruence. O

Taking A as above, we will now consider binary forms. Since we are not interested in those that decompose as
direct sums of unary forms we consider L over Ry of the form:

us 1

1 uam uruv? J(mRry )T, f’(ﬂRQ)jrf{Q“’b
with @ > 0 and b > 0.
We use the basis:
{v,.. .vwf{;}el U {mmfh, ce vuwggl}el,
{v,.. .U’/T%;l}eg U {U'u,ﬂ'%z, e vuﬂzgl}eg,

where eq, e denote respectively the first and second coordinates of L.
Define the following quadratic submodules with the given basis:

M, = {v,... U?Tf{zl}el, M; = {v,... ,mrf{;}eg,

_ 4 m—1 1 _ 4 m—1
My = {vury,,...,vury " }er, My = {vumpg,,...,vury, }er.

Also define Ny = My + M| and Ny = My + M/. Note these are not orthogonal decompositions. We are considering
the span of both in the ambient space. Moreover, N1 and Ns also need not be orthogonal complements.
Proposition 4.5.12 (Binary Forms). Let a > 0,b > 0, ug € Ry and uqy € RS . Let qr, be the form associated to the

matriz A (“”a ! ) Then the form:

1 wupmw®tt

qr, = TrRz/Rl (QR2)

has 2 Jordan blocks, Ni and N, of modularities wf{l and W%l, respectively. They differ in modularity by a multiple
of mr,. We can only in general determine if the norm ideals are R;.
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e Ny C (7r,) if and only if max(¢ — a,0) and max({ —a —b,0) are even, and uguz = mg, /7, (mod 7r ") and
usuy = R, /T, (mod R%Wf{; %)

® Ny C (7r,) if and only if max(m — £ —a,0) and max(m — £ —a —b,0) are even, and uguz =1 (mod 7~ t=ay

and ugug =1 (mod Rimy f-a=by,

Proof. Viewing the underlying space under the basis My, M|, My, M/, as above the matrix for g, is of the form:

The blocks (that is the submatrices A4, ..., H) have the following properties:
1. A, B,C are £ by £ matrices and, F,G, H are m — £ by m — £ matrices.
2. For all the blocks we have *;,j, = *;,;, whenever i1 +j; = 42+ j2. In particular, the square blocks are symmetric.
3. v(*i;) > k — 1 for all blocks and all 4, j. Furthermore,

v(Aij) >k —1fori+j>{—a,

)
v(B;j) >k—1fori+j>¢,
v(Bij)=k—1fori+j=1¢,
v(Cij) >k—1fori+j>l—a—0b,
v(Dy;),v(E;j) >k —1 for all 4,7,
v(Fi;) > kfori+j>m—~{—a,

)
v(Gij) > kfori+j>m—{,

v(Gij) =kfori+j=m—/{, and
v(Hij) > kfori+j>m—{—a—b.

(
(
(
(
(
(
(
(
(

4. The discriminant of k (4 5) and the discriminant of - (£ &) are units mod g, .
TRy TRy

5. There are changes of basis which realize both Ny and Ny as Jordan blocks (though not simultaneously).
Hence the questions of whether the norm ideals of the rescaled Jordan blocks are contained in R; are determined

by All(gg) (FG)

G H)
6. The lattlce Ny is odd unless max(¢ — a,0) and max(¢ — a — b,0) are even, and ugus = g, /7f, (mod 7¢~%) and

(
upug = g, /7, (mod Rix‘~P)
7. The lattice Ny is odd unless max(m — ¢ —a,0) and max(m — £ —a —b,0) are even, and uguz = 1 (mod =
and uguy = 1 (mod R2pm—¢—a=b),
Points (1) and (2) are direct checks. Point (3) uses Lemma 4.5.3. Point (4) is elementary yet tedious to check. First
observe that since modulo wg, the matrix ,} (4 B) is of the form:

TRy
* ok U
<* X 0) s
u 00
where X is a 2¢ — 2 by 2¢ — 2 block, it has determinant —u? det(X). We may iterate this procedure on X until X is

of the form: L
i
B C

with A, B,C being £ —a —b by £ —a — b blocks. We may iterate until X has additional non-zero entries on the bottom
row and rightmost column. Now use the fact that:

mfifa)

det (g g) = det(C) det(A — BC™'B),
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combined with the observation that:

- ~ ~ B 7TR1R1 z'+j>€—a—b
R i+j=l—a—b

to conclude the result. We may perform an analogous argument for (£ &).

