
Vector Spaces - informal

A vector space V over R is first and foremost a set of things which we call vectors.

If ~v1 and ~v2 are vectors in V , that is ~v1, ~v2 ∈ V , and a, b are real numbers, a, b ∈ R then
I should be able to make sense of

a~v1 + b~v2

Namely, this should be a vector in V , that is (a~v1 + b~v2) ∈ V .

Also, all those rules we take for granted about adding and multiplying should work out,
because if it wasn’t true that:

(a~v1 + b~v2) + (c~v1 + d~v2) = (a + c)~v1 + (b + d)~v2

then working with these things would be a serious pain.
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Vector Spaces - Formal

A vector space V over R is a set V , together with two maps:

· : R× V → V and + : V × V → V

(the first map describes how to make sense of the expressions like a~v1, the second how to
make sense of expressions like ~v1 + ~v2.)
These two maps satisfy the following rules.

1 ∃~0 ∈ V such that ∀~v ∈ V we have ~0 + ~v = ~v .

2 ∀~v ∈ V we have ∃~w ∈ V such that ~v + ~w = ~0.

3 ∀~v1, ~v2 ∈ V we have ~v1 + ~v2 = ~v2 + ~v1.

4 ∀~v1, ~v2, ~v3 ∈ V we have (~v1 + ~v2) + ~v3 = ~v1 + (~v2 + ~v3).

5 ∀~v ∈ V we have 1~v = ~v .

6 ∀~v ∈ V ,∀a, b ∈ R we have a(b~v) = (ab)~v .

7 ∀~v ∈ V ,∀a, b ∈ R we have (a + b)~v = (a~v) + (b~v).

8 ∀~v1, ~v2 ∈ V , ∀a ∈ R we have a(~v1 + ~v2) = (a~v2) + (a~v1).
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Interpretation

All of these rules basically say everything works the way you think it should.
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Examples

Give me some examples of sets X , for which you have in the past taken two elements
A,B ∈ X and then written:

A+ B

Give me some examples of sets X , for which you have in the past taken an element
A ∈ X and a real number C then written:

CA

Can you think of some sets where you have done both of these things?
Have those rules from the last slide ever not been true?
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Rn is a Vector Space

1 The vector (0, 0, . . . , 0), is a vector such that for all (x1, . . . , xn) ∈ Rn we have

(0, 0, . . . , 0) + (x1, . . . , xn) = (x1, . . . , xn)

so we have shown there is a vector that does what ~0 must do, so set

~0 = (0, 0, . . . , 0)

and we see rule 1 works out.
2 For any vector ~v = (x1, . . . , xn) the vector ~w = (−x1, . . . ,−xn) satisfies

~v + ~w = (x1, . . . , xn) + (−x1, . . . ,−xn) = (x1 − x1, . . . , xn − xn) = (0, 0, . . . , 0)

so rule 2 works out.
3 For any vectors ~v1 = (x1, . . . , xn) and ~v2 = (y1, . . . , yn) we have

~v1 + ~v2 = (x1, . . . , xn) + (y1, . . . , yn)

= (x1 + y1, . . . , xn + yn)

= (y1 + x1, . . . , yn + xn)

= (y1, . . . , yn) + (x1, . . . , xn)

= ~v2 + ~v1

so rule 3 works out.
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4 For any three vectors ~v1 = (x1, . . . , xn), ~v2 = (y1, . . . , yn) and ~v3 = (z1, . . . , zn)

(~v1 + ~v2) + ~v3 = ((x1, . . . , xn) + (y1, . . . , yn)) + (z1, . . . , zn)

= (x1 + y1, . . . , xn + yn) + (z1, . . . , zn)

= (x1 + y1 + z1, . . . , xn + yn + zn)

= ((x1, . . . , xn) + (y1 + z1, . . . , yn + zn)

= ((x1, . . . , xn) + ((y1, . . . , yn) + (z1, . . . , zn))

= ~v1 + (~v2 + ~v3)

so rule 4 works out.
5 For any vector ~v = (x1, . . . , xn) we have

1 · ~vv = 1 · (x1, . . . , xn) = (1 · x1, . . . , 1 · xn) = (x1, . . . , xn) = ~v

so rule 5 works out.
6 For any vector ~v = (x1, . . . , xn), and any real numbers a, b we have

a · (b · ~v)) = a · (b · (x1, . . . , xn))

= a · (bx1, . . . , bxn)

= ((ab)x1, . . . , (ab)xn)

= (ab) · (x1, . . . , xn)

= (ab) · ~v
so rule 6 works out.
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7 For any vector ~v = (x1, . . . , xn) and any two real numbers a, b we have

(a + b)~v = = (a + b) · (x1, . . . , xn)

= ((a + b)x1, . . . , (a + b)xn)

= (ax1 + bx1, . . . , axn + bxn)

= (ax1, . . . , axn) + (bx1, . . . , bxn)

= a · (x1, . . . , xn) + b · (x1, . . . , xn)

= a · ~v + b · ~v

so rule 7 works out.
8 For any vector ~v1 = (x1, . . . , xn) and ~v2 = (y1, . . . , yn) and any real number a we

have

a · (~v1 + ~v2) = a((x1, . . . , xn) + (y1, . . . , yn)) = a · (x1 + y1, . . . , xn + yn)

= (a(x1 + y1), . . . , a(xn + yn))

= (ax1 + ay1, . . . , axn + ayn)

= (ax1, . . . , axn) + (ay1, . . . , ayn)

= a · (x1, . . . , xn) + a · (y1, . . . , yn)

= a · ~v1 + a · ~v2

so rule 8 works out.

