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ABsTrRACT. This paper begins the project of defining Arthur packets of all
unipotent representations for the p-adic exceptional group Ga. Here we treat
the most interesting case by defining and computing Arthur packets with com-
ponent group S3. We also show that the distributions attached to these pack-
ets are stable, subject to a hypothesis. This is done using a self-contained
microlocal analysis of simple equivariant perverse sheaves on the moduli space
of homogeneous cubics in two variables. We treat all other unipotent repre-
sentations of p-adic G2 in forthcoming work.
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1. INTRODUCTION

Appearing first in [Art89], Arthur packets play the lead role in Arthur’s en-
doscopic classification [Art13] of admissible representations of the symplectic and
orthogonal groups Sp,,,, Oz, and SOg,11 over local fields. When combined with
the work of many others, especially on the stable trace formula, Arthur’s endoscopic
classification is the keystone in the proof of the local Langlands correspondence for
these groups. While this classification has been extended to other classical groups
in [Mok15] and [KMSW14], work remains to be done in several directions, includ-
ing extending the endoscopic classification to all forms of classical groups, spin
groups, exceptional groups and generalising the notion of Arthur packets to include
admissible representations that are not of Arthur type. We are interested in ex-
tending Arthur’s endoscopic classification of admissible representations to the split
exceptional group Go and also extending the classification to include admissible
representations that are not of Arthur type.

In this paper we begin the project of finding the endoscopic classification of
unipotent representations of Gao(F'), where F is a p-adic field; see [Lus95b, Section
0.3] for the definition of unipotent representations. These representations corre-
spond to unramified Langlands parameters G5. Since a local Langlands corre-
spondence is available for unipotent representations of G as a particular case of
[Lus95b], what we seek, first, is an answer to the following question.
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If ¢ : Wk — LGy is an unramified Langlands parameter of Arthur
type ¥, how can we define a packet IL,(G2(F')) of irreducible rep-
resentations that includes the L-packet I14(G2(F')) and a function

() My(Ga(F)) — Ay,
T o= (T,

where A\w is the set of irreducible representations of the compo-
nent group Ay ::7T0(Z@2 (¥)), that has the properties predicted by
Arthur’s main local result | , Theorem 1.5.1] and also such
that

@w = Z <Sw,7‘r>w 97‘—

n€ly, (Ga(F))
is stable, for some sy € Zg, ()¢

In Arthur’s work the function ( , ), is canonically determined by endoscopic
character relations, derived mainly from the stable trace formula. We approach
this problem using | | to construct candidate packets from which stable
distributions can be formed; in forthcoming work we show that these packets are
compatible, in a precise sense, with endoscopy and twisted endoscopy. We believe
that this justifies calling these packets Arthur packets. In the case of Ga, we will
show that these candidate packets satisfy conditions coming from the fact that G
is a twisted endoscopic group of PSQOg; likewise, we will show that these candidate
packets satisfy conditions related to the endoscopic subgroups of G, which are
PGL3, split SO4, GLy and GL; x GL;. Our approach to finding these candidate

packets relies on ideas that can be traced back to Vogan | | and are developed
further in | |. The candidate packets we construct are called ABV-packets,
defined in | ]

Our goal in this paper is to construct ABV-packets for p-adic G5 in the most
complicated case, namely, the case when these candidate packets contain represen-
tations for which the component group of the corresponding Langlands parameter
is the symmetric group S3. In subsequent work we construct ABV-packets for the
remaining unipotent representations of Gy(F') and show that they satisfy the con-
ditions imposed by twisted endoscopic restriction from PSOg(F') and by endoscopic
restriction to PGL3(F') and SO4(F'). Even though this paper does not complete
that process, we prejudicially refer to ABV-packets as Arthur packets in the title
of this paper, begging the reader’s indulgence until forthcoming work is finished.

1.1. Langlands parameters for G, with component group S;. Let F be a p-
adic field. Up to @g—conjugacy, the p-adic exceptional group Ga(F') admits exactly
one Langlands parameter ¢3 : Wr x SLy(C) — LG5 with component group Ss; this
parameter arises from the subregular unipotent orbit of ég. The L-packet for ¢3 is

Iy, (Ga2(F)) = {m3, 7§, 75},

where 73 is the admissible representation which corresponds to the trivial represen-
tation of S3, m§ corresponds to the unique 2-dimensional irreducible representation
o of S3 and 7§ corresponds to the sign character € of S3. It is expected that the
distribution

Opy = O, +20,¢ + O,
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attached to the L-packet II,;,(G2(F)) is stable, where ©, denotes the Harish-
Chandra distribution character determined by the admissible representation .
The representations in this L-packet are all discrete series representations (so, in
particular, they are tempered) and depth-zero, but only 7§ is supercuspidal, while
w3 and 75 have nonzero Iwahori-fixed vectors. Note the appearance of 2 = dim p as
a coefficient in this linear combination. The exceptional group G is the smallest
rank group for which a multiplicity of greater than 1 appears in the expected stable
distribution attached to an Arthur packet.

Using a Chevalley group scheme for Go, the depth-zero supercuspidal represen-
tation 75 is given by compact induction

75 = cIndg2(g) ) Galll,

where, G2[1] is the cuspidal unipotent representation of G2 (F,) appearing in | ,
page 460] and G5(Op) is the maximal compact subgroup of Go(F'); see also | ,
Case 7.33]. This supercuspidal representation is of great interest for a variety
of reasons. For instance, while there are four irreducible supercuspidal unipotent
representations of Ga(F'), only 7§ has the property that its corresponding Langlands
parameter is trivial on Wr. However, our interest in the representation 7§ lies in the
collection of A-packets that contain it, and the main results of this paper concern
those representations.

1.2. Main results. In order to state our main result, recall that, for any Langlands
parameter ¢ : Wi — LG, the infinitesimal parameter Ay : Wi — LG is defined by

ot =0 (v () /2 i)

Let Agub := Agy : Wp — L@, be the infinitesimal parameter of ¢3. It is natural to
consider all Langlands parameters ¢ such that Ay = Agyp. In this paper we use the
Bernstein decomposition to find an intrinsic description of category Rep(Ga(F'))sub
of all representations of Go(F') with infinitesimal parameter Agyp. It turns out that
every Langlands parameter ¢ with Ay = Aqup, is of Arthur type, i.e., there exists an
Arthur parameter 1) : Wg x SLa(C) x SL2(C) — LG5 such that ¢ = ¢y, where

1/2 0
(/I)Tb(w?m) = ¢ (’LU7.'17, (|w0 |w|1/2>) .

For an Arthur parameter ¢, denote by Ay, = 7T0(Zé\2 (Im(¢)))) the component group
of ¢. For an Arthur parameter ¢, we refer to Ay, as its infinitesimal parameter.
We write A\w for the set of equivalence classes of irreducible representations of
Ay; below, we will identify a representation of A, with its character.
The two main theorems of this paper are the following.

Theorem 1.1 (See also Theorem 2.11). For each Arthur parameter v with infini-
tesimal parameter Asup, there exists a finite set Iy, (G2(F')) of irreducible unipotent
representations and a function

(5 dy  My(Ga(F)) = Ay
= <a77>w’
such that
(a) if ¥ is trivial on SLo(C) then all the representations in IL,(Go(F')) are
tempered and ( , )y is bijective;
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(b) if ¢ is not trivial on SLy(C) then IL,(G2(F')) contains non-tempered rep-
resentations and { , )y s not necessarily bijective;
(c) if m is spherical then ( ,m)y, = 1, the trivial representation of Ay.

The packets I, (G2 (F)) are displayed in Table 2.11.3; note that each one contains
m5! As further justification for referring to II,(G2(F)) as an Arthur packet, we
study the stability of these distributions ©,. At present, our result in this direction,
Theorem 2.16 is conditional. To state the hypothesis of this theorem, let us say
that an Arthur parameter ) : W, x SLy(C) — LGy is tempered if the Langlands
parameter ¢, is bounded upon restriction to Wg.

Theorem 1.2 (See also Theorem 2.16). For every Arthur parameter 1 with sub-
reqular infinitesimal parameter, consider the invariant distribution

@1/1 = Z <a1/1a 7T>¢ O, (1)
w€elly, (G2(F))
where ay, is the image of sy =1 (1,—1) in Ay. Suppose ©y is stable when ¢ is
tempered. Then the distributions O, are stable for all Arthur parameters ).

We expect to prove that ©, is stable when v is tempered and therefore remove
this hypothesis from Theorem 2.16, making that result unconditional.

In forthcoming work we fully justify calling II,(G2(F)) an Arthur packet by
showing that IT, (G2 (F)) also satisfies properties relating to (twisted) endoscopy for
G; see also Section 1.6. As mentioned above, we believe that these two properties of
the packets IL;,(G2(F')) — stability of the associated distribution and compatibility
with endoscopy and twisted endoscopy — justify calling these Arthur packets.

1.3. Strategy of the proof. The Langlands correspondence for unipotent repre-
sentations of Go(F') determines a bijection between isomorphism classes of simple
objects in two categories:

P (Rep(Gg(F))sub>

simple simple

< (Perg; <Xs“b>>/iso 2)

T = P(m),

iso

where Xqp is the moduli space of Langlands parameters ¢ : Wi, — C/l\z for which Ay
is (/}'\g—conjugate t0 Agub := Ag, and where Peré\2 (Xsub) is the category of equivariant
perverse sheaves on Xg,},; see Proposition 2.7. We use the “microlocal vanishing
cycles” functor introduced in | | to define

EVSw : Peré; (Xsub) — A\d)'

After passing to isomorphism classes of simple objects, the packet IL,(G2(F)) is
defined as support of Evsy:

Iy (G2 (F)) = {m € (Rep(G2(F))sub) ol : Busy P(m) # 0}

/iso

By restriction, Evs, gives the function ( , )y : II,(Go(F)) — Ew appearing in
Theorem 1.1. Finally we use Evsy, to define the stable distributions appearing in
Theorem 1.2.

It is important to observe that even when a Langlands parameter, ¢, is not
of Arthur type one can still define a packet H@BV using the functor Evs from
[ |. This will be important in our forthcoming work since not all unipotent
representations of Gy(F') are of Arthur type.
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In the proof of Theorem 1.1 we use (2) and also establish a tighter connection
between these categories, known to us as the Kazhdan-Lusztig conjecture. Recall
that any irreducible representation 7w can be written as a Langlands quotient of
M., where M is the standard module of 7.

Proposition 1.3 (See also Proposition 2.9). For any irreducible admissible = with
infinitesimal parameter Agup, let P(m) = jiLr[dim €] be the corresponding simple
perverse sheaf under (2), where j : € — Xqup is inclusion. Let Elﬂ = 5Ly, be the
standard sheaf defined by L. Then, the multiplicity of @ in M, is equal to the
multiplicity of L in P(x').

See Proposition 2.9 for unexplained notations and a more precise statement.
In Section 3.13 we also define a Fourier transform Ft functor on PerC?2 (Xsub) and

show that it corresponds with the Aubert involution D¢, defined in | | on the
Grothendieck group KRep(G2(F))sub of Rep(G2(F))sub-

Theorem 1.4 (See also Theorem 2.19). The Aubert involution on KRep(G2(F))sub
commutes with the Fourier transform on KPeré\2 (Xsub) under the correspondence
(2), i.e., the diagram

D 2
KRep(Ga(F))suy ——2— KRep(Ga(F))sub

g i

Ft
KPeré; (Xsub) _ KF’er(?2 (Xsub)
commutes.

Especially when combined with Theorem 1.4, Proposition 1.3 suggests that there
is a stronger connection between categories Rep(Ga(F))sup and Pera\2 (Xsup) than
(2) might suggest on its own. See also Remark 2.8.

1.4. Geometric calculations. We find an equivalence of categories
Peré} (Xsub) = Pergr, (det g Sym3)7

where det ™! ® Sym? is the twist by det ™' of the canonical four-dimensional repre-
sentation of GLy on the vector space P3|z, y] of homogeneous cubic polynomials in
two variables. The proof of our main theorems relies on a microlocal study of the
simple GLy-equivariant perverse sheaves on det ~' @ Sym®. Since we believe such
a purely geometric problem might be of some independent interest, we present it
in a self-contained way so that it can be read without reference to our application.
As such, Section 3 is precisely a study of the microlocal geometry of homogeneous
cubics in two variables.
More precisely, using | |, in Section 3 we compute the functor

Evs : Pergr, (det ~' ® Sym®) — Locgr,, (A™8)
on simple objects, where A™® is the regular part of the conormal bundle
A=T¢, (det ™' ® Sym?).

The functor Bvs converts equivariant perverse sheaves on det ~! ® Sym? into local
systems on the regular part of the conormal bundle of det ~! ® Sym®. Not only is
this a great tool for understanding Pergy,, (det ~' ® Sym3) itself but, as explained



ARTHUR PACKETS FOR G2 AND PERVERSE SHEAVES ON CUBICS 7

in | |, it is the key to understanding ABV-packets of admissible represen-
tations. We refer to BEvs as a microlocal vanishing cycles functor because, for every
(r,s) € A™%,

(B F)(,.) = (RO, [-1]F), [dim C;][— dim(det ~" @ Sym?)]

where C? is the dual orbit to the GLa-orbit C,. of the cubic 7 in det ! ® Sym3 and
where R® is the vanishing cycles functor.

In Section 3 we also study the Fourier transform on Pergr,, (det ~!®Sym?), which
interacts nicely with Evs.

1.5. Geometric content and related literature. The representation det ~! ®
Sym?® is an example of a prehomogencous vector space with finitely many orbits.
These have been studied systematically; the case of Sym? is [ , 88, Proposition
3, Case (8)] and | , Example 9.1] gives a microlocal analysis of that case.
The action Sym® has a non-trivial centre while the twist det ~! ® Sym? is faithful
and this twist changes the both the equivariant fundamental groups and microlocal
equivariant fundamental groups. In any case, we do not see how to use the works
cited above to recover our calculations concerning Pergy,, (det ~' @ Sym?) directly.

It should be possible to bring the techniques of | ] to bear on Pergyp,, (det ~'®
Sym?’) to reveal the structure of this category as a quiver category, but it seems
that our case does not appear in that paper. We are very interested in pursuing
this avenue.

This may be taken as motivation for the microlocal study of Pergp,(det ~* @
Sym?®) given in Section 2. We have written Section 3 so that it can be read first
before moving to Section 2 as an application of the geometric results of this paper.

1.6. Forthcoming work. In forthcoming work we consider the remaining unipo-
tent representations of p-adic Go(F') and calculate the ABV-packets for these rep-
resentations. We also show that ABV-packets for all unipotent representations of
G4 are indeed Arthur packets by showing that they satisfy the conditions imposed
on them by the theory of endoscopy and twisted endoscopy.

TABLE 1.6.1. Elliptic endoscopy and twisted endoscopy for Gs

PSO(8)

Go
PGL; SO,

1.7. Other exceptional groups. We have already remarked that 7§ is the only
irreducible supercuspidal unipotent representation of Go(F') for which the corre-
sponding Langlands parameter is trivial on Wr. This “superunipotent” representa-
tion 7§ is actually the first of a triple of such representations. We have seen that the
exceptional group G2 admits a unique supercuspidal unipotent representation §
with component S3 and enhanced Langlands parameter (¢s,e) where € is the sign
character of Ss. For large residual characteristic, the exceptional group F; admits
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a unique supercuspidal unipotent representation 7§ with component group Sy and
enhanced Langlands parameter (¢4, ¢) where € is the sign character of Sy. Likewise,
for large residual characteristic, Fg admits a unique supercuspidal unipotent repre-
sentation 7§ with component group S5 and enhanced Langlands parameter (¢s, €)
where ¢ is the sign character of S5. In each case, the Langlands parameter is of
Arthur type and therefore determined by a unipotent orbit in the appropriate split
exceptional group; these are given in Table 1.7.1. The L-packets containing these
representations have cardinality 3, 5 and 7, respectively, since there are 3, 5 and 7
irreducible representations of the symmetric groups Ss3, Sy and Sj, respectively.

TABLE 1.7.1. A triple of “superunipotent” representations

split  unipotent fund’l  irred superunipotent Lusztig’s
group orbit group rep’n representation classification
[ | [ |
Gy Ga(ay) S3 e (sign) 7§ = cIndngg)F) Go[1] 7.33
Fy  Fi(as)  Si e (sign) f=cIndge) FI] 7.26
Es  BEs(ar) S5 e (sign) w5 =cIndg’ ) B[] 7.1

We remark on one final common feature of these examples: the groups involved,
Go, Fy, and Eg are the only three semisimple algebraic groups which are simply
connected, adjoint and have no outer automorphisms. It is a direct consequence
that over a p-adic field there is a unique form, which must be split. For G5 this is

explained in | , Section 2—4], but follows also from | , Theorem 26.19,
Proposition 33.24] and | , Theorem 6.4]. The proofs for the other cases are
analogous.