For point (5) notice that the change of bases needed are, respectively:
ABy~1 (Do
<Id —(5¢) (OEt)> and < ( 1d 0).
0 _

The matrices (5 %) (4 5)71 and (B %) (E &)~ are integral by points (3) and (4). One sees that orthogonal com-
plements of Ny and N; are preserved, respectively, modulo wﬁjl and W%l. Hence they are modular and we indeed
have a Jordan decomposition.

The arguments for (6) and (7) are analogous to that of the previous lemma. Indeed, one has norm ideal R; if
and only if the diagonal contains a unit. Hence the problem reduces to considering the blocks on the diagonal, and
we are reduced to the situation of the previous lemma, (except that we have now two different subblocks to check for
each Jordan decomposition). O

Remark. Note that though N7 and Ns are Jordan blocks for some Jordan decompositions, it is not necessarily true
that the space for gg, is isomorphic to N1 & Ny as N7 and Ny may not be Jordan blocks in the same decomposition.
In the above theorem one can take either ]\71 = Nj or ]\72 = N5, though not necissarily both at the same time.

We now move to the special case of forms which arise from Hermitian forms. We quickly review the possible
quadratic extensions R3/Ry of a 2-adic ring. On the level of their fields of fractions they are of the form K (y/z). We
therefore look at the various cases for z.

e z=ump, for u € RS.
Then the extension is ramified, has uniformizer ,/urr,, 0r,/r, = 4umg,, and the ring of integers has integral
basis: 1,,/umr,.

In this basis the Hermitian form qr, = 3 Trg, g, (Azo(z)) has matrix:

1 0
A (O —usz) '

In this case k = [W—‘ and £ = —(vgr, (A f'(7R,)) — mk).

o z:1—|—a7712{2+1 for 0 <7 <vgp, (2) and a € R*.

- : oLy 1targ : .
Then the extension is ramified, has uniformizer ———=—, 0p,/r, = 1+ aw?{;l), and the ring of integers
Ra Ro

T
14, /1+a7'rf§2+1
71'%2 :
In this basis the Hermitian form qr, = 1 Trp,(r,/r, (Azo(x)) has matrix:

r
A 1 //TRQ 1 1
TRy 1 - awfg

In this case k = {M—‘ and £ = —(vr,(Af'(7R,)) — r — mk).

m

has integral basis: 1,

o z=1+4br% for r = v, (2) and 2° + —2_z — b irreducible mod 7p, .
Ra
Then the extension is unramified, has uniformizer wg,, dg, g, = (14 b7*"), and the ring of integers has integral
14, /14+bm2r
basis 1, ﬂi%
Ro
In this basis the Hermitian form qr, = 3 Trg, /g, (Azo(z)) has matrix:

)\ 1 W%z 1
TRy L —bry, )

92



In this case k = [W] and £ = —(vp, (\f/(ng,)) — 1 — mk).
We already have from the above that the quadratic forms which result from these cases will have 2 Jordan blocks.

We thus proceed to summarize the results we can conclude about these cases.
Proposition 4.5.13. Let R3 is the mazimal order of Ra(\/z), Ra and Ry being as above. Let A\ =

ki
ulugvzf’(wRQ)ﬂéz
with uy € Ry, ug,v € Ry, 0 < <m, k € Z and let f(X) be the minimal monic polynomial of wg,. Consider the
Hermitian form qg,(z) = 4 Trp,/r,(Azo(z)), and qg, (z) = Trg,/r, (qr,(z)). The form qgr, has two Jordan blocks
Ny and Ns, they are ﬂf{l and 7r§2- modular, respectively. Moreover, we have:
1. If z = amp, then the blocks are of dimension 20 — 1 and 2(m — £) + 1, respectively. Both blocks are always odd
(ie N = Rl)
2. If z=(1+ aw?{jl) then the blocks are of dimension 2¢ and 2(m — £), respectively. The block Ny is odd if r < £
whereas Ny is odd if r < m — L.
3. If z = (14 bx®") then the blocks are of dimension 2¢ and 2(m — (), respectively. Neither block is ever odd.

