
Limits

The concept of a limit is basically the thing which makes Calculus work. What we will be
talking about here is a version of limits that often appears in Real Analysis.

We call an infinite list a1, a2, a3, . . . of real numbers a sequence of real numbers.

Suppose a1, a2, a3, . . . is a sequence of real numbers and L is any other real number.
We say that the sequence converges to L (and write an → L) if and only if:

∀ε > 0,∃N ∈ N, ∀n > N, |an − L| < ε

Recall that the absolute value of a number is just the ‘size’ of the number (gets rid of
negative sign).
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Examples

1, 2, 3, 4, 5, 6, 7, 8, 9, . . . , n, . . .

1, 1, 1, 1, 1, 1, 1, 1, 1, . . . , 1, . . .

1,−1, 1,−1, 1,−1, 1,−1, 1, . . . , (−1)n+1, . . .

1, 1/2, 1/3, 1/4, 1/5, 1/6, 1/7, 1/8 . . . , 1/n, . . .

3/5, 5/8, 7/11, 9/14, 11/17, 13/20, 15/23, 17/26, . . . (2n + 1)/(3n + 2), . . .

Sequences don’t have to have formuals, or we don’t need to know them to work with
them, but it is often reassuring to imagine they do.
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Suppose a1, a2, a3, . . . is a sequence of real numbers and L is any other real number.
We say that the sequence converges to L (and write an → L) if and only if:

∀ε > 0,∃N ∈ N, ∀n > N, |an − L| < ε

The intuitive way to think about limits is that the list of numbers, an is getting closer
and closer to the limit L as we go further and further into the list.
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Facts about absolute values

Working with limits means using absolute values, here is a list of rules, you have probably
seen them before, you may have forgetten some of them.
For x , y , z ∈ R we know:

1 |x | ≥ 0

2 | − x | = |x |
3 |x + y | ≤ |x |+ |y | this is called the triangle inequality

4 |xy | = |x ||y |
5 −|x | ≤ x ≤ |x |
6 ∃N ∈ N,N > |x | one can end up using this alot with limits

7 If |x | < |y | and z 6= 0 then |xz | < |yz |.
8 If |x | > |y | > 0 then 1

|x| <
1
|y| .
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Intuition of limits

Suppose a1, a2, a3, . . . is a sequence of real numbers and L is any other real number.
We say that the sequence converges to L (and write an → L) if and only if:

∀ε > 0,∃N ∈ N, ∀n > N, |an − L| < ε

The assertion |an − L| < ε means a some particular n, that an is closer than ε to L.
With ε = 1/2, L = 0, n = 5 and an = 1/n we have

|1/5− 0| < 1/2

∀n > N, |an − L| < ε then says that the entire sequence after a particular N (the end
of the sequence) is closer than ε to L.
With ε = 1/10, L = 0, N = 10 and an = 1/n if n > 10 then |1/n − 0| < 1/10
so after the 10th element in the sequence, everything is closer than 1/10.
∃N ∈ N,∀n > N, |an − L| < ε says that there is actually some notion of the end of
the sequence which is closer than ε to L.
For example with ε = 1/100, L = 0, an = 1/n we can find some value N which shows

∃N ∈ N∀n > 10, |1/n − 0| < 1/100

eg N=100th spot, everything in the sequence is pretty close to zero.
∀ε > 0, ∃N ∈ N, ∀n > N, |an − L| < ε says that no matter how close I insist the word
close actually means, then the sequence eventually gets that close.
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Example Theorems About Limits

We will need the definition while we do some examples.

If a1, a2, a3, . . . is an infinite list of real numbers. and L is another real number.
We say that the sequence (the infinite list) converges to L (and write an → L) if and
only if:

∀ε > 0,∃N ∈ N, ∀n > N, |an − L| < ε

Notice that there are three quantifiers, this should tell us how most of our proofs about
limits will start!

an = 1
n

, . .̇ an → 0 .

an = 2n+1
3n+2

, . .̇ an → 2
3

.
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Example Theorems About Limits (Using Hypothesis)

We will need the definition while we do some examples.

If a1, a2, a3, . . . is an infinite list of real numbers. and L is another real number.
We say that the sequence (the infinite list) converges to L (and write an → L) if and
only if:

∀ε > 0,∃N ∈ N, ∀n > N, |an − L| < ε

Notice that there are three quantifiers, this should tell us how we can use it as a
hypothesis.

an → 10, . .̇ ∃N, ∀n > N, an < 20.

an = 10bn, bn → 6, . .̇ an → 60 .

an = bn + 3cn, bn → 2, cn → 3, . .̇ an → 11 .

an = b2
n, bn → 10, . .̇ an → 100 .
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Some facts that are useful that you can’t use unless you prove them
yourself!

these are good exercises, the last one is kinda tricky.
Suppose an → L1 and bn → L2 then:

if cn = (an + C) then cn → (L1 + C).

if cn = (Can) then cn → CL1.

if cn = (an + bn) then cn → (L1 + L2)

if cn = (anbn) then cn → (L1L2) (this is a bit tricky to prove (that is, there is a trick
to it), you will not need to use/prove it in this course but it is important for actually
figuring out when limits will exist and what they will be)

if ai , L1 6= 0 and cn = 1
an

then cn → 1
L1

(this is even trickier to prove, you will

definitely not need to use/prove it in this course but it is important for actually
figuring out when limits will exist and what they will be)
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