We have begun a study of the supercuspidal unipotent representation 7§, parallel
to the study of 7§ in this paper. While Langlands parameters with the same
infinitesimal parameter as 7§ are classified by orbits of homogeneous cubics in two
variables, Langlands parameters with the same infinitesimal parameter as 7§ are
classified by pencils of quadratics. We hope some day to make a similar study of
.
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Moussaoui for patiently answering our many questions about Lusztig’s classification
of unipotent representations and many related matters. The authors would also
like to thank all the Voganists, especially Bin Xu, Sarah Dijols, Kam-Fai Tam,
Jerrod Smith, Geoff Vooys and Nicole Kitt for participating in numerous talks
as these ideas and calculations were worked out. We thank Thomas Bitoun for
helpful conversations. We are grateful to Goran Mui¢ for answering our questions
and explaining his work on admissible representations of Go(F). We thank George
Lusztig for pointing out to us that Proposition 1.3 may be deduced, with some work,
from | , Corollary 10.7]. Finally C.C. would like to thank James Arthur for
many helpful conversations over the years and for drawing his attention to the triple
of “superunipotent” representations of the exceptional groups Go, Fy and Fs.
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2. MAIN RESULTS ON ADMISSIBLE REPRESENTATIONS OF p-ADIC Gy

Let F be a p-adic field; let ¢ be the cardinality of the residue field of F' and let
OpF be the ring of integers in F.

2.1. Roots and coroots. Let G be the unique group of type Gy over a p-adic
group F'. Recall that G5 is split over F' as discussed in Section 1.7. Fix a maximal
split torus T of G5 and denote the corresponding set of roots by ®(Gz). Let
a,f : T — F* be a choice simple roots of Gy with « short and 8 long. Then the
positive roots of ®(G3) are

au67a+572a+6,3a+ﬁ,3a+267

and the Cartan matrix is

((04,00 <04,5>> _ ( 2 _1>

(B,a)  (B,B) -3 2)°

Denote @Y (G2) the set of coroots of Gy and by oV, 8" : F* — T the coroots of
and (. Following | |, we fix an isomorphism 7' — F* x F* by

= ((2a + B)(1), (o + B)(2))-

We use the notation m : F'* x F'* — T for the inverse of this isomorphism. Under
this identification we have

aY(a) =m(a,a™t), and BY(a) = m(1,a).

Let ég be the dual group of G5 over the complex field obtained via an identifi-
cation of the roots ®(Ga) = <I>V(G2) and ®Y(Gy) = ®(G,). Denote by & € ®(Gy)
(resp. B € ®(G3)) the image of a" (resp. 8Y) under this identification. Then G is
a complex reductlve group of type G4, with blmple roots & ,8 Notlce that & is the
long root ¢ of Gg and 3 is the short root of Gg We will denote by T the maximal
torus of Gs. The Cartan matrix of Gs is given by

(Gar )= (5 %),

As above, we fix an isomorphism T — CX x C* by

t = ((&+28)(1), (@ + B)(t)).

jo

Note that we have
a(m(z,y)) =z 'y?, and Bz, y)) = zy . (3)

We write 7 : C* x C* — T for the inverse of this isomorphism. We will denote
&Y, BY : C* — T the coroots of & and 3. We have again that

&Y(a) =m(1,a), BY(a) = m(a,a™").

Note that under the identification ®(Gy) = (I)V(G2> we have a = &Y and 8 = V.
Moreover, we have (&+3)Y = 3aY+5Y, (@+28)Y = 3aV+25Y, (a+36)Y = aV+5Y
and (2& + 38)Y = 24 + Y. These relations can be checked using the explicit
formula for 4V (a),a € C*, as given in | , p-467].
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2.2. Chevalley basis. Denote by go the Lie algebra of G2 and gs := go ¢ the Lie
algebra of 62. For each root v € ®(G3), denote by g, C g2 the root space of +.
We fix an element X, € g, as in [BJ]. Note that in [BJ], the root « is denoted
by a; and § is denoted by aq. For each root v € ®(Gs), denote by U, C G the
corresponding root space with Lie algebra g,. We fix an isomorphism ., : F' — U,
defined by z(t) = exp(tX,). Let U be the subgroup of Go = G2(F') generated by
U, when ~ runs over all positive roots of G>. For each positive root v € ®(G2),
denote ¢ : SLy(F) = G the embedding determined by

(4 D)m ()

For a positive root v, denote h (t) = v, (diag(t,t™1)), t € F* and wy =1y (( 1 1)).
Note that h,(t) = vY(t) and w, is a representative of the Weyl element associated
with . Moreover, denote by GL2(7) the subgroup of Gy generated by ¢ (F') and
T. Note that GLa () is isomorphic to GLo(F'). Indeed, one can extend ty to an
isomorphism GLy(F') = GLa (7).

For the dual group 62, we will use similar notation as above. For example,
for a root 4 € ®(Gs), we will fix element X5 € g4 as in [BJ], where our &
(resp. f3) is ap (resp. ;) in [BJ]. We define an embedding x5+ C — Gy by
x5(t) = exp(tX4). Similarly, let ¢35 : SLy(C) — G> be the embedding determined
by 4 and hs(t) = t5(diag(t,t71)),t € C*. Moreover, denote Hy = [X5, X_3] € g2
for a positive root 4. Note that the matrix realization of H is also given in [BJ].
For a positive root 4 € {d,B}, denote by GL2(%) the subgroup of @2 generated
t5(SLy(C)) and T. Then GL2(%) is isomorphic to GL2(C), and ¢4 extends to a
group homomorphism GLy(C) — GLy(5) — G2. We fix embeddings vpand vy os
such that

LB(G; 2)):@@;,@, LMB(@ 2)):@@%@. (4)

2.3. Representations of G(F'). Let F be a p-adic field. We recall some notations
from | | on representations of Gy = G2(F'). Write v as the character of F*
defined by the absolute value of F, i.e., v(t) = |t|p. Let B = TU be the standard
Borel subgroup of G with maximal torus 7" and maximal unipotent U as fixed in
previous sections. For a simple root v € {a, 5}, let P, be the standard parabolic
subgroup of G5 with Levi subgroup GLa (7).

For a pair of characters (x1,x2) of F*, we view x1 ® x2 as a character of T
under the isomorphism m™' : T — F* x F*. For a pair of complex numbers of
(s1, 82), denote

I(v* x1, v°2x2) = Ind 2 (" 1) ® (v x2)).

When 04, O are unitary and s; > so > 0, the representation I(s1, s2, x1, x2) has
a unique quotient, which is denoted by J(s1, s2, X1, X2)-

For a simple root v € {«, 8}, a representation 7 of GLa(y) = GLy(F) and a
complex number s € C, denote

I(s,m) = Indgj((us odet) ® 7).

If 7 is tempered and s > 0, denote by J,(s,m) the unique Langlands quotient of
L(s,m).
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For a pair of characters x1, x2 of F*, denote by m(x1, x2) the induced represen-
tation Indj LQ(F) (x1, x2) of GLa(F), where By, is the upper triangular unipotent
Lo
subgroup of GL2(F). Denote by d(1) the Steinberg representation of GLa(F').

2 4. Subregular unlpotent orbit for G5. Every unipotent conjugacy class O in
Gg determines a G2 -conjugacy class of algebraic group homomorphisms SLs(C) —
Gg such that ¢ (§ 1) € O. Let ggup : SLo(C) — Gg be one such algebraic group
homomorphism determined by the subregular unipotent orbit of C/T‘\g Specifically,
let Ygub : SLa(C) — G be the homomorphism of algebraic groups corresponding to
the sl(2)-triple
e=Xsq—X.

f=X_a-X h=Hs+H,

a+2p —a—23 a+28°

Then g1, is defined by

Gsub = exp(ze) = exp(xXg) exp(—ach“ﬁ),

T
1
0
1

< = O

Psub = exp(yf) = exp(yX_s) exp(—yX_4 55),

and
t 0
Psub (0 t1> = eXp<th) = €Xp( (H + Hoz+2,3>)

Now let ¢3 : Wi — C/l\g be the Langlands parameter defined by ¢3(w, ) = wsun(2);
this Langlands parameter is of Arthur type for ¢3 : W x SLa(C) — G2 defined by
Y3(w, x,y) = @sub(x). The infinitesimal parameter Agyp, : Wr — G for ¢35 is

ot 0" L)) = (M7 )

This unramified infinitesimal parameter is thus completely determined by
Mo (Fr) = exp(q/2(Ha + Hy 55)) = (26% + 8¥) @ g € X*(T) @5 C* =T
This follows from (& +28)¥ = 28" +3&" and (a¥ + (& +28)") = 24" + BY; see
Section 2.1. We observe that
Aoun (Fr) = ha(q)hs(a%).

2.5. Moduli space of Langlands parameters. In the remainder of this paper,
we replace the L-group “Gy with the dual group C/l\g; this should cause no confusion
since G is split over F.

For any Langlands parameter ¢ : Wy — é\g, we refer to

>\¢:WF — é\g

wo ¢<w7<\w|01/2 |w\91/2>)

as the infinitesimal parameter for ¢. As explained in | , Proposition 4.2.2],
the moduli space of Langlands parameter ¢ for which Ay = Agup is

Veub = {ToX + TIXCH‘B + TZXOH-?B + TSXA+3£3 ‘ T0,71,72, 7‘3} ~ A% (6)
Using [ , Section 4.2], it follows that
Voub = ﬁz(CI)a
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for the weight filtration of gy determined by the action Ad(Agup(Fr)). The central-
izer of Agup in G is Hgyp, = GL2(8), as defined in Section 2.2. We will identify Viup
with A* (column vectors) by roXa+r1 Xy, 572X, 05173 X 5 a5 = (10,71, 72,73)"
The action Hgyp X Vaup — Vsub is given by

a3 —3cd? —3c%d —c3 0

W — 1 —bd? d(ad +2bc) c(2ad+bc) ac? 71

' ad —be | —b*d  b(2ad +bc) a(ad+2bc) a’c || re

- 3ab? 3a2b a® r3
where h = (‘; g) € Hyyp and 7 = (ro,71, 72, r3)t. The above action can be computed
using the matrix realization of G5 given in [BJ], where the negative signs follows
from the fixed choices of Chevalley basis of [BJ]. See [ , (3.5)] for a matrix
realization of the above action in the form A= tvh, h € Heup, v € Viu, based on the

commutator relation | , p-443, (3.10)]

Recall that the equivariant fundamental group of an Hgyp-orbit C C Viyp is
defined by

Ac =m0(Z1,,,(c)) = m1(C,0) 2, (o)

for the choice of a base point ¢ € C'. Consider the following 4 points in Vyyp:
Co = (0707070)t7 1 = (1705070)t7
c2 = (0,1,0,0)", c3 = (1,0,1,0)".

Lemma 2.1. The action of Hgup on Vsun, has four orbits C;, ¢ = 0,1,2,3 with
representatives ¢; € C;. Moreover, we have Ac, = S3, and Ac, = Ac, = Ac, =1,
where Ac, is the component group of C; fori=0,1,2,3. Here Sy is the symmetric
group of 3 letters.

Proof. The orbits can be computed directly as in | , p-197]. See 3.1 for a
different description of the orbits.

Consider the element c3 = (1,0,1,0)! € C5. We have that A3 & Zy_ (¢c3)°, i.e.,
the component group of the centralizer of c¢3 in Hg,p. Suppose that h = (‘Cl g) €
Hgyp is in the centralizer of c3. By the action of Hgyp on Viyp,, we have

d® —3c%d 1

boon — 1 —bd® 4+ c(2ad+be) | [0
3T ad —be | —b*d+aad+2bc) | T |1
—b% + 3a%d 0

Then we can solve that h.cs = ¢z is in the subgroup of GL3(C) generated by

1 V3 1 0
2 2
(\f _% > and (0 _1).

This group is discrete and isomorphic to S3. Thus we get Az = S3. We omit
for now the details of the calculation of Ay, A; and As, these can be infered from
Lemma 3.3. ]

The moduli space of Langlands parameters ¢ for which Ay is é\g—conjugate to
>\sub is e
Xsub = G2 X Heup ‘/sub (7)
The equivalence of categories

Pera(Xsun) = Perp,,, (Veun) (8)
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matches G-orbits ¢; in Xgup with Hgyp-orbits C; in Vi, Under this matching,
Lemma 2.1 gives us the equivariant fundamental groups of the G-orbits S; in Xg,p:

Ag, = 1 Ae, = 1
A¢2 =1 A¢3 = S3~ (9)

Proposition 2.2. There are exactly four C/J\g-conjugacy classes of Langlands pa-
rameters for Go with infinitesimal parameter é\g-conjugate to Asub; these conjugacy
classes are classified by the four ég—orbits ¢ in Xgup, ¢ = 0,1,2,3. Likewise, there
are exactly four Hgyy,-conjugacy classes of Langlands parameters for Gy with infin-
itesimal parameter equal to Agup; these conjugacy classes are classified by the four
Hgup-orbits C; in Vg, © = 0,1,2,3. The four orbit representatives chosen above,
co, €1, co and c3 determine, respectively, the following four Langlands parameters

for Ga:

¢o(w,x) = Asup(w) = m(|w], [w]) = (24" + 5Y)(|w]),
$r(w,x) = wa(diag(w]'? Jw]'/?)) a(),

Ga(w, ) = 14 pp(diag(w]'/?, [w]/?) 14 05(2),
ps(w,z) = @Peub(2).

Moreover, the component group Ay, is equal to the equivariant fundamental group
Ac,, where Ay, = 71'0(Za2 (61)).

Note that in the above Proposition, we have
Lapop(diag(Jw]"/? [w] /%)) = (1, w]'/?)
and

ta(diag(lw[*/2, [w]'/?)) = m(jwl, |w[*/?).

Proof. Tt is known that the orbits of the Hgyy, action on Vy,y, classifies the conjugacy
classes of Langlands parameters with infinitetesimal parameter Ag,,. The recipe
is given as follows. For ¢; € Cj, the corresponding Langlands parameter ¢; :
Wp x SL2(C) — Gy (C) is determined by the condition

i (1, ((1) ;)) = exp(r¢;),r € C,

di(w,dy) = AMw),w € Wg.
Note that the first condition will fix the value of ¢; on 1 x SL2(C), which together
with the second condition determines the value of ¢; on Wr x 1. We can then check
that ¢; determined by ¢; has the form as stated in the Proposition. The “moreover”
part is a standard fact; see for example | , Lemma 4.6.1]. |

and

2.6. Dual moduli space of Langlands parameters. Consider the “dual” infin-
itesimal parameter
N () =as (17 0 2) (10)
sub = Psub 0 |w|1/2 .

*

The moduli space of Langlands parameters ¢ : W — G for which Ag = Alyp 18

Viw = {SOX—d + SlX,@,B + SQX,C@,QB + S3X*¢5¢*3[§ | 0,81, 82, 83}. (11)
Then, arguing as in Proposition 2.2,

*

sub — /g\Q(qil),
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for the weight filtration of g determined by the action Ad(Agup(Fr)). The central-
izer of A}, in G is again Hgy, = GLg(&). We will identify V¥, with A* (column
vectors) by soX_4 + SlX—d—B + SQX_d_QB + S3X—&—3B > (50,51, 52,83)". The
action Hgup, x Vi — Vi, is given by

t -1

&3 —3cd? —3c%d -3 So

_ —bd? d(ad +2bc) c(2ad +bc) ac? $1

h-s = (ad = be) —b%d  b(2ad + be) a(ad +2bc) a’c | so
—b3 3ab? 3a2b a® S3

where h = (2Y) € Hgup, and s = (s, 51, 52, 53)".
The Killing form for gy establishes the duality between g2(q) = Vi, and
02(q71) = Vo
(1):820q) xB2(¢" ") = C.
In the coordinates chosen above, this is given by

(r]s)=roso+ 3r1s1 + 3rase + r3ss.
We will also need the Lie bracket
[, 1:82(q) x 82(¢~") —= Lie Haup := boup- (12)

Lemma 2.3. Forr = (rg,r1,72,73)¢ = 2 riXar5 €V oand s =3 siX
V*, the Lie bracket (12) is given by

[r, 8] = (roso + 2r181 + 7282)Ha + (1181 + 21989 + r383)(Ha + HB)
+ (—r180 + 21281 + r352)XB + (—ros1 + 2r152 + T‘QSS)X_[;.

—(a+if) €

Proof. Write r = (rg,71,72,73)" = ZTiX&HB €V and s = ZSiX_(d+i[§) eV,
we compute [r, s]. Note that

HdJrB =3H4 +HB’H5C+23 =2H,4 +3HB7H(3¢+BB

The above relations can be checked from the matrix realizations of Hs given in [13]]
and they reflect the facts that (& + 8)Y = 24aY + BV, (& +28)V = 3aY + 28V, and

:H&—I—HB.