Proof. The result follows immediately from the above discussion and Proposition 4.5.12. O

Remark. As in Proposition 4.5.12 we do not give an explicit Jordan decomposition, we only prove one exists with
the given properties. The blocks N7 and N; that Proposition 4.5.12 gives us in this case are again both Jordan blocks
in some decomposition, but not necessarily in the same decomposition.
4.6 Computing Local Densities For Hermitian Forms over Q

The problem of computing the main terms in the dimension formulas for spaces of modular forms on orthogonal
Shimura varieties is reduced by Theorem 2.5.25 to the computation of Volg s (SO(L)\D). Proposition 2.5.31 reduces
this to computing a (L, L). By Proposition 2.5.34 and the remark following, the main computational issue is com-
puting o, (L, L), or equivalently §,(L, L). We now have all the tools in hand to carry out the task of computing the
local densities for Hermitian lattices over Q. This is what we shall do in this section.

The idea is as follows: given the ring of integers O of some étale algebra E over QQ, we wish to understand the
local densities for the form ¢(z) = 1 Trg g(Azo(x)), where A € E*. For each prime p of Q we may write E, = @, F,,
where the sum is over maximal ideals p for the maximal order of E?. The first step is thus to understand the Jordan
decompositions of the forms gy (z) = 3 Tr E,/Q,(Apzop(x)). Having done this we may then understand the Jordan
decomposition of the orthogonal direct sum ¢, = ©,¢q, with sufficient precision to compute the local density from the
formulas we have. In particular we need strictly more information to compute results for F, than for £, as the latter
only has 2 Jordan blocks and so can be handled more simply.

Before we proceed we point out that this does not actually require that we understand all the invariants of all of
the blocks of all of the g,. Indeed the formulas for Jordan decompositions do not always depend on all the details of
the isomorphism class.

Fix plp a maximal ideal dividing p in the maximal order of E?. Set R3 be the maximal order of E,, Ry the
maximal order of EY and R; = Z,. Let ey, and f, be, respectively, the ramification and inertial degrees of Ry over
Ry. Let ny = 2my, = [R3 : R1]. We shall denote by Dg, /g, the different ideal of R; over R;.

We now proceed to define a variety of constants which allow us to describe the Jordan blocks. We have:

Sp = (71)[32:R11NR2/31(iVD}chlJRg/RZ).

This is the discriminant of the quadratic form ¢ (see Proposition 4.5.5.) Set:

mp(myp—1)/2

Hy = Corg ya, (2~ ML) ) Vi (2), 1) 7 (-1~ 1) 7

where /z primitively generates the fraction field of Rz over that of R;. This is the Hasse invariant (see Theorem

4.5.7.)
Set k, = v ) | The ky, and k, — 1-modular blocks are those which may be non-trivial. The value of k, is

7lp
clear by considering the discriminant. Set:

np —UR, (0p) (mod ny)* i=k—1
Npi = { VR, (0p) (mod ny)* 1=k
0 otherwise.
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Note that we mean that n, ; is a value between 0 and ny,. Moreover, for the i = &, case use n, as the representative
for 0, for the ¢ = ky, — 1 case use 0 (so that if there is only one non-trivial block it is the ky-modular block). This
represents the dimension of the ith modular block. Again, the computation is clear in consideration of the discriminant.

Set £y = VR, (A) + VR, (DRry/r,) + VR, (OR,/R,)/2 (mod e) (a representative between 0 and e,). Then define:

0 p=2,i=ky—1,k, and vg,(dg,/r,) is odd
)0 p=2,i=k,—1and {, <vr,(0Rr,/r,)/2
Xp.i(0) = 0 p=2,i=kyand ey, —{, <vr,(0r,/R,)/2
1 otherwise.

This value is 1 if 9M; C 26;, and 0 otherwise. This follows immediately from the criterion for evenness of the previous
section.
Set ny(e) = 2 {%X"(O)J This represents the dimension of the maximal even dimensional unimodular

sublattice with 9t C (2). Then:

(p, =1) 0™ (8, ) (p, =1)"1/2H}y my; # 0 even, p # 2

woa(e) = 4 BT Cpop)'(p, —) By -y £00ddipE2
(8p,2)H(—1, —1) (e =2m) /8 |1 npi(e) =np,; #0,p=2
1 otherwise.

The above is an intermediate calculation for the discriminant of the ith Jordan block. For p # 2, it amounts to
checking if (—1)"P="(e)/ 2 times the discriminant of the block is a square based on the Hasse invariant. For p = 2, it
computes this when this block is even. The computation assumes the other block is also even, for if it were not we
would have the freedom to modify the discriminant of this block.