(6+3B)Y = &" + B. Using the Chevalley basis in [13J], we have
[X’S"X—(d"ré)} *X_B, [X&+B’X_d] = —XB,
[Xd""B’X—(d-l-Qﬁ) = 2X—B’ [Xd+QB7X_(&+[§)] = 2Xﬁ7
(Xt X*(dJrSB)] =X 5 Xaysp Xf(&+23)] = Xp-

Accordingly,
[r,s] = rosoHa + risiHg g +rasoH, o5 +r3ssH, 55
+ (=riso + 2ras1 +7382) X5 + (—ros1 + 2r1s2 +1r283) X5,
which gives the formula of [r, s]. O

2.7. Langlands classification. Recall that the Langlands parameter ¢¢ is given
by ¢o(w,z) = (24" + 3¥)(Jw|) and it has image in T. Under the local Langlands
correspondence for tori, ¢y corresponds to the character v ® 1 of T, see Section
2.3 for the notations. Let 7y be the irreducible smooth representation of Ga(F')
corresponding to ¢y under the Langlands correspondence for unramified principle
series representations. Then my is the spherical component of the unramified
principal series I(v ® 1), where a representation is called spherical if there is a
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nonzero vector fixed by the maximal open compact subgroup G2(Op). Note that
we have w,(r®1) = 1®v. By | , Proposition 4.3], the representation I(1®v)
contains exactly two irreducible non-equivalent irreducible subrepresentations (1)
and m(1)’, which are square-integral. Moreover, in the category of Grothendieck
groups of representations of Go(F'), we have

Ilev)=I1Ir®1)
=1I5(1,7(1,1))

=1,(1/2,6(1)) + 14(1/2,1cL,) (13)
= I5(1/2,6(1)) + 15(1/2, 161, ),
and
10(1/2,6(1)) = m(1)" + Ja(1/2,6(1)) + J5(1/2,6(1)),
I5(1/2,6(1)) = m(1) + m(1)" + J5(1/2,6(1)), (14)
1a(1/2,1a1,) = (1) + Ja(1, (1, 1)) + Jp(1/2,6(1)),
15(1/2,1aL,) = Jp(1,m(1,1)) 4+ J5(1/2,6(1)) + Ja(1/2,6(1)).

Lemma 2.4. With reference to | |, the representation m(1)

the representation Jg(1,7(1,1)) is spherical.

is generic and

Proof. Tt is well-known that for an irreducible representation 7 of a Levi subgroup
M of a p-adic group G, the induced representation Indg (1) is generic if and only
if 7 is generic; moreover, if 7 is generic, then IndIGD(T) contains a unique generic
component. Here P is a parabolic subgroup of G with Levi M. This fact together
with the above decomposition (14) of various induced representation implies that
m(1)" is generic. In fact, since 1gr, is not generic, we know that I, (1/2,1qr,) is
not generic for v = «, 8. Thus neither J,(1/2,6(1)) nor Jz(1/2,6(1)) is generic
from the last two rows of (14). Since §(1) is an irreducible generic representation
of GLa(F'), we see that I,(1/2,d(1)) has a unique generic component, which must
be 7(1)’ from the decomposition of I,(1/2,8(1)). This proves the first part.

To see that Jg(1,7(1,1)) is spherical, we only have to notice that neither
1,(1/2,6(1)) nor Ig(1/2,6(1)) is spherical, and thus any component of I, (1/2,9) is
non-spherical. Thus, Jg(1,7(1, 1)) is the unique spherical component of I(1Qv). O

Note that 7wy has infinitesimal parameter Mgy, and thus every irreducible com-
ponent of I(1 ® v) has infinitesimal parameter Ag,. Using Lemma 2.4 we now
have

m = Jg(1,7(1,1)).

For simplicity of later use, we introduce the following notations for the other four
irreducible components of the induced representation I(1 ® v):

m = Ja(1/2,6(1)),
mo = Jg(1/2,6(1)),
w3 = w(1l),
w5 = w(l).

Let G2[1] be the unipotent supercuspidal representation of G2(F,) appearing in
[ , p-460]. To the list above, we add

w5 = cIndnggL)Gg[I],
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as defined in the Introduction. From | |, we know that all of the 6 irreducible
representations appearing in this section are unitary. Moreover, they are also
unipotent in the sense of Lusztig | |. The notation above in this section

will be justified in Section 2.8.

2.8. Langlands correspondence. In | | Kazhdan-Lusztig proved a local
Langlands correspondence for representations with Iwahori-fixed vectors. This cor-
respondence was extended to all unipotent representations of unramified adjoint
simple algebraic groups over F' in | ]. More precisely, for such groups G,
Lusztig proved that the set of isomorphism classes of unipotent representations is
in one-to-one correspondence with a pair (¢,r), where ¢ : Wr x SLy(C) — G is an
unramified Langlands parameter and r is a representation of the component group
Ag. Such pairs (¢,r) are called enhanced Langlands parameters. This classifica-
tion of unipotent representations was extended to more general groups in | |
recently.

In our special case when G = Gj, all enhanced Langlands parameter with
infinitesimal parameter Ag,, are given as follows

(¢051)7 (¢1v]]-)7 (¢2a]]-)’ (¢37]]-)’ (¢379)7 and (¢37€)7

where in each pair (¢;, 1), 1 denotes the trivial representation of the corresponding
component group, ¢ denotes the unique irreducible two-dimensional representation
of 83 =2 Ay, = Ac, and € denotes the non-trivial one-dimensional representation of
Ss.

When composed with Aubert duality, the Local Langlands correspondence of
[ | for irreducible unipotent representations with infinitesimal parameter Agyp,
is explicitly given in the following theorem.

Theorem 2.5 (| , ). The local Langlands correspondence for represen-
tations with subregular infinitesimal parameter is:
enhanced irreducible
L — parameter admissible rep’n
(¢o, 1) +— o,
(1,1) =
(¢27 IL) = T2,
(¢3,1) = s,
(¢3,0) = 3,
(d)g, 5) — 7T§.
The L-packets containing these irreducible admissible representations are
g, (GQ(F)) - {"TO}v
g, (G2(F)) = {m},
g, (G2(F)) = {m},
H¢3(G2(F)) = {773’775’775}'

Proof. Temporarily, denote by m(¢;,r) the representation corresponding to (¢;,r)
for a Langlands parameter ¢; and a representation r of the component group. We
first notice that (¢s,e) is the unique cuspidal data in the sense of | | with
infinitesimal parameter Agup, see | , P-270] and thus m(¢3,¢) is a unipotent
supercuspidal representation, which must be of the form

Ga(F
CIndngo)p) (o)
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for an irreducible cuspidal unipotent representation o of Ga(F,). There are exactly
four irreducible cuspidal unipotent representations of Go(F,) as given in | ,

p.460]. By | |, we know that the supercuspidal unipotent representation
(3, €) satisfies the formal degree conjecture of | |, ie.,
dime
d(m(¢s3,¢€)) = 15 (0, ¢3, Ad, 9°)], (15)
where d(m(¢3,€)) is the formal degree of 7(¢s, ), normalized as in | ], v is a
nontrivial unramified additive character of F' and
L(1 —s,¢3,Ad)
Ad,p°) = Ad, )
7(57¢37 »lﬁ ) 6(57¢37 ,¢ ) L(S,¢3,Ad)
is the adjoint y-factor of ¢3. On one hand, we have
dimo
d(n) = ———~+—,
™) = G 0n)

where ;(G2(Op)) is the Haar measure of G2(Op), which is
WG2(0F)) = ¢~ ™) |Gy(Fy)| = ¢ °(¢° = 1)(¢* = 1) = ¢ 3(¢° = 1)(¢* - 1),

as normalized in | ]. On the other hand, we can check that
1

(L—g =21 —g s 1)¥

and €(s, ¢3, Ad) = ¢'°(1/2=%) Thus we can check that

L(87 ¢3aAd) =

9
q
0, ¢3,Ad) = .
100 A = P g
Then the formal degree conjecture (15) implies that
. dime q(¢® —1)(¢* - 1)
dim(o) = p(G2(Op)) - ——17(0, ¢3, Ad)| = .
( ) /1“( 2( F)) |S¢3‘ h/( ¢3 )| 6(q+1)2(q2+q+1)
If we compare the degree of o with the table given in | , p-460], we get that

o = G[1] and thus 7(¢3,e) = 7§.
By the unramified local Langlands correspondence, we have mg = m(¢, 1). Since
all of the m(¢;,r) have the same infinitesimal parameter as 7y, we have

{ﬂ-(¢17 ]]-)7 7T(¢27 1)7 71'((]53, ]]-)7 7T(¢33 Q)} = {ﬂ'l, T2, T3, 7T§} (16)
Reeder | ] showed that the generic representation w3 = 7(1)’ (by Lemma
2.4) must correspond to (¢3,1), i.e., m3 = w(¢p3,1). Since ¢3|w, is bounded, we
know that 7(¢s, ) is tempered, which implies that 7(¢3, 0) = 75.
Next, notice that ¢1(w, ) = t4(diag(|w], |w|*/?)) - 1a(x) has image in GLa(a) =
GL2(&). If we define the Langlands parameter

—

¢1.0 : W x SLy(C) — GLy(a) = GLy(&)
by
P1.0(w, ) = 1a(diag(lw|"/?, [w|*/?)) (@),

then ¢ can be decomposed as the composition of the embedding Gm) — é\Q
with the map ¢1 . Thus by | , Theorem 6.2], we have

M(¢1) = Ind32 (7% (¢1,0)),
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where M (¢1) is the standard module of m(¢1,1) and 7* (1,4 ) is the representation
of GLy() corresponding to ¢, under the local Langlands correspondence for
GL2(F). We further decompose ¢1 . as x ® Sym?, where Y is a character on Wp
defined by X(w) = t4(diag(|w|'/2, |w|'/?)) and Sym'(z) = t4(z). Note that ¥ is
the dual of the character |det|'/? : GLa(a) — C*. On the other hand, we have
7®(Sym') = §(1). Thus
T(p1,0) = (X ® Sym") = | det ['/* ® 6(1).

Thus we have

M) = 27| det ['/2 @ 6(1)) = L(1/2,6(1)).
Thus we get 7(é1,1) = Jo(1/2,06(1)) = 1.

Finally, from (16), we must have 7(¢2, €) = m2. The last fact can also be checked
directly. ([

Remark 2.6. Most of the representations in this paper also appear in | |
and | |, which studies the restrictions of minimal representations of an adjoint
group of type Dy to G3(F). The representation denoted by mo in this paper
does not arise in this way, however. See Table 2.8.1 for an incomplete list of
the irreducible representations with infinitesimal parameter Agyp as they appear in
related literature.

TABLE 2.8.1. An incomplete list of the irreducible representations
in Rep(G2(F))sub as they appear in related literature

[ [ I I | 1 I I
mo | Ja(1,m(1,1)) T, 1,
m1 | Ja(1/2,6(1)) T, T,
T | Jp(1/2,0(1))
T3 (1) m, Vi =U(r)
3 m(1) T, Vo =U(T2)’
5 Wév =T, V. =V[1] 7.33 e,

2.9. Langlands-Vogan correspondence. Consider the Bernstein decomposition
of the category Rep(G2(F')) of smooth representations of Go(F'). The representa-
tions that we study appear in two blocks under this decomposition.

First, consider inertial class [T'(F'), 1], where T is a maximal split torus of Gbo;
then the simple summand category

Rep(G2(F))ir(r),1)
is the category is unramified principal series representations of Go(F'). The repre-

sentations m, 71, m2, m3 and 7§ all appear in this category. Since these represen-
tations all share the same cuspidal support, we further restrict to the subcategory

Rep(G2(F)) (1 (F),ve1)

of representations with cuspidal support v ® 1; see, for example, | , VL.7.2].
This category has exactly the five simple objects mg, 71, 72, m3 and 5.
Second, consider the inertial class [G2(F), 75] and the summand category

Rep(G2(F)) [y (F) xz)»
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also appearing in the Bernstein decomposition. Because G2(F') admits no unrami-
fied characters this coincides with the cuspidal support category

Rep(G2(F))(Ga(F) xs)-

Up to equivalence this category contains exactly one irreducible representation, 3.
The category of representations that this paper treats is

Rep(G2(F))sub :=Rep(G2(F))(r(r),ve1) ® Rep(G2(F)) (G, (F),x5)-

Likewise, as in | , Section 10.2.4], the category Perg; (Xsub) decomposes
into two summand categories

Perg; (Xsup) = Pera: (Xsub)(ﬁ]l) @ Perg: (Xsub)(@’g),

where, using Lemma 2.1, the equivalence (8) and | , Théoréme 3.4.1], the
former category has exactly five simple objects, while the later has one, ZC(&c,).
To enumerate these simple objects, we use the notation

IC(Le) = jiLeldim O] (17)

where Lo is an equivariant local system on C' and C C V is an H-orbit and
J + € <= V is the inclusion. Then the simple objects in Perg (Xsub)(ﬁ]l) are
IC(1le,), IC(1e, ), ZC(1e,), ZC(1¢,) and ZC(Re, ), where 1, refers to the constant
sheaf on €; for ¢+ = 0,1,2,3 while Re¢, refers to the local system on €3 for the
irreducible 2-dimensional representation of Ag, = S5 (9). On the other hand,
Perg; (Xsub)(@"g) has only one simple object, ZC(E¢,), where &g, refers to the
local system on €3 for the sign representation of Ag¢, = Ss.

In the proposition below, we use equivalence (8) and write 1, for the constant
sheaf on C; for i = 0,1,2,3 while R¢, refers to the local system on C5 for the
irreducible 2-dimensional representation of Ac, = S3 (9) and E¢, refers to the local
system on C for the sign representation of Ac, = S3. See Section 3.1, especially
Proposition 3.4 for a detailed description of the simple objects in Perp_, (Veup)-

Proposition 2.7 (Langlands-Vogan correspondence for Rep(G2(F))sup). The local
Langlands correspondence, Theorem 2.5, together with the equivalence (8), estab-
lishes the following bijection between the simple objects in these categories:

Rep(Gg(F)) Peré; (Xsub> PerHS"b (‘/;ub)
o A IC(]]-GU) A IC(]]‘C(J)
T g IC(]].qjl) g IC(]].cl)
2 < :ZC(IL€2) < IC(II-Cz)
3 4 IC(]l@S) — IC(]lCS)
7T§ A %(R€3) AR E(,R’C%)
7T§ AR IC((S@S) A ZC(EC%)

Remark 2.8. It is natural to ask if the categories Rep(Ga(F’))sun and PerGA2 (Xsub)
are equivalent. If they are, this would be a categorical form of the local Langlands-
Vogan correspondence. We are actively exploring this question. Here is one possible
strategy to check. First, observe that Rep(Ga(['))r(r),1) is also the category
of representations with Iwahori-fixed vectors. This category is equivalent to the
category of H-modules, where H is the Iwahori-Hecke algebra for Go(F) (with
equal parameters). Under the equivalence

Rep(G2(F))(r(ry,1) = H—mod
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the subcategory Rep(G2(F))(r(r),ve1) is equivalent to the category H—mod; of
H-modules that are annihilated by some power of an ideal I <Z(H) determined by
v ® 1 according to the recipe of | |:

Rep(G2(F))(r(F)ve1) = H—mod;.

On the other hand, it is not difficult to find a progenerator for Peré\2 (Xsub)(f 1)’
so this category should also admit a module-category description. Comparing
Rep(G2(F))(G,(r),x5) and Perg: (Xsub)(@,g) should be easier, since these categories
admit natural progenerators, namely 7§ and ZC(&¢, ), respectively.

2.10. Kazhdan-Lusztig Conjecture. The Langlands-Vogan correspondence de-
fines a pairing | |

< ) > : KRep(GQ(F))sub X KPer@ (Xsub) — Z

between the Grothendieck groups of these two categories that matches irreducible
representations Rep(Gz(F')) with simple perverse sheaves only when 7 corresponds
to IC(€, L) :=IC(L¢) under the Langlands-Vogan correspondence:

<7T(¢>T),E(Q:¢“CT)> — (_1)dim¢¢
and (m,ZC(€, L)) = 0 otherwise. Note that this may be expressed in the form
<7T7£ﬁ> =1

where Lf:=7C(€, £)[— dim €].

The Kazhdan-Lusztig conjecture is the claim that standard modules and stan-
dard sheaves are also dual under this pairing. A standard sheaf on Xg}, is the ex-
tension by zero £' = (je)1£ of an equivariant local system £ on an orbit € C Xy,
where jg : € — X1 is inclusion.

Proposition 2.9 (Kazhdan-Lusztig conjecture for Rep(Ga(F))sub). With reference
to the pairing above, let M be a standard module in Rep(Ga(F))sup and let L' be a
standard sheaf on Xg,p. Then

(M, LYY =1

if, for some irreducible admissible w, M is the standard module for w and =«
corresponds to IC(C,L) under the Langlands-Vogan correspondence; otherwise,
(M, L") =0.

Proof. In Section 2.7 we found the standard modules for the irreducible representa-
tions in Rep(G2(F'))sub: the standard module for g is Ig(1,7(1,1)); the standard
module for 7y is I,(1/2,6(1)); the standard module for 7 is Ig(1/2,(1)); while 7,
7§ and 7§ are their own standard modules. Using (13) and (14), we find the multi-
plicity matrix for representations with infinitesimal parameter Ag,p, in Table 2.10.1.

On the other hand, in Theorem 3.12 we find the geometric multiplicity matrix for
the simple perverse sheaves on Vg,1; see especially Table 3.11.2. Since Table 3.11.2
is the transpose of Table 2.10.1, this verifies the Kazhdan-Lusztig correspondence
for Rep(G2(F))sub; see also | ] O
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TABLE 2.10.1. Multiplicity matrix

Standardmodules |19 m m w3 7w | T
Mo=IL(LaL1))| 1 1 2 1 1]0
My=1,1/261)| 0 1 1 1 0|0
My=1I5(1/2,6(1)) | 0 0 1 1 10
Ms =3 0 0 0 1 010
M =8 0 0 0 0 10
Ms =7 0 0 0 0 01

2.11. Main result. In this section we describe our progress toward proving an
adaptation to Ga(F) of the main local result | , Theorem 1.5.1] of Arthur’s
endoscopic classification.

Lemma 2.10. (1) The Langlands parameters appearing in Proposition 2.2 are
all of Arthur type. In fact, if we define

Yo(w,z,y) = Psun(y),
Y1(w, z,y) = a(®) t4,05(),
Ya(w,2,y) = 1a(y) tay9();
Y3(w, 2,Y) = Psub(),
then each v; is an Arthur parameter and
Yi(w,x,dy) = ¢i(w, x), 1=0,1,2,3.

(2) Let Ay, = Z@z(z/)i)/Zéz(z/)i)o be the component group of ;, then we
have Ay, = Ay, = S3 and Ay, = Ay, = Sy, where Sy is the order 2
multiplicative group.

(3) The image of sy, :=1;(1,1,—-1) € Zg, (¢;) in Ay, is given by: sy, =1 € Ss,
Sy, = —1 €83, 5y, =—1€ 8 and sy, =1 € Ss.

Proof. A direct calculation shows that each 1; is an Arthur parameter and sat-
isfies ¥;(w,x,dy) = ¢;(w,x); in particular, note that each ¢; is trivial on Wpg,
hence bounded on Wg. The computations of Ay, and Ay, are the same as the
computation of Ag,. Using (3), we can check that

ATPl = sz = {T/)’\l(l, 1)’7?7'(17 _1)}

Thus Ay, = Ay, = So. Finally, notice that sy, = sy, = M(1,1) and sy, = sy, =
m(1,—1), we get the third part of the lemma. O

Notice that
wB(wa-T7 y) = 1/10(%%30) and 1/)1(71179579) = w2(wa y,l")

We may now state the main result of this paper.

Recall that we write Ed, for the set of equivalence classes of irreducible represen-
tations of Ay and that we identify these representations with their characters.

Recall also that an admissible representation 7 of Go(F) is spherical iff it has a
non-trivial vector which is fixed by the maximal compact G2(Op). Such represen-
tations are sometimes called “unramified” representations.
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Theorem 2.11 (See also Theorem 1.1). For every Arthur parameter v with subreg-
ular infinitesimal parameter there is a finite set ILy, (G2 (F)) of irreducible admissible
representations in Rep(G2(F'))sup and a function

< s >w : Hd)(GQ(F)) — A’l/J
T o= (T,
defined using a microlocal study of the moduli space of Langlands parameters Xqu,
such that

(a) if ¢ is trivial on SLa(C) then all the representations in IL,(G2(F)) are
tempered and ( , )y is bijective;
(b) if ¢ is not trivial on SLy(C) then IL,(G2(F)) contains non-tempered rep-
resentations and { , )y need not be bijective;
(c) if m is spherical then ( ,m)y, = 1, the trivial representation of Ay.
The finite sets IL, (G2 (F)) are ABV-packets, as defined in | |; they are listed
explicitly in Table 2.11.3. The functions { , )y : y(G2(F)) — A\w are displayed
in Table 2.11.1, where 1 is the trivial representation, o denotes the reflection
representation of Ay, and Ay, € denotes the sign representation of Ay, and Ay,
and T denotes the non-trivial character of Ay, and Ay,.

TABLE 2.11.1. The functions ( , )y : ILy(G2(F)) — Rep(Ay)
appearing in Theorem 2.11

’ Rep(GQ(F))sub H Rep(A¢o) Rep(Ad)l) Rep(Aibz) Rep(Al%) ‘

o 1 0 0 0
1 % 1 0 0
T 0 T 1 0
3 0 0 0 1
et 0 0 T 0
5 € 1 T €

TABLE 2.11.2. Artist’s impression of the decomposition of
Rep(G2(F))sub into L-packets (squares, left and right) and A-
packets (circles, right), in which Aubert duality operates by re-
flection about the dotted line
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TABLE 2.11.3. L-packets and A-packets for all admissible repre-
sentations of Go(F') with subregular infinitesimal parameter

A — packet L — packet

My (G2(F)) = {mo, 71,75} Iy, (G2(F)) = {mo}

Iy, (Ga(F)) = {m1, m2, 75} Iy, (G2(F)) = {m}

Iy, (G2(F)) = {me, 73,75} Iy, (Go(F)) = {m2}

Iy, (Go(F)) = {m3, 75,75} My, (G2(F)) = {m3, 73,75}

Proof. The function (, )y : I1,(G2(F)) — Rep(Ay) is constructed as follows. First,

observe that
simple

(Rep(Ga(F)aw) = UTLu(Ga(F)),
since all Langlands parameters with subregular infinitesimal parameter are of
Arthur type, by Lemma 2.10. The Langlands-Vogan correspondence, Proposi-
tion 2.7, gives a bijection

simple

(Rep(Ga(F))aw ),

150

simple

— (Peré\2 (Xsub))
When combined with the categorical equivalence
Peré\z (Xsub> = PerHsub (‘/sub)7

/iso

this gives a bijection
P (Rep(Gz(F))sub)jiiz;ple — (Pel’Hsub(V;ub))jiiZ;ple.
Next, recall the "microlocal vanishing cycles" functor
NEvs : Perg., (Vaun) — Locy,, (Tf VI8,

sub © sub
introduced in | , Section 7.10]. Since the components of Tj; Vig are the
conormal bundles TV, % as C ranges over Hg,p-orbits C' C Vyyp,, we have
Lo, (T, ViiE) = & Locr,,, (TAVE).
By Lemma 2.10, each Hgyp-orbit C' C Viup is of Arthur type and the collection of
these orbits is indexed by the Arthur parameters vy, ..., %3 defined above, so we
write C' = Cy. By | , Proposition 6.7.1] and Lemma 2.4, the equivariant
fundamental group of TC V;ﬁf is Ay. Thus,
© Locy,, (ToVaub) & %ReP(Aw)-

Thus, NEvs defines a function

1
(Pern (V) 22 = T R 2"
When combined with the first paragraph in thls proof, this defines

simple
nevs : (Rep(Gz( ) sub) — H Rep(A S/lqur:aple'

Now, for each 1), compose this with the projection to Rep(Ay, ySimple 6 define

*) Jiso
simple

nevsy : (Rep(Ga(F)Jaws) | — Rep(Ay )™,

/iso /iso
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Define
I, (G2(F')) := supp nevs,, (18)
and define ( , )y : Ty (Go(F)) — Ay by
(@, )y = trace, NEvsy, P(m). (19)

We calculate the functor NEvs on simple objects in Theorem 3.14; when combined
with Proposition 3.1, the results are presented in Table 3.12.2. Now Items (a), (b)
and (c) follow by inspection of the table, in the last case using Lemma 2.4 to see
that mq is spherical. O

Remark 2.12. Using the definition of ( , ), in (18) above, the following statement
is readily verified, case-by-case:

(a,7)y = (—1)dimCu (_1)dimsuppP(r) traceqq,, NEvsy P (7). (20)
This establishes | , Conjecture 1, (b) and (c)|; see especially | ,
(110)].
Remark 2.13. In the forthcoming papers | ] and | |, we extend and

strengthen Theorem 2.11 by defining (, )4 : IL,(G2(F)) — A\¢ for every unramified
Langlands parameter ¢ and by showing that it is compatible with the theory of
endoscopy for A; = PGL3 and Dy = SO4 and twisted endoscopy for PGSping. This
gives a construction of Arthur packets of all unipotent representations of Gy (F).

Remark 2.14. Observe that, by construction, the function ( , ), is the shadow
of a functor Rep(G2(G))sub — Locg; (T X(7) if the suggestion of Remark 2.8 is

sub
correct.

Remark 2.15. Nothing more general can be said about the case treated in
Theorem 2.11, Item (b). In our case each IL;(G2(F)) does contain a tempered
representation, this is not to be expected more generally. Also, in our case,
(s Yo Hy(Ga(F)) — A\lp is always surjective but fails to be a bijection for ¢, and
1. It is not difficult to find examples that show that ( , )y : IL,(G2(F)) — gw
need not be surjective, too. For instance, for the split connected reductive group
SOs5 there is an Arthur parameter, described in | , Section 15.1.1] as 9, for
which (, )y, : Iy, (SO5(F)) — ng is not surjective, and II, (SOs5(F")) contains
no tempered representation.

2.12. Stable distributions. We now repeat Theorem 1.2. Recall that we write
O, for the Harish-Chandra distribution character determined by an admissible
representation .

Theorem 2.16 (See also Theorem 1.2). For every Arthur parameter v with sub-
regular infinitesimal parameter, consider the invariant distribution

Op= Y lapmy O, (21)
m€lly (G2(F))

where ay, is the image of sy =1 (1,—1) in Ay. Suppose ©y is stable when ¢ is
tempered. Then the distributions ©, are stable for all Arthur parameters 1. The
stable distributions ©y are displayed in Table 2.12.2.
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TABLE 2.12.1. Artist’s impression of the “stabilizing representa-
tions” needed to construct A-packets from L-packets, in which
Aubert duality operates by reflection about the dotted line

TABLE 2.12.2. Distributions attached to Arthur parameters with
subregular infinitesimal parameter

@"/}0 = @770 + 2(_)71'1 + @T(ga
@1/)1 = 6771 - CI-')‘Il'z + @Trga
@wz = 6772 - @7‘.5 - 9#5;
Oy = O, + 20,0 + O

Proof. From (19) we see that
(84, m)y = traces, NBvwsc, P(m),

where P : 7 +— P(w) is given in Proposition 2.7. In Lemma 2.10 we found
Sy = 1 = sy, and sy, = —1 = sy,. Now Table 2.11.1 gives Table 2.12.2.

From Section 2.10, recall that M; denotes the standard module for 7; for
i = 0,1,2; the remaining three representations, 73, 7§ and 7§, are their own stan-
dard modules. Since My, M; and Ms are obtained by parabolic induction from
representations of GLa(F'), they are stable standard modules. Write Oy, Oy
and ©)y, for the Harish-Chandra distribution characters attached to these repre-
sentations. Then these distributions are stable, by [Art96]. The distributions ©,,,
for i = 0,1,2 are expressed in terms of these four stable distributions, ©a,, O,
O, and Oy, as follows:

Oy 11 -3 1 O,
Oy, | [0 1T =2 1 O,
Oy | |0 0 1 -1 O,
Oy 0 0 O 1 Oy

These identities follow from the multiplicity matrix of Section 2.10 and the explicit
form for ©,, listed in Table 2.12.2, derived from the definition stated above. Note
that 3 is the unique tempered Arthur parameter; therefore, the statement of
Theorem 2.16 assumes O, is stable. This concludes the proof that ©.,, O,
Oy, are stable. O
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Remark 2.17. As mentioned in the Introduction, we expect to prove that ©.,
is stable. Moreover, we expect that ©.,, ©y,, Oy, and O, is a basis for the
intersection of the space of stable distributions on G2(F’) and the space of invariant
distributions spanned by the ©, as m ranges over irreducible representations in
Rep(G2(F))sub up to equivalence.

2.13. Aubert involution and the Fourier transform of perverse sheaves.

Proposition 2.18 (| ). The Aubert involution on the Grothendieck group
KRep(Ga(F))sub is given by

T > +73,

m = 47,

Ty > +Ta,

T3 —  +70,

7r§ =+,

w5 = +ms.

Consequently the Aubert involution acts on Arthur packets according to

My, (Go(F)) = {mo, m1, 75} = Ty (G2(F)) = {m3, 75,75}
Iy, (G2(F)) = {m,m2, 75} = My, (Gao(F)) = {m2, 75, 75}

This is compatible with the observations
1/12(w,x,y) :wl(w7yax) and 1/)3(w,3;,y) :wO(wvy7x)'

Theorem 2.19 (See also Theorem 1.2). Under the Langlands-Vogan correspon-
dence, Proposition 2.7, the Aubert involution on Rep(G2(F))sub is given by the
Fourier transform on Peré\2 (Xsub)-

Proof. This is a direct consequence of Theorem 3.15. g

3. EQUIVARIANT PERVERSE SHEAVES ON det ™' ® Sym?
In this Section we study the simple objects in the category
Pergr, (det ~! @ Sym?)

of GLg-equivariant perverse sheaves on the affine variety space P3|z, y] of homoge-
neous cubic polynomials in two variables x,y for the action

det 7! ® Sym?® : GLy — Aut(Ps[z,y])
defined as follows: for h € GLy and r € Pz, y],
((det ~1 & Sym®) (h).r) (2, )
== det(h)"tr((x,y)h) (22)
= det(h)"*r(ax + cy, bz + dy), h=(2%).
Specifically, we find the geometric multiplicity matrix for this category, calculate
the Fourier transform and the microlocal vanishing cycles of its simple objects.

Although this may be of independent interest, the point of departure for our
application of this study of Pergr, (det 7! @ Sym‘g) is given by Proposition 3.1.

Proposition 3.1. To r = (7"077“177“2,7“3)75 € Vi, we associate the polynomial
r(z,y) € Ps[z,y] given by

r(z,y) = roy® — 3riy’x — 3roya® — rya’.
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The map Viur, — Ps[x,y] given by r — r(x,y) defines an equivalence of representa-
tions of Hgu, on Viup as given in Section 2.5 with the representation det™ '@ Sym3
of GLy on Ps|x,y] given here.

The proof of Proposition 3.1 is elementary and will be omitted.

The connection between Vi, as a sum of root spaces in the Lie algebra of
Gy, and det ™! ® Sym® is well known; see for instance [ | and the references
therein.

Note that Proposition 3.1 says that Langlands parameters for G with infinites-
imal parameter \g,;, may be interpreted as homogeneous cubics in two variables.

The main geometric results of this article are Theorems 3.12, 3.13, 3.15 and
3.14. These results are used to prove the main arithmetic results of this article in
Section 2.

3.1. Simple equivariant perverse sheaves. In this section we enumerate all six
simple GLgy-equivariant perverse sheaves on det ™! ® Sym?

Recall from | , Théoréme 3.4.1] that, for a connected group H acting on
a connected variety V, simple equivariant perverse sheaves all take the form of the
perverse extension

IC(Lc) = jiLeldim O] (23)

of a simple equivariant local system L on C, where C C V is an H-orbit and
where j : C < V is the inclusion. Thus, to find all simple GLs-equivariant perverse
sheaves on Ps[z, y] we must find all GLg-orbits C' C Psx,y] and then find all simple
GLs-equivariant local systems in each such C. Recall that such 7¢ may be viewed
as an irreducible representation of the equivariant fundamental group

Ac = WO(ZGLQ (C)) = 7"—I(CYa C)ZGL2 (c)>

for a choice of ¢ € C.

Let Py[z,y] be the vector space of linear polynomials in = and y. Let P;[z,y]«
be the monoid of non-zero linear polynomials in z and y and define Pz, y]x —
P! by uiy — ugx +— [ug : ugl; this gives P(Pi[z,y]) := Pi[z,y]x/Gm = P'. This
isomorphism is equivariant for the action h : [u1 : ug] — [ug : ug]h ™t of GLg on
P! and the action h : r(z,y) — det(h)~r((z,y)h) of GLy on Pi[z,y], which is
the restriction of the action of GLy on Ps[z,y] appearing in (22). Henceforth, we
identify P! with P(P; [z, %)) using this isomorphism and these actions. In particular,
we will write [u] € P! for u(z,y) = u1y — uaz € Pi[z,y]x or [u] = [ug : us] € P! for
u = (ui,uz) € A2 : =A%\ {(0,0)}, depending on the context, and fervently hope
this will not cause confusion.

The GL; action det ™' ® Sym?® on Ps[z, ] has the following 4 orbits:

(1) Co ={0};

(2) C1={v’ | uwe Pilw,y],p #0};

(3) Cy = {u*u' | u,u' € Pi[z,y], and u,u’ are linearly independent} ;

(4) C5 ={wu'v” | u,v',u"” € Pylx,y], and u,u’,u” are linearly independent} .
These orbits have dimensions 0, 2, 3 and 4, respectively. Under the identification

of the action of Hyyp on Vi with det™' @ Sym? given by Proposition 3.1, these 4
orbits match those introduced in Lemma 2.1, so we use the same notation here.
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We note that
C,=CLUC,,
Cy =CUC UGy,
C3=C3UCyUC U Cy,

We now introduce algebraic descriptions of these orbits by introducing auxilliary
quantities which distinguish these orbits. Given
r(z,y) = 7“0?/3 - 3T1y2x - 37”2?/1'2 - 7"3$3 € Psz,y]

we may introduce the auxiliary element of Py[z, 3]

Ap(z,y):= idet(Hess(r))

= —9(raro + T%)yz — 9(rors + rire)xy + 9(rir3 — T%)$2-

do(r):= — 9(raro + Tf), di(r):= — 9(rors + r1r2), do(r) :=9(rirs — r%)
so that
A (z,y) = doy? + dixy + doz?.