Let u be a non-square in R;‘. For p = 2 set u = 3. Define:

1 (Xp,i(0) =0 and ny; odd) or ny; =0
Op,i = (—1)"‘0‘"'°vi/2c5p Xp,i(0) = 0,ny; even
(71)an,i/2Ju(Xb,i(e)fl)/z Otherwise.

This represents a valid discriminant for the ith modular Jordan block. For p = 2 the value is typically accurate mod
8 If p=2,n,;, =1,m, =1 it is only accurate mod 4 but this case does not impact the following computations.
The first two cases compute the discriminant when this block is odd. It does so assuming the complementary block
is hyperbolic, since if this block were odd, we would be able to assume the hyperbolicity of the complementary block.
We now set:

1 pF£2

Hp,i = 1 an' =1
(=1, —1) e mp) (o =np i =2)/8(§,  1)me—mp/2(5, 2) H, otherwise.

This represents a valid Hasse invariant for the ¢th modular block. We compute it assuming the complementary block
is even. If it is not, then the Hasse invariant of the ith block depends on a choice. Hence the result is still valid.
Now we set xp; = 0 if n; is odd or if p = 2 and either xp;—1(0)Xp,i+1(0) = 0 or Xp,i(0) = 0 and J,; = (—1)"Pr.i71)/2
(mod 4) otherwise define x,; by:

C— ((_1)"p,i/26p7i’p) p 7é 2a
Xp,i (_1’ _l)np,i(np,iﬁ)/SHP’i p=2.

This value is 0 if the isomorphism class of the maximal even unimodular sublattice is not well-defined. The value is

1 if it is hyperbolic and it is —1 if it is not hyperbolic. The computation is based on those in the proof of Corollary
4.4.20.
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We now proceed to introduce the remaining terms which appear in the formulas:

ty = D (1= xp,i(0))1p,i + (1= xp.(0)) (1 = xpi+1(0)) =

K2

> ny0(1 = Xpi-1(0)xp,i+1(0),

sp = {i [ npi # 0},
wp = (k= 1)[Rs : R1]([R3 : Ba] +1)/2 + ni (i + 1)/2,

np’i(e)
2

Pp,i == H (1 - q72j)7

j=1
Eypi=(1+ Xp,iqin"’i(e)ﬂ)flv

P, = HPM,
i
E, =[] B}

Theorem 4.6.1. Let Ry = Z,, and R3 be the ring of integers of a p-adic field with involution o and mazimal ideal p.
Suppose X € (R3)*. Consider the lattice L = Rz with the bilinear form:

(2,y) = 5 Trry/r, (Azo(y)).
Using all the notation as above, we have:
Bp(L,L) = 2% "t q"» P, E,.
Proof. The result follows immediately from Theorem 4.4.29 and the above computations of the relevant terms. O

We now combine what we know about the quadratic forms g, to get sufficient information about the form ¢, to
compute its local densities. We define the relevant constants in terms of the decomposed ones:

Np,i = E Mpis

plp
Opi = H6p7ia
plp
Xp,i(o) = HXP;i(O)’
plp
1y
ni(e) = 2 VHQX'J(O)J and
Hy,; = HHp,i H((;p,ia(;q,i)'
plp p<q

The above formulas are all direct computations. Now we set x,,; = 0 if n; is odd or if p = 2 and either xp ;—1(0)xp,i+1(0) =
0 or xp.i(0) =0 and §,; = (—1)»i=1/2 (mod 4) otherwise define x, ; by:

= ((=1)"/28,3, p) p#2
P, (_1’ —1)np’i(np‘i72)/8Hp,i p= 2.
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As above, this formula is based on the computations of Corollary 4.4.20. We may now introduce the terms which will
appear in the formulas:

ty = D (1= xp.i(0))npi + (1 = Xp,i(0)) (1 = Xpuit1(0)) -

)

Z Onp1,0(1 = Xp,i—1(0)Xp,i+1(0)),

sp={i | npi # 0},
wy =Y inpi(npi +1)/2+ > np5),

i >t
ny i(e)
2 .
P:Dﬂ' = (1 _q_QJ)’
j=1
Epi = (14 xpaq "),

Finally, define:
P, = HPW- and E, = HEpjg.

Theorem 4.6.2. Let O be the ring of integers of a number field with involution. Using all the notation above the
p-adic local density of the form %TrE/Q()\xo(y)) on Of 1is:

Bp(L, L) = 2°v~»q"» P, E,.

Proof. Again, the result follows immediately from Theorem 4.4.29 and the above computations of the relevant terms.
O

The above formula is complicated. This is largely by virtue of the fact that each p|p could contribute to different
Jordan blocks, and hence we must independently compute the invariants for each. One can thus in general expect no
reasonable cancellation in the above formulas as there are cases where none occurs. The advantage of this formula over
those of the previous section is that the formula is expressed entirely in terms of the invariants of the rings involved
(and \) and thus given a ring which one understands, one can compute this formula.

We now present a restricted case, that is, we shall suppose that A, has small valuation for all p so that k =1
and the final lattice has at most 2 Jordan blocks at each p. In particular assume that 0 < vy(A/2) + v, (00, /040 )/2 +
Vp(Do . yz) < ep for all primes p of E7.

Under these assumptions we have:

e The dimension of the space is n = 2m = [E : Q).
e The dimensions of the Jordan blocks are:

Npo =N — vp(N()\/Q)Q(SE/QP) and ny; = vp(N()\/2)26E/@p).

e The conditions for the blocks to be odd are:

Xp,0(0) = 0 if and only if either v, (dg/g-) odd or ey > vy (N) + vp(DE- /) for some p.

Xp,1(0) = 0 if and only if either v,(dg/gs) odd or vy (dg/p-) > 2ep — vp(X) — vp(DEe q) for some p.
e As before one computes n,, ;(e) = 2 {%XP(O)J
e We have the following formula for x,, ;:

0 n; = 0 or n; odd
0 P=2,Xp,i—1Xp,i+1 =0
Xpi =140 p=2,0, =(—-1)""' (mod 4)

Corzg g, (5 (~1)™ s AfL(2))g)  p # 2 m; even
Corgg /g, ((2, (—1)m2i)\f;(z))Eg) otherwise,

where \/z primitively generates the E over Q,,.
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Remark. Notice that for all primes which are unramified in £ and for which v, (N (X)) = 0 (or for p = 2 take A = 2)
the above formula for x,; reduces to ((—1)™D,p). The lack of symmetry at 2 is a consequence of our normalization
of the form. The normalization we have chosen makes the Witt invariant formula cleaner, but breaks the symmetry
in this formula.

Now set:

(1— XP,O(O))(nzLO -)+(1- Xp,l(o))(np,l -1+ Ny onp1 # 0
(1= xp0(0)(1 = xp1(0)) PPt

(1 = xp,0(0))(np,0 = 2) + (1 = xp,1(0)) (np,1 — 2) otherwise,

sp =i | npi# 0}, and

Wy = 1y (1 +1)/2.

tp

Theorem 4.6.3. Let E/Q be a finite extension with involution o, supposing E is primitively generated by \/z over Q
with z € E°. Let A € (E7)* with:

0 < vp(A/2) + 0p(005/050)/2 + V6000 /2) < €p,
for all primes p of E°. Then with notation as above the local density of the form %TrE/Q()\xa(x)) is:

(e) np.1(e)

=)
-

"p,

2%~ trg [ (1—q%)
j=1

)

(1= g ) (1 + xp,0g ") TN L + xp g~ O/2) 7

z“

j=1

Proof. Once again this is an immediate application of Theorem 4.4.29 together with the above computations of the
relevant terms. O

4.7 Example of Q(u,)
Fix a prime p of Z. In this section we shall compute the local densities for the form

aex = 1 Trgo(Azo(2)),

where E = Q(u,) is the cyclotomic field of pth roots of unity, ¢ is complex conjugation, and A is restricted in valuation
so that 0 < vg(A/2) +v4(00, /040 )/2 + V4(Do s jz) < €q for all q.
We shall use the following ‘elementary’ facts.

The ring of integers of E is O = Z[(;] for each a € (Z/pZ)*.

The ring of integers of F':= E“ is:

Op =26+ ¢ =Z[(¢G — ¢ ) = ZI(¢ — ¢, )]

for each a € (Z/pZ)*.

Denote by z, = (Cg — (5“)2 then z, is totally negative and E = Q(,/z,). Denote by f. the minimal polynomial
of z, (this does not depend on a).

There is a unique prime in each of O and O over p. Denote by p the prime over p in Op.

The discriminant of E/Q is 0 g = (—1)®~1/2pp=2,

Since Cg # 1 (mod q) for all q 1 p it follows that (; — ¢, and hence ((; — Cp*“)Q is a unit away from 2 and p.
Since the different ideal is Dp/q = (f.(24)) it follows that f.(z,) is a unit at all places away from p.