The discriminant of the polynomial r(x,y) is then given by
D, = d? — 4dydy = 81(ror3 + r17r9)? + 4 % 81(rorg + 72 (r1i73 — 13).
With these equations we now have

Lemma 3.2.
Cy = {r(z,y) € P3[z,y] | D, =0} (24)
and
C1 = {r(z,y) € B[z, y] | As(z,y) = 0}. (25)

Proof. That the discriminant, D,., vanishes precisely when a polynomial has a
repeated root is well know for degree three polynomials in one variable as is the
fact that the second derivative vanishes when a polynomial has a triple root.

We may understand this lemma as a generalization of these claims. The proof
is as follows. We first note that

1 1 t
Grad(r)(z,y) = 5 (z ) Hess(r) (44 r(z,y) = gGrad(r)(xyy) (z y) .

From which we may conclude that r has a double point, at say [a : b], if and only
if Grad(r),,5) = 0 and a triple point at [a : b] if and only if Hess(r) 5 = 0.

It follows from this that 7 has a double at [a : ] if and only if Hess(r)(,, ;) has
kernel precisely [a : b] which occurs if and only if A, has a double root at [a : b].
Consequently r has a double point somewhere if and only if A, has a double root
which occurs if and only if the discriminant, D,., of A, is zero.

Now, exploiting the symmetry

(x y) Hess(7) (a,p) = (a b) Hess(7) (z,y)

we can conclude that Hess(r)(,p) is identically zero for any [a : b] precisely when
the polynomial det(Hess(r)) is identically zero. O



ARTHUR PACKETS FOR G2 AND PERVERSE SHEAVES ON CUBICS 29

The maps Ps[z,y] — Pslz,y] and Ps[x,y] — C given by r — A, and r — D,
are equivariant for the action Sym? on P, [x,y] and det? on Al
From the above descriptions we obtain the following

Lemma 3.3. The stabilizers for elements in the various orbits are the following:

(1) The stabilizer of p* € Cy is isomorphic to the group
{(ah)beAt,de AL}

by selecting any basis for Pilx,y] in which p is the first basis vector.
(2) The stabilizer of p*q € Cy is isomorphic to the group

{(69)1d e A}

by selecting the basis p,q for Pz, y].
(8) The stabilizer of pqr € C3 is isomorphic to the group S3 as the permutation
group on the lines [p], [q], [r] € P(P1]x,y]).
From which it follows
Ac, =1 Ac, =1
Ac, =1 Acy, = Ss.

Proof. We first treat the case p? € C,. If h € GLj stabilizes p? it stabilizes the line
[p] and hence the stabilizer is contained in the Borel subgroup, B, for this line. If

the eigenvalue for h € B acting on the line [p] is a, then h-p® = d:: hp3 from which
the result follows.

For the case p?q € Cy. If h € GL stabilizes p?q it stabilizes both the line [p]
and [g] and hence the stabilizer is contained in the torus for these two lines. If the
eigenvalue for h € B on these lines are respectively a and d then h - p?q = ap?q
from which the result follows.

for the case of pqr € Cs. If h € GL, stabilizes pqr it stabilizes the collection of
lines {[p], [g], [r]}. The stabilizer of this collection is the permutation group crossed
with the center of GLs. By noting that for h = al we have h - pgr = apqr we
conclude the result.

The claim about equivariant fundamental groups now follows by considering
component groups of the stabilizers. (I

Now we pick the following orbit representatives which correspond to ¢; in Lemma
2.1 to denote these
co(z,y) =0 € Cy, ci(z,y) =y* € O,
caz,y) = =3ay® € Ca, cs(z,y) = y(y? — 32°) € Cs.

In summary, we have now proved

Proposition 3.4. The simple objects in Pergy,, (Ps[z,y]) are
IC(1c,), ZC(1e,), IC(1ey,), IC(1ey,), IC(Re,), IC(Ec,)-
where:
(1) 1g, is the local system on C; corresponding to the trivial representation of
Ac, fori=0,1,2,3 and where
(2) R, is the simple GLa-equivariant local system on Cs corresponding to the
irreducible 2-dimensional (reflection) representation o of S3 and where

(3) Ecy is the simple GLa-equivariant local system on Cs corresponding to the
non-trivial irreducible 1-dimensional (sign) representation € of Ss.
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3.2. Conormal bundle. We fix an isomorphism Pz, y]* & Psx,y] according to
the pairing (| ) : Ps[z,y] x Ps[z,y] — Al defined by

(roy® — 3riy’a — 3raya® — r3zd | soy® — 3s1y%w — 3sqyx? — r3ad) (26)
= T050+3’I"151+3T‘282+T353.
We will often write s(z,y) € Ps3[x,y]* for
s(z,y) = soy® — 3s1y°x — 3soya® — r3a®,

making use of this isomorphism.
Consider the action of GLg on Ps[z, y]* as follows. For h € GLs and s € Ps[z, y|*,
define h.s € P3[x,y] by

(hs)(x,y) = det(h) f((z, y)("h ™). (27)

With this action, we can check that the pair (| ) on Pslz,y] x Pslz,y]* is GLa-
invariant.

The pairing ( | ) admits the following interpretation which is helpful calculations.

Lemma 3.5. For
r=r(z,y) = roy® — 3ry*e — 3royx® — rsad € P3 [z, ],

s = s(x,y) = (v1y + vox)(v3y + vax)(vsy + vex) € P3[x,y]",

s) is given by the formula

— o oz
(’I" ‘ 3) - 6 (Ul 02) agr gQTy (UG)
Y=1v3,T=v4

Oyox Ox2

the pairing (r

This follows from a direct computation and the details are omitted.
We write
A:={(r,s) € T*(Ps[z,y]) | [r,s] = 0},
for the conormal variety in the cotangent variety
T*(Ps[z,y]) = Psla, y] x Ps[z,y]",
where [, | : T*(Ps[z, y]) — gly is the moment map which, in this case, is given by

ir,s] = ( r0So + 2r181 + 1989 —ri1Sg + 2resy + T382>

—70S81 + 21150 + 1283 181 + 21989 + 1383 ; (28)

see also Lemma 2.3. We note that the trace of [r,s] is (r|s). To simplify notation
slightly, we set
A :={(r,s) € T*(Ps[z,y]) | r € Cy, [r,s] = 0}.
Lemma 3.6. For
r=r(z,y) =roy® — 3riy’x — 3reya® — rza® € Pz, v

s =s(x,y) = s0y° — 3s1y°x — 3s9yx® — s3> € P3[z, ",

we have
roSo + 21181 + a5y = %( (y%;) [s),
7181 + 21989 + 1383 = %( (x%) |s),
—r180 + 2ras1 + 1352 = 3((y5%) |s),
—rosy +2r182 +rasy = &( (ch—; |s).

and consequently the ideal generated by these equations is GLgy stable.
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This follows a simple calculation and we omit the proof. An analogous result
holds if we interchange the role of r and s.

The next result, Lemma 3.7, will be used repeatedly in calculations appearing
in Sections 3.5 through 3.5, which gives the proof of the main result of Section 3,
Theorem 3.13. In order to state it, review how we pass between non-zero linear
polynomials and elements of P! in Section 3.1 where, to u(z,y) = w1y — usx €
Pyi[z,y]x we attached [u] = [u; : ua] € P! and write u|r to mean u(z,y) divides
r(xz,y) in Ps[z,y]. Now we consider the dual construction in Ps[z,y|* and for
v(z,y) = v1y — vax € Pilx,y|% we attached [v] = [v1 : v2] € P! and write v|s to
mean v(z,y) divides s(z,y) in Ps[z,y]*. In Lemma 3.7 we see the condition u L v,
which means ujv1 + usve = 0.

Lemma 3.7. (1) If r = wu'u” € C3 then we have [r, s] = 0 if and only if s = 0.
(2) If r = uu’ € Cy then we have [r,s] = 0 if and only if s = v> where u 1 v.
(3) If r = u3 € Cy then we have [r,s] = 0 if and only if s = v®v' where u L v
and v' € Pz, y]*.
It follows that

A = {([u],r s, [v]) € Pt x Cy x Ps[z,y]* x P! | wdlr, u L v, v?|s}
Ay =2 {([u],r,s,[v]) € P x Cy x Ps[z,y]* x P! | w?|r, u L v, v3|s}
As = {(r,s) € C3 x P3[z,y]* | s =0}.

Proof. Because the ideal generated by [r,s] = 0 is GLg stable it suffices to verify
the claim on any fixed base points. For C'5 we may use

r(z,y) =y° - 3a%y.

Then from the second and third equations we obtain ss = 0 and s; = 0. Using this
with the first and fourth equation we then obtain so = 0 and s4 = 0.

For Cy we may use

r(z,y) = —3zy>.

Then we quickly obtain that s; = sy = s3 = 0 so that indeed s(z,y) is a scalar
multiple of 23, noting that = L 3.

For C'; we may use

r(z,y) = y°.

We then quickly obtain that ro = r3 = 0 so that indeed s(x,y) = x2(ax + by),
noting that = L y and (ax + by) € Pi[z, y]* is arbitrary.

Because the desired relations hold for our chosen base points they also hold any
point in the orbit. O

Now we find the equivariant microlocal fundamental groups
Ag'lzlc ::WO(ZGLz (Ci7 dl)) =T (Azr‘eg7 (’I", S))ZGLz(Ciydi)’
where A;°®:={(r,s) € C; x C} | [r,s] = 0}, for fixed base points (¢;,d;) € A%
One might use, for example:
(COad0> = (Oa _$($2+392))7 (Cladl> = <_3y2$,$3)7
(027 d2) = (y37 _3$2)7 (03, d3) = (y(y2 - 33?2),0)
Lemma 3.8. For each i = 0,1,2,3, the subvariety A;*® is a single GLqy-orbit.
Moreover, the equivariant microlocal fundamental groups are:
Ag‘éc =53 Agé“ =953
AEGC =8y AEFC = S,.
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Proof. We remark that GL2 obviously acts transitively on Cy x C§ and Cs x C3
and the claim about equivariant microlocal fundamental groups is an immediate
consequence of Lemma 3.3.

Now, we claim GLy acts transitively on

AECg = (Cl X Cf) N A1

and
AYE = (Cy x C3) N As.

We consider first Ay. We note that As is a rank 1 vector bundle over Cs, and
A5® is the complement of the zero-section in this bundle. To see that A5® has a
single orbit it suffices to show that for any given r € Cy the stabilizer of r acts
transitively on the complement of the zero section in the fiber over A, over r.

Fix r = u?v € Cy then by Lemma 3.3 we have that the stabilizer of = is
isomorphic to {(}9)|d € C*} by in the basis the basis u,v for Pi[z,y]. It follows
that the stabilizer then acts on the line [v] by d~2, which we note acts transitively
on complement of the zero section. It also follows from this that the stabilizer of a
point (u?v,v3) € AJ*® are those elements with d? = 1, from which the claim about
the equivariant fundamental group follows.

We note that by the symmetry between A; and A; we do not need to treat
explicitly the former case. However, it is worth noting that in this case the stabilizer
of a fixed r = u® was {(8 abz) [beC,de (CX} with respect to a basis u and v where
we may assume u L v. This stabilizer will act transitively on the complement of
the [v]. The line [v] cuts out (Cy x Cy) N As. O

Remark 3.9. The complete list of GLo-orbits inside A is given by the following
decompositions of the conormal bundles:

Ao =AgB U (Cox CF) U (Co x C3) LU (Cy x C3)
Ay = APEU{([u],7, 8, [v]) €PY x Oy x C3 x P! | w®|r, u L v, v3|s} U (Cy x CF)
Ay = ATE LI (Cy x CF)
Ag = A8,
where we note A = Ag U Ay U Ay LI Az, Since each A;*® is a single Hgyp-orbit,
the notions of “regular” and “strongly regular” and “generic”, as they appear in

[ |, all coincide. Aside from A}®, all of the other GLa-orbits in A have
trivial equivariant fundamental groups except

{([u],r,s,[v]) € P! x Oy x Cy u3|r, u L, 03|s}.

We compute the equivariant fundamental group for an element ([u],r,s,[v]) by
considering the stabilizer of «? in the basis u and v. It has the form
_(ab
h = (8 a2)
Then h.v® = a~3v? from which we can conclude the equivariant fundamental group
is U3
The lemma above now give the following

Proposition 3.10. Consider the cover

A:={(g,(r,s)) € GLy xA | g.(r,s) = (r,s)}
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and the projection pn : A — A defined by p(g, (r,s)) = (r,s). While this is not
proper, the pull-back ppres : GLg X A™® — A™® s finite and hence proper, and
(pAreg)*]].K = ]].A(r)eg (&) 2RA[r)eg (&) gABeg D ]]_Aieg (&) nieg
() ]lAgeg D QRAgeg D gAgeg (&) ]lA;eg D 7;\?5,
where:
(1) Lpres is the constant local system on A;® fori=0,1,2,3;
(2) Tares (resp. Tawes) is the rank 1 local system on A1 (resp. Ay®) corre-
sponding to the non-trivial character T of Agi" =Sy (resp. Ag;c =S55);
(3) Rres 15 the rank 2 local system on A3™® corresponding to the reflection
(2-dimensional) representation o of Ag‘;c = S3;
(4) Epres is the rank 1 local system on A58 corresponding to the sign represen-
tation € of Ag;c = S3.

3.3. Microlocal vanishing cycles and the Fourier transform. The microlocal
vanishing cycles functor

Bvs : Perg (V) — Locy (A™#)

is defined in | |, for any reductive (not necessarily connected) group H
acting on V = A" with finitely many orbits, where A = T} (V) is the conormal
variety to V. The main result of this section, Theorem 3.13, calculates this functor
on simple objects in Pergr, (Ps[z,y]). From | | we observe that, for any
F € Pergr, (Ps[z,y]), we have

Busc, F = (R@( ) [-1)F R 14 [dim C;])

ares[—4]. (29)

We will calculate (29) case-by-case in Sections 3.5 through 3.10.
In these sections we also calculate, on simple objects, the Fourier transform

Ft : Pergr, (P3[z,y]) — Pergr, (Ps[z,y]"),
defined by
Ft = ¢.R®())[-1]p",
where p : T*(Ps[z,y]) = Ps[z,y] and ¢ : T*(Ps[z,y]) — P3|z, y]* are the obvious
projections. It follows that
RO( | [—1] (FR Lp,y-[4]) = L¢, B (FtF) (30)
and this is what we will use to determine Ft F.

Remark 3.11. The usual definition of the Fourier transform, adapted to our case,
is the following. Recall the trait Z :=Spec(C[[t]]). Consider the morphism

y=(])xid: T*(V)=VxV*"-5ZxV*
defined by v(r,s) = ((r]s),s). Let t : Z x V* — Z be the projection, so that
t(z,8) = z. Then the usual definition of the Fourier-Sato transform is R®;[—1]yp*
which is supported on {(0,s) | s € V*} 2 V*, where 0 € Z is the special fibre of
the trait Z | , Example 6.0.16]. Our definition (30) is in fact modelled after
the definition of ¥ p appearing in | , (3.7.7)], which, by | , Theorem 3.7.7],

is equivalent to ®p/, which is the complex analytic version of the Fourier-Sato
transform above, see also | , Section 5.4].
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3.4. Overview of the calculations. We now give an overview of the calculations
to be performed in Sections 3.5 through 3.10.