The elements ¢ — ¢, and (Cg -Gy @)2 are uniformizing elements in the respective cases.

This follows from the observation that the order Z[,/z;] = Op[\/Z4] is maximal away from 2.

p—1 L=p

1 otherwise

In the formulas of the previous section we have the following:

e The dimension of the space is [F: Q] =p — 1.
e The dimensions of the Jordan blocks are for £ = p are:

e The ramification degrees are e, =

neo =p—1—2v(Np/g(A/2)) and ne1 = 2v(Npjg(A/2))
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and for ¢ = p they are:
ngo=1-— QVP(NF/Q(/\)) and ng; =p—2+ QVP(NF/Q(A)).
Thus we set:

wg =ng1(ne1 +1)/2 and

o = 11 t#Fpv(Nrjg(h) =0,£(p — 1)/2
2 otherwise.

The parity of the Jordan blocks at 2 are:
Xxz2,i(0) =1

so long as the blocks are non-trivial. This is true because the extension is unramified at 2. Consequently, t, = 0
for all 4.
The character for the blocks are computed as follows:

0 t=p
xe,i = § Corge g ((2a, (71)(p*1)/22i)\f;(za)))é (=2
CorE"/@ ((Zm (_1)(p_1)/2£i+1)‘f2/'(2a)))£ ¢ 7& 27]1

We are thus interested in computing:

Corryq (7, X)) Corryg ((zar (~1) P72 f(20)) ) -

For all ¢ # 2, p we have that z, and f.(z,) are units and thus:

Corp/q ((Zm (_1)(;071)/2f;<za))>Z 1

For ¢ = 2 we have that:
Corpyg ((za, ()2 fL(z)) - (~1) @D @D/

computes the Hasse invariant of the form (for A = 1). Since this Hasse invariant is 1 for all places (including
infinite) other than p we can conclude that:

Corp/g((za,(=1) V2 fL(2)))z

= (_1)(1771)(1773)/8 CorF/Q ((Za, (_1)(p71)/2f;(za))>p

We are thus reduced to computing Corgq ((zq, (—1)®~D/2f] (za))p. Observe that:

(Za, (_1)(}7*1)/2]1‘;(,2(1))'3 = (za, —Z{;l)l(:‘p—3)/2 (Za’ (_1)(1771)/2]02(%))p
= (24, —1), (Zm Z*(pfS)/Qf;(za))p

STV | N C i)p

a#£be(Z/pZ)* | £1
Now, we may use that z, is a uniformizer and that:

2
Zp o, a
; = b72 (mod Za).
a

It follows that the terms we wish to evaluate are actually:

. 2
(Zaa - i)p = (Zaalf %)p = (Zaalf g)p (Zml + §)p .
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The resulting expression now becomes:

(zm (—1)(p—1)/2f;(2a))p = (2a, —1)p H (za, 1— g)p

+a#be(Z/pZ)*
= (24, 72)p .

Applying the Corestriction map we have:

Corp/q ((2a; —2)p) = (NF/Q(za), 72)p = ((71)(1371)/2]97 72)17 — (p, 72)11.

From this we can conclude that:
Corpg ((Zcu (—1)(p_1)/2f;(za))>2 — (~1)P DB/, 9y 1,

Now, for all £ # p we find:

Corpe g ((24,0)), = (F2L522) = (£).
Thus we can conclude that:
0 {=p
P £=2,1=0
, (g) (=2i=1

)
X&i = CorEU/Q Za,)\ )
)[ g 7é p7Z =1
)

¢ Examples
Combining all of the above we can easily compute the product over all local densities for the following cases:
e Case A = 2, the arithmetic volume is:

(p—1)/2
2pP=D(F=1)/2(1 _ pp-1) H (1 T (ﬁ) g(P*l)/2> H (1 - ¢~2)~1
[ i=1
e Case A\ = 2y, where u € O has a unique negative embedding and (z,, pt), = —1, the arithmetic volume is:
(p=1)/2
2p®=2-1/2(1 —prH T (1 + (g) g(p—l)/2) I a-e2)
p
‘ i=1

e Case A = 2y, where u € O has a unique negative embedding and (24, it), = 1, the arithmetic volume is:
1— (z) o(p—1)/2
—1 p

2p(p*2)(p*1)/2(1_pp _\k
2 -1)/2
1+(p) 2(p—1)/

1;[ (14 (&) er-r2) (pﬁ/QQ -7
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e Case A\ = 2q, where (q)|q # p is prime and (g, p), = —1, set ny = v4(Np/g(q)) and suppose (q) # (¢) and q is
totally positive, the arithmetic volume is:

92~ (P=1)/2gna(ng=1)/2 (1 _ gna) (1 n q<p—1>/2—nq) H (1- qzi)—l
=1
p—1—ng4 (pfl)/z
H (1 _ q2i)—1 H (1 n (%) g(p_1)/2> H (1 _5—21‘)—1
i=1 l#q i=1

e Case A\ = 2q, where q|q # p,2 is prime and (q,p), = 1, set ny = v4(Np/g(q)) and suppose (q) # (¢) and q is
totally positive, the arithmetic volume is:

IT( (1+(5)ewr) (1— 2y

l#q i=1

Other more complicated combinations can be handled similarly.
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CHAPTER 5
Conclusion
The topic of Shimura varieties of orthogonal type provides for many avenues of research. The main results of this
thesis resolves only a few. Even these results aren’t the end of the road as further questions can still be asked.
In terms of the results of Chapter 3, concerning the characterization of special points (or more accurately algebraic
tori) associated to orthogonal groups, the following generalizations remain open:
1. A characterization of the non-maximal tori which do not appear as direct factors. Specifically we can consider
embeddings
TFJ — GL(F”)

and ask when such a torus preserves a quadratic form on F™. Or equivalently when does there exist an extension
(E,0) of (F,o0) such that ¢ ~ gg . This question relates to a characterization of ‘generalized special cycles’
(see Section 2.6.3).

2. A characterization of the algebraic tori in other reductive groups, including the outer forms of orthogonal groups
and Spin groups. For Spin groups, our results shed a fair bit of light on the problem, but in this setting some
questions remain open. One may still ask, for example, which algebras are complete reflex algebras? For classical
groups arising from involutions one expects many similar phenomena to arise.

3. Even more generally one may ask for a characterization of inclusions of algebraic groups G — O, or more
ambitiously G; < G2 or G; — G3. A necessary condition is certainly that for all T < G there exists a map
T — G4. This motivates looking at the case of tori first.

Besides these generalizations, another problem which the present work does not discuss is that of relating the charac-
terization of tori given in Chapter 3 with that given in my masters thesis [Fio09]. The characterization there is in terms
of certain cohomology classes in H!(Gal(k/k), No(T)) and it would be interesting to relate this to the characterization
given here in terms of étale algebras with involution. One expects the correspondence to be quite natural and this is
something I intend to look at in a more general context in upcoming work.

As for the results of Chapter 4 a number of natural questions remain open:

4. Obtaining more general formulas for 8,(L, M) for primes p over 2. Some of the results of Chapter 4 are easily
extended to this context, in particular Theorem 4.4.11. Other results would require performing a significant
number of new computations, specifically Theorem 4.4.18. Finally, some of the results may simply not extend
in any natural way and thus require entirely new ideas, for example Theorem 4.4.28.

5. Computing more explicitly the contribution of the structure of distinct Jordan decompositions to B, (L, L).
Specifically, over Qq, the formula simplifies greatly, and one should expect a similar result for other explicit
(especially unramified) extensions of Q.

6. More refined computation of invariants for transfer of lattices over 2-adic rings. In particular a complete de-
scription of the norm group.

A major theme of Chapter 2 is computing dimension formulas. The work here suggests several areas needing

more work.
7. An explicit description of a smooth projective toroidal compactification for the O(2,7n) Shimura varieties. In
particular a detailed understanding of the cone decomposition for the relevant cone ).
8. Computations of the intersection numbers for Chern classes and boundary components relevant for the Riemann-
Roch theorem.
9. Explicit formulas for the numbers of cusps of a compactification.
10. More refined results on the vanishing of cohomology.

Another topic of great interest, alluded to in Chapter 2, is that of studying the many types of cycles which appear in
orthogonal Shimura varieties. Many of the questions one may ask about these cycles naturally generalize those one asks
about special points. In particular, one can ask about the field of definition of a cycle and its irreducible components,
and consequently, about the precise role the various cycles may play in explicit class field theory. Moreover, these
cycles have an important role in Arakelov theory and an understanding of the relationship between their intersection
theory and the special values of L-functions is a topic of great interest.