For each orbit C; C Pslx,y| we find a proper cover p; : CN'J- — éj where éj
is smooth. Using the decomposition theorem, we find all the simple equivariant
perverse sheaves F that appear in

(ps)+1g, [dim Cj). (31)

Using this, for each such F we calculate the left hand side of (30). The way we do
this is to calculate

RCI)( | )[—1] <(p])*]]'éj [dlm éj} & ]]'Ps[-r-,y]* [4])
= (py % dpey)oRO; (1] (16 [dim C5] M p - 4])

where f;; : C~'j xC; =S

(32)

Cj

x C, T S
(pj Xid@)\) /mcj xT:

Cj Xéj

is the composition of (p; x id) : CN'j x C; — Cj x C; with the restriction of the
pairing (| ) : Ps[z,y] x Ps[z,y]* — S to C; x C; and isolate (30), inductively.
Then, for each C; < C}, we calculate the vanishing cycles

RD; (]1@ [dim C;] 115:) [ xidge - A7 (33)
and the push-forward
(p; x id).RD (11@_ [dim C;] ]15:)

reg
Ay

o (34)
= R‘I)( ) ((pj)*]léj [dlmC]] X ]15:) A;eg.
Again working inductively, we isolate
Busc, F = (be( 1] (]—" X 1+ [dim C;])) pes[—4], (35)

for each simple F appearing in (pj)*]léj [dim éj]
3.5. BEsZC(1¢,). This case is degenerate: A, = Cp x C§ and Co=Co = Cp s0
A = Ag, = Co x C§ and foo(r,s) = 0 for all (r,s) € Ag,. Therefore,
RO[~1]1a,, = Lac, = Loy
In other words,
R® 1 o[—1] (ﬂco Xz [4]) =1g, Bz [4]. (36)

This computes (33) in this case. Note that (36) may also be written in the form

R®(|)[1] (IC(]ICO) X1z [4]) = 1¢, RIC(1gy). (37)

It follows that
FRIC(1¢,) = IC(1cy)-
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and also that
EVSCOE(]ICO)
= (Re(|H[-1] (ZC(1g,) R Les[4])) |ag[—4]
= 1, RIC(Le;) 4
= lag,-

3.6. BEsZC(1¢, ). Define
C1 = {([u],r) e P x Cy | ulr}

Recall that the condition u|r means u(z,y) = wjy — usz divides r(z,y). This
condition is algebraic in the variables that define r and wu; it corresponds to three
polynomial equations, as we see in the alternate description of 51, below. As a
variety over C, C~'1 is smooth as the space is a rank 1 vector bundle over P!. We
equip Cy with the GLg-action h([u],r) = (h.[u], h.r).

This cover may also be written in the following form:

C1 = {([u],r) € P* x Ps[a,y] | Hess(r), = 0} (38)
The equivalence of the two descriptions of 5’1 follows from the identities

1
Grad(7) (uy ,us) = 5

5 (u1 UQ) Hess(7) (uy u»)

1
r(uy,us) = gGrad(r)(ulﬂw) t (u1 'UQ) .

The above equations imply both the gradient of r(z,y) and r(z,y) itself vanish
at (u1,uz), but also that (uy,us) is a triple point of r(z,y) and therefore that
u = u1y — ugx divides r(z,y).

Consider the map p1 : C; — C; defined by the projection p1([u],r) = r. Then
p1 is proper, as it is a closed immersion composed with a base change of a proper
map, and realizes the blowup of C; at Cy. The map p; is not smooth, but it is an
isomorphism over C;. The fibers of p; are isomorphic to P* over Cy, hence 7 is a
semi-small map. It follows from the Decomposition Theorem that

(P1)«(1g,[2]) = TC(1¢,) © ZC(1ey) (39)

For later use in this paper, we give yet another description of p; : 61 — Cy. Set
A% = A% — {0} and consider the map

Al x Ai — 61
(A, (u1,u2)) = Mury — ugz)®

Let G,, act on Al x A% by
a.(\, (u1,uz)) = (@3N, (aur, aus)).
Then A! x A2 — C; is G,, invariant. This implies that the map

(Al x A2)/G,, —

Nur,ua] = (Mury — uzz)?, [ug : ug)) (40)

is an isomorphism and induces the map p; : C~’1 — C above.
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3.6.1. FtZC(1¢,) and Ewsc, IC(1¢,). We begin by studying the function fio :
C1 % U; — S locally. Using Section 3.6, consider the affine part A% < C; given by
(A uz) = ([1: ug), AM(y — ugw)?). Then, by Lemma 3.5,

fio
Set z(\, ug, ) := X and g(\, uz, ) :=so + 3s1u2 — 3s2u3 + s3uj as functions on this

part of C x 6;. Observe that the locus of z is C x 63 in the part of C; x 6; and
that the locus of ¢ is the affine part of

{([1: ua),7,5) € P x C1 x Cf | s(uz,—1) = 0}.

Azx@;()\,ug, 5) = (My —uaz)?|8) = A(so + 351U — 359u3 + s3u3).

If we then turn our attention to the affine part of o parametrized by (A, u1) —
[\, (u1,1)] = ([ug : 1], Mury — x)3) then we reach the same conclusions and we can
extend the definitions of z and g to all of C; x Cf such that

fro=zg.
Using | , Corollary 7.2.6], it follows that
RO o 1a o = ROylg o

is the skyscraper sheaf supported by g = 0 in Cy X 6;. To describe this support,
consider

Ci:={(s,[v]) € Ty x P' | s5(v) = 0} (41)
and let pf : 55 — 6; be the cover pg(s,[v]) = s. Here it is important to remark
that the conditions [v] € (P!)* and s(v) = 0 mean, in coordinates, [v] = [v1 : vo]

and s(v) = s(vg, —v1) = 0. We remark that C is precisely the dual of the cover

p3 : C3 — C3 that will appear in Section 3.9. Then

RO.o15, o = lg, [~ 1-

In summary, we have found
RO, o[~1] (16,1218 1g; ) = 1o, W15, (42)

This computes (33) in this case.
We now see that

(p1 x idg,)«R®f, o[—1] (151 2] X 1g; [4])
(idz, %75+ (Lo, B 16, [4])
Lo, B (). L, [4]

Iy, K (ZC(1e;) @ IC(Rey))
= (1¢, MZC(1¢y)) @ (1c, MIC(Rey))

On the other hand,
(o1 % idzs,, )oRO 1, o [1] (16, [2] B 1 14])
= Re()[-1] ((ZC(1¢,) ® IC(1c,)) W 1 [4])
RE(| (1] (Z0(Le,) B g 4]) & Re( | )[1] (Z0(Le,) B 1 [4])
(Lo WIC(Ley)) ® RO ) (Ic(ﬂcl) X 15{;) :
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For the last equality, we used (37). Therefore,
RE( | )[~1] (ZC(1e,) B 1 [4]) = 1o, W TC(Ry) (43)
If follows that
FtZC(1c,) = IC(Rey ).
We now restrict (43) to Ag = Ay® to find
Bwsc, IC(]ICH)
(Re |)[=1] (7e(1c,) B 1 [4]) ) Iages 4]

= (L, MIC(Re;)) |ares [—4] (44)
= IlCo X RCJ [_4]
= RAgeg.

3.6.2. Bvsc, IC(1¢, ). From Section 3.6 recall isomorphism (40)
(A'x A2)/G,, — O
Nur,ua] = ([ug : u), AMury — ugz)?)
Consider the affine part A2 < C; defined by (A, uz) — ([1 : ug], A(y — upz)3). Set
r= My — ugx)?

Now give s € 6; local coordinates by writing

s = (y — vox)? (v3y — v4)
Then, by Lemma 3.5,

(rls) = My —u22)®|(y — v2x)?(v3y — vaz) )
= /\(1 + UQUQ)Q(U3 + ’LL2114)
We set z(A, ug,v2,v3,v4) := A1 4+ ugva) and g(\, ug, va,v3,v4) :=v3 + uzvy . Then
RP; 1 o =RP.2yls o

Introduce

A= {({qu,s, [v]) € P! x Oy x C| x P! | Uql)rlvis }

Now we restrict these vanishing cycles to
(pr x idg:) ' AYE = {([u],7,8) € C1 x Cf | r € Oy, [r,8] = O}

Here we have just used the fact that A]*® C C; x Cj. We may identify this with

{<[ulms,[v]>ewlxclxcwl r.s] =0, ULJ_|}

Observe that z = 0 on this variety while g is never zero on this variety since if

g(u,r,s,v) = 0 then s = v> or s = 0 in which case s € 6; which does not contain
Cf. Therefore, by | I,
(Rq)zzg]l@lxéj) (o1 xidg) 1258 = T(py xidgr )~ 1A1°% (45)

where 7 is the local system defined by the double cover \/g. This computes (33)
in this case.
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Now we turn to (34). Since p; is an isomorphism over C, we now have

((p1 x idg: )« RO, [~1]1g, [2] ¥ g [3]) aree[—4]
= (p1 X ldal) T(plx;dgf)fm;eg
= Thre.
On the other hand,
(b2 1dc;>*R<1> [ ] 6, (21 8 1 8]) [agee [
= Ro()[1] ((p1)e15, 2] K 15 [3]) Amg[—41
= Re(|)[-1]((C <nc0> O IC(1c,)) B 1 [3]) |ayee 4]
- R‘I’(\)[ 1] (Ze(16,) B 13 1) el ]
® RO )[—1} (E(ﬂcl )X 1z ]) Areg
= EVSC'l E(]lc'o) D EVSCl ICOlCl)
= Bwc, IC(1c, ),
since Bvsc, ZC(1¢,) = 0. Therefore,
Busc, ZC(Lc, ) = Tares.
3.7. BsIC(1c,). We define
Co ={([u],r) € P! x Py[w,y] | Grad(f)) = 0} (46)

and equip it with an action of GLy coming from existing action on Ps[z,y] and the
action [uy : ug] = [u1 : ug]h ™! on P!. As a complex variety, Cy is smooth and Cs
is a rank 2 vector bundle over P'. The condition Grad(f)(,) = 0 means that that
both r and A, vanish at v and thus that r vanishes to order 2 at v and thus that
u(x,y)? = (u1y — uzx)? divides r(z,y). Using this, together with the isomorphism
Pi[z,9]* /Gy =2 P! from Section 3.6, we can also write

Cy = {([u],r) € P! x Cy | u?|r}.

The projection map ps : Cg — C, is proper, as it is a closed immersion composed
with a base change of a proper map, and it realizes the blowup of Cy at Cy. The
fiber product of Cy over C; is isomorphic to C;. The map py is an isomorphism
over Cy UC while the fibres of py are P! over Cy. It follows that po is a small map.
By the Decomposition Theorem,

(p2)+(1g,[3]) = ZC(1cy). (47)
An alternate description of this cover is as follows: Define A2 x A% — C; by
(w1, ug, us, ug) — (ury — uox)?(usy — ug).
Let G,, act on A% x A% by
a.((uy,u2), (uz, ug)) = ((auy, auy), (a™2us, a™*uy)).

Then
(A2 x A?)/G,, = C,.

The map Ai x A? — C5 is G,,-invariant and induces P2 6'2 — Cs.
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3.7.1. RRIC(1¢,) and Bvsc, ZC(1¢,). Consider the affine part of Cy given by

(ug, ug, ug) = ([1: ug, (y — up)® (usy — us)).
For r = (y — u2x)?(uzy — ugw) € Cy and s = soy° — 3s19y%x — 3soy2? — sz2® € ¢
we have

fg}o(Ug,U;},U;L,S)
= ((y —u22)?(ugy — uaz)|s)
= wuzso + s1(2uguz + ug) — s2(2uguy + uduz) + uduysz
= u3(so + 251Uz — s2u3) + ug(s1 — 252Uz + s3u3).

_ _ _ 2

Set Z1(U27 U3,U4) = us, 22(U2,U3,U4) = U4, 91 (U27U3, Uy, 8) = 59 +2s1up — spuj and
g2(uz2, uz, ug, s) = 81 — 2s2ug + szu3. Then we can write
f2,0(u2, u3, U4, 8) = 2191 + 2292.

Thus, R@ ]lc T
Gs. To descrlbe thls locus, we introduce

Cr:={(s,[v]) € C; x P' | s(v) =0, Ay(v) =0}

=« 18 the skyscraper sheaf supported on the locus of z1, 23, g1 and

and the obvious cover pj : CN'i‘ — ﬁi. Note that this is nothing more than the dual
of the cover ps : C’2 — C5 defined above. Similarly, if we consider a different affine
chart of 02, we can draw the same conclusion after extending the definition 21, 22,
g1 and Ga accordingly. Using | , Corollary 7.2.6] and the Sebastiani-Thom
theorem, it now follows that

ROF, ,[1] (152 X ]16;) = lo, K1, [—4]. (48)

This computes (33) in this case.
Using (48) we now have

R®( | [~1] (10(1102 ) 8 1 4]

)
)

= Re(})[-1 )* 1102[3] X1

= (p2 xidg: fm -1 (14 ])

= (p2 x idg: —1] (15 * (49)
= (ide, Xp7)« )

= lg, M (p7)-

= 1, EIC(ILCI)

Therefore,
FRIC(1c,) = IC(1cy).
Using (49) we also find Evsc, ZC(1¢, easily too:
Bwsc, ZC(1c,)

R®())[-1] (fc(ﬂcz) X1z, [4])

= g, XIC(1cy)|ares[—4]

= 0,
since Ay™® = Cy x Cg and ZC(1¢x)

a4

s =0.
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3.7.2. Bwse, ZC(1¢,). As above, consider the affine part of Cy given by
(uz, uz, ug) = ([1 2 ual, (y — uaw)?(ugy — uaz)).
Set 7 = (y — ugz)?(usy — ugz). Now choose local coordinates for C; by writing

s = (y — v2x)*(v3y — v4z). Then

3f2)1(([1 | u)g], T, 8)

= (Z/ - U2=’17)2(U3Z/ —wgx) | (y — Uﬂ) (v3y — vaz) )
= 323 (u3vz + uqvy) — 22122(1)4 — VaU3)
2

2
= 391( 39122) —ﬂz

where z1 = 14+ ugva, 20 = ug — usus, g1 = UzV3 +u4v4, and go = vqg —v2v3. Observe
that on (py X idai)*lAﬁeg, z1 = 0 and 29 = 0 while g1 # 0 and go # 0. Therefore,
by | , Proposition 7.2.5],

R, (1] (1, Bz ) lipaxidop) -4 = Lipmiago—are[-2,  (50)

This completes the calculation of (33) in this case.
From this we easily find Evs¢, ZC(1¢,) as follows.

Bvsc, IC(1c,)
= (Ro( | [-1)zC 102 )H 1z ]) pres[—4]
= (R |[-1] xﬂ 13]) ) agee[~4]
= (R[4 13, )) ayee 2]
(p2 X idg)« R‘I)m & Xz ) |ars(2]
(p2 % idg: ). (R, [~ 1] (1152 xnéi ars[2]
= (p2 xidg:),1 (P2 Xidgs ) ~LALE 2 —2]

]].Alieg B

since po is an isomorphism over C7.

3.7.3. Bwc, ZC(1¢,). As above, consider the affine part of Cy given by
(ug, uz, ug) = ([1: ual, (y — ugw)?(ugy — uaw)).
Set 7 = (y — ugz)?(usy — ugz). Now choose local coordinates for Cy by writing

s = (y — vax)®. Then

J;2,2([} : |U2})77“7S)
((y — uaw)?(uzy — uaz) | (y — vow)*)
= M1+ ugv2)?(u3 + uqvs).

Set z1 = 1 + usvy and g1 = u3 + uqve. The locus of these two polynomials is

Ryi= {([u],r,s, W) € Ta x P x (B) x Ty | 17 1 }

Then

RD; 15 = =Tx

f2,27CaxCso (51)

2
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where 7T is the local system defined by the double cover /g. Upon restriction of
(p2 x ideg)~H(AY®) we get
(RO, , (=116, ) lipaxidep) 1055 = Topaxiae g1 (52)

This computes (33) in this case.
Now we find Bvse, ZC(1¢,) easily:

EVSCZ IC(]lCz)
= (RO |[-1]ZC(1c,) M 1ey[2]) |ares[4]

- (R(I)( ) [=1(p2) 15, [3] W Loy [2] ) [ gres [—4]

= (p2 % Ley). (Rey, [~1]1g, 3 B 15 [2]) [age[—4]
= (p2 % Ley). (RO, ,[-1]15, ® 105) aree[1]
= (p2x ﬂC;)*ﬁpzxidcs)*l(Ag“g)[l —1]

= ﬂgeg s

since po is an isomorphism over Cs.

3.8. BEsZIC(1¢,). Because the variety Ps[x,y| is smooth and Cj is dense in Ps[z, ],
we have

IC(]]-CS) = IL133[1,?4] [4]

3.8.1. Evg, ZC(1¢,). The only singularity of the killing form on Ps[z,y] x Cf is at
the origin so

RO(|) (]163 X ]16;) =15, M 1g; = 1c, R lcy (53)

This computes (33) in this case.
Note that (53) may be written in the form

RE( | (Z0(Le,) B 1g; ) = 1g, BIC(1c;) (54)
from which it follows that
FZC(1¢,) = ZC(1o;). (55)
Now, consider the restriction of (53) to Ag = Cp x Cf. Since
Ao N (Co x C3) =0,
it follows that
(ch( B (1163 X ]163)) a0 = (Ley ® Loz ) [ag =0 (56)

and therefore that
EVC() IC(]].C3) =0.
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3.8.2. Evg, IC(1¢, ). Again, observe that the only singularity of the killing form on

P3[z,y] x Cf is at the origin so

Re(|) (1g, M 1lg; ) = 1g, B 1g; = 1o, Mo
This computes (33) in this case.

Now, consider the restriction of (57) to Ay C Cy x C5. Since
(C1 x CT)N(Co x C3) =0,

it follows that

(R‘D( 1 (1163 & 16;)) A = (Loy M 1cs)[a, =0
and therefore that

Eve, ZC(1c,) = 0.