I hope that the above provides an indication at the breadth of the field which remains to be explored.
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Index of Definitions

algebraic torus
type E

a-modular

anisotropic

boundary component
rational

canonical

canonical model

Chern class

Chern polynomial

Clifford algebra

co-core

comparable

cone
dual
homogeneous
non-degenerate
polyhedral
regular
self-adjoint

cone decomposition
I'-admissible family
pe.o(To)-admissible
convex polyhedral
partial convex polyhedral
projective
rational

connected Shimura datum

connected Shimura variety

convex polyhedral

core

discriminant
discriminant group
discriminant ideal
dual

étale algebra
étale algebra with involution
discriminant
Euler characteristic
even
exponential Chern character
extreme points

I'-admissible family
~-canonical

I'-polyhedral

generalized Heegner cycle
generalized special cycle
generalized special cycles

Hasse invariant

46
47
see lattice
see lattice

13, see symmetric space
13

see model
see model
28

28

7, 48, see quadratic form
see kernel
see kernel
15

15

15

15

15

17

15

18

18

16

16

17, 21

17

see Shimura datum

see Shimura variety
see cone decomposition
see kernel

8, see quadratic form, 63, see lattice
63, see lattice

63, see lattice

see cone, see lattice

44
44
44
29
see lattice
28
27

see cone decomposition
see singularity

see kernel

35

37

36

8, see quadratic form, 63, see lattice
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Hermitian

Hermitian form

Hermitian lattice

Hilbert polynomial
Hirzebruch-Mumford volume
holomorphic

homogeneous

hyperbolic

integral
isotropic

Jordan decomposition
Jordan form

kernel
I'-polyhedral
co-core
comparable
core
locally rationally polyhedral
semi-dual

lattice
a-modular
m-weight ideal
anisotropic
discriminant
discriminant group
discriminant ideal
dual
even
Hasse invariant
hyperbolic
integral
isotropic
Jordan decomposition
Jordan form
level
local density
modular
norm group
norm ideal
primitive
pseudo-hyperbolic
rank
scale ideal
signature
stuffe
unimodular
Witt invariant
level
local density
locally rationally polyhedral

meromorphic
model
canonical

see symmetric space
61

61

29

30

see modular form
see cone

see lattice

see lattice
see lattice

see lattice
see lattice

26
27
27
26
27
27
26

62
62
64
63
63
63
63
63
62
63
63
62
63
66
81
63
69
62
64
64
63
63
63
64
64
63
62
64
63, see lattice
see lattice
see kernel

see modular form

40, see Shimura variety

41



canonical model

weakly canonical
modular
modular form

p-form

holomorphic

meromorphic
M'-valued quadratic module

neat
non-degenerate
norm group
norm ideal

orthogonal discriminant
orthogonal Witt invariant

p-adic ring

partial convex polyhedral
m-weight ideal
polyhedral

primitive

projective
pseudo-hyperbolic

quadratic form
Clifford algebra
discriminant
Hasse invariant
orthogonal discriminant
orthogonal Witt invariant
signature
Witt invariant

quadratic module
M’-valued quadratic module
non-degenerate
regular

rank

rational

reciprocity map
reflex field

regular

p-form
pe,o(Lo)-admissible

scale ideal
self-adjoint
semi-dual
Shimura datum
connected Shimura datum
Shimura variety
connected Shimura variety
model
special field
special point
o-reflex algebra
complete o-reflex algebra

40

41

see lattice

13, 14

30

13, 30

13

see quadratic module

20

see quadratic module, see cone, see quadratic module
64, see lattice

64, see lattice

see quadratic form
see quadratic form

65

see cone decomposition

64, see lattice

see cone

63, see lattice

see cone decomposition, see cone decomposition
see lattice

7
7, 48
8, 48
8, 48

48

48
8, 48
8, 48
7, 62

62
7, 62
7, 62

63, see lattice

see boundary component, see cone decomposition
40

see special point

see quadratic module, see cone

30, see modular form

see cone decomposition

64, see lattice
see cone
see kernel
39

39

39

39

40

40

40

45

45
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o-reflex norm
o-type
signature
singularity
~-canonical
special field
special point
reflex field
special field
spinor norm
stuffe
symmetric space

boundary component

Hermitian

Tod class

torus embedding
total Chern class
transfer

type E

unimodular

weakly canonical
Witt invariant
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45
44
8, see quadratic form, see lattice

34

see Shimura variety, see special point
40, see Shimura variety

40

40

8

see lattice

8

13

8

28
15
28
85
see algebraic torus

see lattice

see model
8, see quadratic form, 64, see lattice
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