3.8.3. Evg, IC(1¢, ). Arguing as in the two cases above,
R®(|) (1153 X 115;) = 15, M 1g: = Lo, M 1g;.

This computes (33) in this case.
The restriction of (59) to Ax C Co x C5 is

(R‘I’< B (163 X 16;)) n, = (L ®1eg) [a, =0
and therefore
EVC2 IC(]]-Cs) == 0

3.8.4. Bvg, ZC(1¢,). Since ( | ) vanishes on C3 x Cy we have

R Ol@ ™ 15;) = R (153 = ]152) =1g, Mlg;.

This computes (33) in this case.
This time, the restriction of (61) to A5 = C5 x Cf is

(R‘I’( D) (163 X 15;)) [ns = (153 X ]15;) Iy = 15, B 1.

Therefore
E\/C’3 IC(]]'Cg) == ]]'AS .

3.9. BsIC(R¢,). Consider
Cs = {([ul,r) € P' x Pylz,y] | ulr}

(57)

(58)

(63)

and equip it with an action of GLy coming from existing action on Ps[z,y] and the
right action of GLy on P! as in Sections 3.6 and 3.7. Then Cj is smooth and is a

rank 3 vector bundle over P!.

For use below, we give an alternate description of this cover. Consider

AL XA & Oy

((u1,uz), (uz, us,us)) —  (ury — uoz)(uzy? + ugyr + usz?).

Let G, act on A% x A by

a.((uy,ug), (uz, ug, us)) — ((aur, aug), (a71U37071U4,071U5))-

Then
(A2 x A®)/G,, — Cs

[(ur,u2), (ug, ug,us)] = ([ur 2 ug), (w1y — uow)(usy? + uayz + usz?))

(64)
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is an isomorphism and p3 : 6'3 — Cj3 is the map induced by A2 x A% — Cj.

The map p3 : 6’3 — (45 is proper, as it is a closed immersion composed with
a base change of a proper map. Recall that C3 = P3[x,y]. The map p3 is also
non-Galois, finite, a 3 : 1 cover over C'5 U Cy U Cy, which becomes 2 : 1 over Cs and
1:1 over Cy. The fibre of ps is isomorphic to P! over Cy. We note that the fibre
product of 53 over Cy has two irreducible components intersecting over C';. One
of the two components is precisely 52 defined above, the other is isomorphic to it.
The fiber product of C~’3 over O is isomorphic to 51. The map p3 is small map and

(p3)«(1g,[4]) =TC(1¢,) ® IC(Rey) (65)
where R, is the rank 2 sheaf on C5 associated to the two dimensional irreducible

representation ¢ of Ss.

3.9.1. *ZIC(R¢,) and BEve, IC(R¢,). From Section 3.9 recall the isomorphism

(A2 x A®)/G,, — Cs

[(u1,u2), (ug, ug, us)] ([u1 s ug], (ury — uaz) (uzy? + uayr + u5x2))

We choose an affine part of Cs given locally by
AY — 63
(ug,us, ug,us) +— ([1 s ug), (y — uow) (usy? + ugyx + u5x2)) .
Then
fgyo : 53 X 63 — Al

is given locally by

f3,0|A4xcg (uz,us, uq, us, s(z,y))

= ((y — u2z)(usy? + wayw + usx?) | soy® — 3s19%x — 3soya? — szx?)

= uszsg — (U4 — UgUg)Sl — (U5 — UQ’LL4)82 + U2U5S53
= U3($0+U281) +U4(U282 781)4”11,5(’11,253 752).

Now consider the vanishing cycles appearing in (33). Set

Zl(u2>u37u4a Us, S) = us, gl(u27u37u47u57 S) = So + U251,
zo(U2, U3, Ua, Us, S) = Ua, g2 (uz, uz, ug, us, s) = uasa — 1,
ZS(U27U3,U4, Us, 3) = Us, g3(u27u37u47u55 8) = U283 — 523
Then,
R(I)fs,o ]153 oM Rq)zlgl+zzgz+ZB93]153><5;'

Thus, (33) is the skycraper sheaf supported by the solution to the equations z; =
zo = 23 = 0 and g1 = go = g3 = 0, which is to say, us = u4 = us = 0 and
S0 + UgS1 = USy — §] = U283 — S = 0; this is precisely Cy x C5 where

s :={(s,[v]) € Ty x P! | g(v) = 0}
Define p4 : C3 — Cy by p5([v],s) = s. Then
R®; [~1] (1153 X ]153) =15, M 1g,[-6]. (66)

This computes (33) in this case.
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Now,
(ps x idg:).Re 7 [-1] (15,14 ])
(de, xm (15,141 @ 14 H)[ 6]
= 10,8 (55). 15,12

2

= 1g, K (Z(lgz) ® ZC(1cy))
= (Lo, ®IC(1gy)) @ (L, RIC(1ey)) -
On the other hand,

(ps x idg, ) H( Hm :[4])
= Ry ) eat)
= Ro(p) chs @E(Rcd))gla’;[‘l])
= RO |[-1] (TC(1e,) K 1g [])@Rcbm[—u (E(RC3)®153[4])
- 1CO®IC (Tos)) ®RD || ](IC(RC3)®]153[4]>
Therefore,
RO |[~1] (IC(RCS) ® 1g;4]) = Lo, B IC(Ley). (67)

If follows that
Ft7C(Rec,) = IC(1cy).
Returning to (66), since
(Cox C3)NAZ =0
it follows now that
(R<I>f3 0103@3) |azs =0 (68)

EVSCO %('RC3) =0.

3.9.2. Bwsc, IC(R¢,). As above, for ([u],r) € Cs we take u = [1 : ug] and r =
(y — ug) (usy® + ugyz +usz?). For s € C) we take s = (y — vox)?(v3y — vaz). Then
f3,1([u]’ T S)

= (r]s)

= ((y — uow)(usy® + uayz + usz?) | (y — v22)*(v3y — vaz))

= 1(3ugvs + (uous — ug)(2v2v3 + va) + (us — ugus)(V3v3 + 202v4) + Bugusvivy)
= 2191 + 2292 + 2393

where 21 = usvy + 1, 20 = ug + 2usuz and z3 = 2us + usuy, while

SO

g1 = 5(2U303 + 2u5v204 — ua(v2v3 + v4)),
1
g2 = —E(Uzvs - 114),

1
g3 = 6112(112113 - U4)-
In fact gy is in the ideal generated by z1, 22, 23, as
2q1 = 21 (ZU3U3 — U;4U4) — Z9U2V3 + 23VU204.

It follows that
RO [~1] (153 X ]1@) = 15 (6] (69)
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where

E:{@wmeechw“ixw|qu5}

Now compare /Tl with

<%xm@>M?g{wwwmweonn“ﬁxWu@ﬂi}

Since Cy N CF = 0, it follows that

(R@h 1] (]153 X 115;)) (s ids) 1506 = 0.
It follows that
EVSC1 IC(RC:,) =

3.9.3. Bwsc, ZC(Rey,). As above, for (r,[u]) € Cs we take r = (y — upw)(usy® +
ugyx + usz?) and u = [1 : ug]. For s € C, we take s = (y — vox)3. Then

3,2(r, [u], 5)
= ((y — u2x)(usy® + uayz + usz?) | (y — vaz)*)
(1 + ugva) (u3 — ugva + usv3)

Set

21 = ugug + 1,

29 = U3 — U4V + usvg.
Then

Re;, 1] (15, B 1g; ) = 152 (70)
where
Ay = {(r, [u], [v],s) € Cy x P! x (P1)* x Cf | “i}‘i Z‘S }

Note that

Ay = (p3 x id@;)_l(K2)

Upon restriction to generic elements, we have
(R@fm[—l] (153 X 16;)) [(paxidog)—1a5® = Loy xidcy )~ A3%- (71)
Since the cover Ay — Ay is one-to-one over A58, it follows that
Bvsc, (IC(Rey)) = Lares.
3.9.4. Bwsc, IC(R¢,). Since fg}g O3 ¥ 6; — S is trivial,

RD; [1] (1153 X 11@)
— R®o[-1] (153 X 1@) (72)
= 15 Rig
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From (72) we have

(ps x id)«R 33[ 1] ( a4 }) [—4]
- p3><1d (]153[4x )[ ]

= (IC(]lcg) (ch)) o; 4]
= (7(1e) R ) -4 @ ( (Rey) B 1g; ) [-4]

This determines (34) in this case.
Finally, upon restriction to generic elements, it now follows that

Bvsc, (p3)«1g, [4]
= (ps xid).R®; [~1] (]153 4] & 1 [O]) pres[—4]
= (o) ®1g;) [~ @ (T(Re,) B 1g; ) [-4])
= Iy @ Rps.
On the other hand, using (65),

Bvsc, (p3)+ 16, [4]

EVSCs (IC(]]‘CS) ®IC(RC'3))

= (EVSC% ZC(]-Cz)) D (EVSC's IC(RC'3))
= ]lAgeg [S2) EVSC3 IC('RCS).

reg
A3

Therefore,
E\/SC3 E(RCS) = 'R,Ageg.
3.10. BvsZIC(Ec,). Consider the cover
O3 o= {([ul, [u], [u"],r) € P! x P! x B x Py, y] | wu'u”|r}.

We are thus defining C3 to be the pull back of the bundle O(—1) over P(Sym®)
through the map P(Sym! )3 — P(Sym?®). It follows that C3 is smooth, being a
vector bundle. Define pf : C3 — C3 by ([u], ], [v"],7) + r. This map is proper,
as it is a closed immersion composed with a base change of a proper map. The
map pY is a finite Galois cover, with Galois group Ss, over C3 U Cy U Cy. The map
degenerates to 3 : 1 over Cy and 1 : 1 over Cy. The fiber of the map is isomorphic
to (P1)3 over Cy. Note that p is not semi-small. We note that the fibre product

of éé’ over Cy has three irreducible components intersecting over C;. For each of
these irreducible components the map to Cy factors through Cy above.

(P5)«(Lay[4])
- IC(]]‘CS) ©® 21C(R03) @ZC(SC:;) (73)
® 3IC(1c,) & IC(1c,)[2] ® IC(1c, ) [-2]

We parameterize CY as follows. Define A x A2 x A2 x A2 — Cj by
(N, (u1,ug), (us, uq), (us, ug)) = A(ury — usx)(usy — usx)(usy — ugx).
Let G3, acts on A x A2 x A2 x A2 by
(a,b,¢).(A (u1,us2), (us, ug), (us, ug))

= (a7 b7 te N, (auy, aus), (bus, buy), (cus, cug)).
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Then the map A x A% x AZ x A2 — Cj is G2, -invariant and defines an isomorphism
(A x A% x A% x A%)/(G},) — Cs
(A, (w1, u2), (us, ua), (us, ue)] = ([u, uzl, [us, ual, [us, uel, 7(,y)),
with
r(@,y) = Mury — uow)(usy — waw)(usy — uex).
We will also make use another cover of C3, defined here. Set
E={(u : ][ug'u4] r) P x P! x Cy: (u1 ug) Hess(r) (uy,uy) = 0}
={([u r) €P' x P! x C5: g1 (u, v/, 7) = galu,u/,r) =0},
where
g1([u], [u'],7) = wrusro + (ugus + urug)ry — ugugrs,
g2([u], [W'],r) = wrugry — (ugus + urug)ry + uguars,
for [u] = [u1,uz],[u'] = [uz,us),7 = (ro,r1,72,73). Let pp : E — Cj is the
projection map. By considering the first model we can recognize that pg is 2 : 1
over Cy and 1 : 1 over Cy as [u], [u'] must be the two lines dividing A,.. We also
have pg is (P @ P') : 1 over Oy as at least one of [u], [u/] must be the line dividing

r, note these copies of P! intersect at that point. Finally pg is P! x P! : 1 over Cj.
It follows that

(o) 154] = TC(1c,) © TC(E,) & 2TC(1c,) & IC(1c, ). (74)
3.10.1. RIC(Ec,) and Bvsc, IC(Ecy). Take a point [A, (u1, uz), (us, ua), (us, us)] €
Cs and its image 7(z,y) = AMury — uax)(uzy — uaw)(usy — ugz) in Cz. For

s(z,y) = soy® — 3s1y°z — 3sayx? — s3a® € Cf, we have

Faro(I\, (ur,u2), (us, ua), (us, ug), s)
= AMurususso + (urusue + uausus + urtgus)sy
—(ugugus + uguzts + U ULUG)S2 + UsUgUgS3).
Set z = X and g([\, (u1,uz), (us, uq), (us, ug)], 8) = usg1 + uggr with
g1([A, (w1, uz), (us, ua), (us, ue)], s) = uruzsg + (ugus + urtg)sy — ugugsz,
g2([A, (w1, uz), (us, ua), (us, ue)], s) = uruzsy — (ugus + urtg)s2 + UaUgS3.
Note that f3,,,0([/\, (u1,u2), (us, uq), (us,ug),s) = zg. Then the singular locus of
fg/@o is CO x X where
X = {([UL [U/L [u”]’s) € Cf(x){ X (Pl)g ‘ g(uvulauﬂ’s) = O}
and
Rz, (1] (15, B g ) = Logxx[-2. (75)
S0
Rz, 1] (Lo 4] 1g;[4]) = Loyxx[6] (76)
Now
() x id).RD; 1] (15, 4] B 15 [4])
= (p3 xid)« ILCoxX[6]
= 1¢, X (p3)1x][6],
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for ply : X — Cy defined by p4([u], [u/], [u"],s) = s. Consider the stratification

U—— X +—— F

« b b

V—Y+—F

Plxk Wﬁ
Co

with Y = P! x P! x Cj, and
_ N g1(u, v’ u”,s) =0 and
F{([u]’[u]’[u hs) e X| go(u,u’,u”,8) =0

and

— / ” g (S,U,’U/,U”) #0 or
v={G e x| x|

If ([u], [o/], [u"], s) € U then we can solve [u”] = [us : ug] (as a point in P*) uniquely
from g = 0 and g3 # 0 or g2 # 0. Abusing notation slightly, set
g1 ((u1,u2), (us,us), 8) = uruzso + (uguz + u1ug)sy — uguyss,
g2((u1,u2), (us, us), s) = uruzsy — (uguz + u1uq)se + uzusss.
and define
_ / 1wl g1(u,ulss) =0
E:= {([u]7 [u'],s) eP* xP* x C | go(u ' 5) =0
Factor p = pg o plz where p'Ei:*X — P! x P! x Cj is defined by ply(u,w’,u", s) =
(u,u’, s) and where pg : E — C| is defined by pg(u,v’,s) = s. Then (ps)|v : U —
P! x P! x 6; is an isomorphism while the fibre of (p%y)|r : F — E is P!. By the
decomposition theorem,
(PE)«1x(6] = 1y [6] © 1p[4].
Therefore,
(P3)«1x[4] = (m) Ly [6] ® (pp)«LE[4]-
Now
(1):1y[6] = H* (P! x P!) ® 15: [6] = 15: [6] @ 212 [4] @ L2 [2],
while
(pp):1E[4] = IC(1cy) ® IC(Ecy)  2IC(1ey) © IC(1cy).
Thus,
(P3)«1x 6]
= (H*® x ) 1g;[6])
© IC(Lcy) ®IC(Ecs) ® 2IC(1cy) ® IC(1cy)
= IC(lcy)[—2] ®2IC(1¢; )[0] & IC(1¢y ) [2]
S IC(]ICS) EBIC((SCS) 2 QIC(]lCS) @IC(]lcg)
= IC(lcy)[—2] ®3IC(1¢y )[0] © IC(1¢y )[2]
® %(5@5) ©® ZIC(]ICS) @E(]lcg)



ARTHUR PACKETS FOR G2 AND PERVERSE SHEAVES ON CUBICS 49

So,
i i 1] (1 MR 15 [4])
= 100®( ) s6]
= (ncogzc(nc ) [—2] @3 (e, KIC(1¢y)) [0] (77)

& (1g, RIC(Ec;)) [0]

]
® (l¢, RIC(1ey)) [2]
0] ® (1c, ®ZC(Ley)) [0)-

@2 (]lco @%(102 ))
On the other hand,

(o4 x id). f3 J 1 4] 1)
= 1)eloy4]) B g [4])
= R<I>( =1 ((Ze(1e,) B 1 [4]) @2 (TC(Re,) B 15 14]))
® RO 1} Eg ) ]) © 3(2C(1c,) B g 4]))
® RO | [ 1] ) 2B 15 [4]) @ (T0(1c,) -2 ¥ 1g; 4]))
Now use (37), (54) and (67) to conclude

R®(|)[= ](((pé’) 1~[])&1 [4])
= (Lo, RIC(1e;)) @2 (Lo, BT (1))

78
© RE( |)[-1] (IC<ec3> 81, [4]) @ 3 (1e, BIC(1cy)) )
& (1o, BIC(1gy)) [2) & (Lo, R IC(1cy)) [-2]
Comparing (78) with (77) gives
RO( (1] (Z(Ec,) B 1g;4]) = Lo, WIC(Ecy) (79)

It follows that
FtZC(ECS) = IC(gcg )

Returning to (78) we now see

Buscr, () Loy 4]

= Re() =1 (0 [4]) R 1 [4]) [agee 4]

(1e, RIC(1cy)) | ares[—4] & 2 (Lo, ®IC(Ley)) |aree[—4]
© (Loy RIC(Ec;)) Iaree[—4] @ 3 (Lo, RIC(Le;)) | azes [~
@ (Lo, RIC(1cy)) |ares[—2] © (Lc, &IC(]lCS)) | ares[—6]
= gABeg &) 3]1Ageg @ lAgeg 2] ® lABeg [—2].

eg

4]

On the other hand,

BEvsc, ((pg)*]l(}é/ [4])
= EVSCO (E(HCS) D QIC(RC3) D IC(503))
@ Bwc, (3IC(1¢,) & IC(1¢,)[2] @ IC(1e, ) [—2])
= bBwcg, IC((E’CS) S 3]1Ageg &b ]lABeg 2] ® ]lABeg[72].

Therefore,
EVSC0 %(503) = SA(rjeg .
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3.10.2. Bwsc, IC(Ecy, ). Take a point [A, (u1, u2), (us, us), (us,ue)| € 6L5Lnd its im-
age r(x,y) = Mury — uox)(uzy — uax)(usy — ugz) in Cs. For s € Cf, we write
s(x,y) = soy® — 351920 — 3soyx? — s323, we get

f3”71([)‘, (u17 Ug), (U3, ’LL4), (’U,5, u6)7 S)
= AMujususso + (urusue + usugus + uitgus)sy
7(U2U4’LL5 + U2U3Ug + U1U4u6)52 + UQU4U653).

For simplicity, consider the affine part u; = uz3 = 1. Then we have
far1 = A(so + (u2 + ug + ug)s1 — (Ugug + Ut + Ualip)S2 + U2UsUGS3)-

Denote zo = uq — ug, 23 = ug — ug. Note that zo, z3 are the equations which define
(p4)~H(Cy x CF) inside C§ x C;. A simple calculation shows that

};//,1 = \(s0 + 3ugsy — 3udsy + uds3) + Aza(s1 — 2ugsy + udsz)
+ Az3(81 — 2ugsy + u3s3) + A\zaz3(s2 — uas3).

The condition [r,s] = 0 is given by an equation z; which is equivalent to that s
vanishes of order 2 at (uz, —1). We actually have 27|(so + 3uas1 — 3usa + uds3)
and 21|(s1 — 2uasy + u3s3). In fact, if we take s(x,y) = (viy — v2x)%(v3y — V42),
then we can take z; = v1 + vous. We then have

50 + Bugs — 3udsy + ussz = —s(ug, —1) = 23 (v3 + vaus),
and
1 Os 1
S1 — 2uoS9 + u383 = ~3 9% = —21(2v9v3 + V1V + 3VauUgvy).

T=uz,y=—1

Denote by g1 = A(vs + vauz), g12 = %(21)21)3 + v1v4 + 3vaugvy) and goz = A(s2 —
U83) = %(21}10204 + v3v3 + 3ugvivy). We get that

]?3“,1 = 912% + g1221(22 + 23) + g232223.
Let I be the ideal generated by z1, 22, 23 in Clz1, 22, 23]. Then modulo I, we have
2 _ 1 _
12 = 3 Yo g1 and  go3 = U2 *vig.
Thus we get
ra 2 2 -1 1 —2,2 3
far1=g1(27{ — qu v121(22 + 23) + gug vizezg) mod I°.
By completing squares, we get that

~ 1 1 _
fara=g1(z1 — U2 Yoi(ze + 23))° — g1t v3(22 — 523)2

1 _
— gt 20222 mod I3

Note that g1 ¢ I if and only if s € C5. In particular, if s € C, we have g1 ¢ I. It
follows that

(R‘I’fy,,l[—l]]lagxc;)|<pgxnc;>*1A§°g = Tloygxicp)—1ay=[=3);
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and consequently we have,

B, ((04)- 10y 4])

= (RO [ 1)(H)s 1y [4] B L [3]) [ agee[—4]
= (P4 x idep) RO, (<115, [4] B 1y [8]) [ages[~4
= ((pf xideoyr)s R(I)hl[ ]]lc,,@]lc*) Arex (3]

= (p3 X ldCi‘)* T oY ch 1Ax1'eg> [3 - 3]
= 77\11'eg.
On the other hand,
Busc, ((04)-1,14))
= EVSCl (IC(HCS)@QIC(RCE.)@%( CS))

&
@ Bsc, (3IC(1e,) © ZC(1ey)[2] © IC(Le, ) [-2])
= E\ISC1 IC(ECJ)

Therefore,
EVSC1 E(SCS) = 7;\165.

3.10.3. Bwsc, IC(Ec,). To compute Eve, IC(Ec,), we use the cover pp : E — C3
defined at the bottom of Section 3.10.
Denoting ([u], [u'],r) € E and s = (v1y — v22)® € Cj we consider the function

fE,2([u]> [u’],r, s)=(rl[s)
= 193 4 3vivgry — 3v1vEry + VT3,

For simplicity, we restrict to the affine cover when v; # 0 and thus we can assume
that v1 = 1. Moreover, we work on the affine part when u; = uz = 1. From
g1 = g2 = 0, we can get that

r1 = (u2 + u4)r2 — U2U4T3,

ro = —(ugtig + us + u)ro + (U + tg)uguyrs.
Thus we get that

J?E,2([U]7 (W], r,5) = —(ugus + u% + ui)?‘z + (ug + ug)ugugrs
+ 3(ug + uyg)rove — Buguavar — 31}%1"2 + Ugrg.
Set z1 = ug — vg, 20 = ug — v2. We can check that
fE,g = (22 + 2120 + 23)(r3vg — o) + r3(2320 + 2123).

Let I be the ideal generated by z1, zo in C[z1, 22]. We have

foo2 = (22 4 2120 + 23)(r3v2 — 75)  mod I°.
We then get that

R<I>~. [—1](]].E><C;) == IL(pEXidC;)’lA;eg[_Q]'

fE,2
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Bvsc, (P
pE 1dc* (Rez, [~1)(Lpl4] B 1c502) ) [azs[—4
pp % ido;). (R, | [~1](15 X 105)) azee[2]
(PE x idcy )« pE><1dc*) 1z [2 — 2]
A'eg,

since pg is one-to-one on C5. On the other hand,

Brsc, (pe)«Li(4]

Therefore,

= B, (IC(1¢,) @ IC(Ec,) © 2IC(1¢,) © IC(1¢,))
= Bve, IC(Ecy).

E\/SC2 ZC(SCs) = IlAgeg .

3.10.4. Bwsc, IC(Ec,). Since fa 3 : CY x Cy — S is trivial, we have

ROz, (115,50 = RO [~1]lg a0 = Lo,z

This determines (33) in this case.
Therefore,

(0 x id). (R<I>f33[ 1]11@,@;)

(01 id)*( & &11)
(P§)-1ey) B 1
(1c,) X 16;) 4 @2 (T(Re,) B 1z ) (4]
© (I(Ec,) B ) -4 © 3(TC(1c,) B g ) [-4
© (T(16,) 2 ¥ 1g; ) [-4] @ (T(1e,)[-2] K 1g; ) [-4),

using the expression for (p§).1g, (4] from (73). Now restrict to A3 =C3xCy =
Ps[z,y] x C§ to find

(o x id). (Reg, [y, ) Ix,

(IC(]ICS) X 117*) Ix, (4] @ 2 (IC(RCS) K lg ) Ix, (4]
& (T0(Ec,) B 1g; ) I, [-4)

Finally, restrict to A3™® = C3 x C§:

(o x i), (RO5 150 e ) [4

Therefore,

ALes = ]lAE;Cg [4] S5 2RAgcg [4} ) (C/’Agcg [4] .

E\ISC'3 ((pg>*]léé’ [4]) = ]lAgcg ) QRAECE @D (‘:Agcg.
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TABLE 3.11.1. Restrictions of Simple Objects to orbits

P P‘Co P‘Cl P|C2 ,P‘Cs
IC(1e,) | 1e,10] 0 0 0
IC(1c,) | 1e[2] 1c,[2] 0 0
ZC(]]-C2) ]]-Co[” @ ]]-Co [3] ]]-01 [3] ILCQ [3] 0
IC(]]-C3) Ie, [4] Ie, [4] Le, [4] Iy [4]
IC(Rcs) Le, [2] 0 le, [4] Rey [4]
IC(Ec,) | O 0 0 Ec, 4]

TABLE 3.11.2. The geometric multiplicity matrix for equivariant
perverse sheaves with infinitesimal parameter Ag,p,. Here we use
the notation Enc for the constructible sheaf complex defined by

IC(Le) = ﬁﬁc[dim C] and L := jiLc where j : C — V is inclusion.

1

=

OO = = = OO0

1. 1

2

T
RC:;

™

—lo o o o olxd

=)
=

3

fo

c
0
0
0
1
0
0

Sl = N = Q7

0 0
0 0
1 0
1 0
1 1
0 0

On the other hand,

Busc, ((o)-16,4)
= Bwg, IC(1c,) @ 2Bwe, IC(Re,) @ B, IC(Ecy)
® 3Bwsc, IC(]lCo) ® Bwsc, IC(HCU)[Q} @ Bwsc, ZC(HCO)[_2]
= ]lAgcg &) Q'R,Agcg b E\/SC3 %(ECS)

Therefore,
BEvsc, IC(Ec,) = Epres.
3.11. Stalks and the geometric multiplicity matrix.

Theorem 3.12. The stalks of the simple objects in Pergr,(Ps[z,y]) are given by
Table 3.11.1. The geometric multiplicity matrix is given by Table 3.11.2.

Proof. In Sections 3.6, 3.7, 3.9 and 3.10, we found:

(p1)«(1g,[2)) IC(1e,) ©IC(1ey)

(p2)«(1 52[3]) IC(1e,),

(p3)«(1g,[4]) = IC(1lc,) ®IC(Rey),

(P5)« (L, [4]) IC(1ey) ® 2IC(Rey) ® IC(Ecy)

@ 3IC(1¢c,) @ IC(1cy)[2) ® IC(1¢,)[—2].

Using this, we compute the geometric multiplicity matrix as follows. The fact that
the only non-trivial sheaves are on the open orbit C5 simplifies this as computing
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We may compute the ranks of the following stalks geometrically using proper
base change and our computations of the stalks above.

P rank(P|c,) rank(Plc,) rank(P|c,)
(p)-(T5,B) | 0 i 2
(p2)«(1g,[31) 1 1 2
(o) (15,14 | 2 1 2
(P5)+(1g,[4]) 3 1 8
We may then solve for the ranks of each of the ZC sheaves, in the order below
using what we know from the decomposition of the above sheaves. Note that
ZC(ILCO) = ]lco and ZC(ILC;;) = 163[4]'
P rank(P|c,) rank(Ple,) rank(P|c,)
IC(1e,) 0 0 1
C(1¢, ) 0 1 1
C(1¢,) 1 1 2
C(1¢,) 1 1 1
IC(Rey) 1 0 1
IC(Ecy) 0 0 0

To understand how to find the above notice that we may compute the row for
IC(Ec,) by looking at ZC(Ec,) which we know equals

(m5)+(Lgy[4]) = IC(1e,) — 2IC(Re;,) — 3IC(1¢,) — IC(1g, )[2] — ZC(1, )2
in the Grothendieck group. ([

3.12. Normalised microlocal vanishing cycles functor.

Theorem 3.13. On simple objects, the microlocal vanishing cycles functor Evs is

given by:

Perc, (P3lr.y]) = Locar, (A"%)
1c ( 1 Co ) — ]].A(rJeg
IC(]lCl) — 77\10?, 5] RA(r)cg
(L) +  Tams @ Ly
IC(1le,) ]].Ageg
IC(Rey) 'R,Ageg S ]lAgeg
TC(E,) > Ry & Tass & Lysee & Ens,

where Lpres, Tpres, Tyres, Rpres and SAgeg appear in Section 3.2. This information
is also summarised in Table 3.12.1.

Proof. (1) Bwsc, IC(1¢,) = Lpres by Section 3.5
(2) Bwsc, IC(1c,) =0 for i =1, 2 and 3 by | , Proposition 7.5.1]
(3) Bwc, IC(1c,) = Ryres by Section 3.6.1
(4) Bwsg, IC(1¢, ) = Tyres by Section 3.6.2
(5) Bvse, ZC(1¢,) = 0 for ¢ = 2 and 3 by | , Proposition 7.5.1]
(6) BEvsc, IC(1¢e,) = 0 by Section 3.7.1
(7) Bwc, IC(1c,) = 1res by Section 3.7.2
(8) Bvsc, IC(1c,) = Lpres by Section 3.7.3
(9) Bvsc, IC(1e,) = 0 by | , Proposition 7.5.1]
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TABLE 3.12.1. Values of Evs on Simple Objects

’ PerGL2 (Pg [:L', y]) H |_OC(;L2 (ABCg) LOCGL2 (A?g) |_OCG,L2 (A;Cg) |_OCGL2 (AgCg) ‘

TC(1c,) Lpres 0 0 0
7(1¢,) Rres Thres 0 0
7(1¢,) 0 Lpres Thses 0
7C(1c,) 0 0 0 1pres
IC(Rey) 0 0 ]lAr;g RAgeg
E(ECS) 5A69g 'TA;eg ]lA;eg 5A§eg

(10) BEvsc, IC(1¢,) = 0 by Section 3.8.1

(11) Bvsc, IC(1¢,) = 0 by Section 3.8.2

(12) BEvsc, IC(1¢,) = 0 by Section 3.8.3

(13) Bvsc, IC(Ley) = 1pzes by Section 3.8.4

(14) Bvsc, IC(Re,) =0 by Section 3.9.1

(15) BEvsc, IC(R¢,) = 0 by Section 3.9.2

(16) Bvsc, IC(Rey) = Lpres by Section 3.9.3

(17) Bwe, IC(Re,) = RAreg by Section 3.9.4

(18) BEvsc, IC(Ec,) =0 by Section 3.10.1

(19) Bvsc, IC(c‘,’CS) 0 by Section 3.10.2

(20) BEvsc, IC(Ec,) = 0 by Section 3.10.3

(21) Bwsc, IC(Ecy) = Enres by Section 3.10.4 O

From | , Section 7.10], we recall the normalised microlocal vanishing

cycles functor
NEvsc : Perg (V) — Locy (TEA™®),

defined by
NEvsc F := Hom (Evsc IC(C), Bvsc F) = (Evsc ZC(C))" @ Bvso F.

Theorem 3.14. On simple objects, the normalised microlocal vanishing cycles
functor NEvs is given by:

Percr, (P3[z,y]) =% Locgr, (A™%)
IC(]]-CO ) — ]].Ageg
IC(]ICI) — ]lA;cg @RABOE.
IL(1lg,) +— ]lA;eg ¥ 'E\ieg
.Z-C(]lcg ) — ]lA;eg
IC(Rey) — 'R,Ageg S 77\561%
IC(Ecy) + gAgeg @ ]lA;eg &5 ﬂieg P 5A(r)eg

This information is also summarised in Table 3.12.2.

Proof. From Table 3.12.1 we see that Bwc, ZC(1c,) = Lpres for i = 0,3 and
Evsc, IC(1¢,) = Tyres for i = 1,2. Table 3.12.2 is therefore obtained from Ta-
ble 3.12.1 by tensoring the columns Locgr, (A1) and Locar, (AL®) by Tares and
Tazes, respectively. O
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TABLE 3.12.2. Values of NEvs on Simple Objects

’ PerGL2 (Pg [:L', y]) H |_OC(;L2 (ABCg) LOCGL2 (A?g) |_OCG,L2 (A;Cg) |_OCG,L2 (AgCg) ‘
1C(1c,) Lyres 0 0 0
C(1¢,) R pres Lpres 0 0
IC(]lcQ) 0 ﬂieg I[A;eg 0
c(1¢,) 0 0 0 L pres
Ic (RCS ) 0 0 ﬂ;eg RAgeg
IC(E:CS ) (S’Aaeg ]]_Aieg 77\;954 5A§eg'

3.13. Fourier transform.

Theorem 3.15. On the simple objects in Pergy, (Ps|z,y]), the Fourier transform
is given by

[Aub95]
[Art89]
[Art96]
[Art13]

[BBDS2

(BJ]

[Car93]

[BC68

[CFM*21]

IC(le,) = ZC(Lgy)
IL(le,) = IC(Rcy)
FtE(]lcz) = IC(]IC;)
RIC(1e,) = IC(]IC?»;)
FRIC(Re,) = E(]lc;)
Ftﬂ:(gcs) = ZC(SCS).

(1) FtZC(1¢,) = ZC(1¢; ) by Section 3.5

IC(1¢,) = IC(Rey ) by Section 3.6.1
IL(1g,) = ZC(]lc*) by Section 3.7.1
IC(1¢,) = IC(]lc*) by Section 3.8.1
IC(Rey) = Ic(ﬂcz*) by Section 3.9.1
IC(Ec,) = IC(Ecy ) by Section 3.10.1 O
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