This proves that Rn is a vector space.
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Examples

In principal to check that each of the following is a vector space, we must figure out what
~0 is, and then check all 8 rules.

Rn.

The space of n by m matricies.

“polynomials in as many variables as you would like”

Rational “functions” from R to R.

Functions from any set X into R.

Power series.

The set of Taylor series of infinitely differentiable functions.

Fourier Series.

Sequences of real numbers.

Most of the vector spaces you deal with in this class can be thought of as subsets of Rn.
There are a very small number of examples that are mentioned on the assignment, and I
will occasionally mention some other examples in class as motivation.

Math 3410 (University of Lethbridge) Spring 2018 8 / 17



Alot of things follow from these 8 rules: Here are some facts to know
If ~v ∈ V then 0~v = ~0 ∈ V .

Proof: Let ~v ∈ V be arbitrary and denote by ~w the vector from rule 2 for which 0~v + ~w = ~0 then
~0 = 0~v + ~w rule 2

= (0 + 0)~v + ~w because 0 = (0 + 0) for real numbers

= (0~v + 0~v) + ~w rule 7

= 0~v + (0~v + ~w) rule 4

= 0~v +~0 rule 2

= ~0 + 0~v rule 3

= 0~v rule 1

The element ~w = ~0 is the only element such that ∀~v ∈ V we have ~w + ~v = ~v .
Proof: Suppose ~w1 and ~w2 both satisfy ∀~v ∈ V we have ~w1 + ~v = ~v = ~w2 + ~v .
Then what is ~w1 + ~w2?

~w1 = ~w1 + ~w2 assumption ∀~v , ~v + ~w2 = ~v

= ~w2 + ~w1 rule 3

= ~w2 assumption ∀~v , ~v + ~w1 = ~v

For all a ∈ R, we have a~0 = ~0.
Proof:

a~0 = a(0 ·~0) see above

= (a0)~0 rule 6

= 0 ·~0 algebra

= ~0 see above
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If a 6= 0 and a~v = ~0 then ~v = ~0.
Proof: ~v = ( 1

a a)~v rule 5

= 1
a (a~v) rule 6

= 1
a
~0 assumption a~v = ~0

= ~0 see before

If ~v ∈ V then (−1)~v + ~v = ~0 ∈ V
Proof: (−1)~v + ~v = (−1)~v + (1)~v rule 5

= (−1 + 1)~v rule 7

= (0)~v algebra

= ~0 see before

If ~v ∈ V then the element ~w = (−1)~v (usually just written −~v) is the only element
such that ~w + ~v = ~0.
Proof: Suppose ~w1 and ~w2 both satisfy ~w1 + ~v = ~0 = ~w2 + ~v .

~w1 = ~0 + ~w1 rule 1

= (~w2 + ~v) + ~w1 assumption ~w2 + ~v = ~0

= ~w2 + (~v + ~w1) rule 4

= ~w2 + (~w1 + ~v) rule 3

= ~w2 +~0 assumption ~w1 + ~v = ~0

= ~0 + ~w2 rule 4

= ~w2 rule 2

There are many facts whose proofs work like this... Let us NEVER AGAIN be so
pedantic. Addition and multiplication of vectors works the way you think it does.
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Non-Examples

Just because I define a + sign and a · sign doesn’t mean the result is a vector space.
Those 8 rules exist for a reason.

{~0, cat} with the rules for addition
I cat + cat = ~0,
I cat + 0 = ~cat,
I 0 + cat = ~cat,
I 0 + 0 = ~0

and the rules for multiplication
I acat = cat for a 6= 0
I and 0cat = ~0.

Which rule is broken?

well if the rules did work then

cat = 2cat = (1 + 1)cat = (1cat) + (1cat) = cat + cat = ~0

But cat 6= ~0 so at least one of those steps does not work in this example.
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Weird actual examples

Just because I define a + sign and a · sign and the definition is wierd doesn’t mean the
result won’t be a vector space.
One can construct wierd things which end up satisfying these rules
You won’t need to do things with these types of examples in this class.

Consider the set V = {x ∈ R|x > 0}.
Define ′+′ : V × V → V by

~v1
′+′ ~v2 = (v1v2).

We define + on this vector space to be the product in R+.... which is wierd.
Define · : R× V → V by

a~v1 = v a
1

and we define scalar multiplication to be exponentiation.
These operations satisfy all of the rules which define a vector space!
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Why Abstract Vector Spaces?

There are many examples of vector spaces that are not just Rn. The observation that in
many ways they work just like Rn is useful because:

Once you know theorems for vector spaces they also apply to these other settings.

A lot of the techniques for vector spaces can be applied in these other settings.

I Putting ‘dot’ products on spaces of functions is a critical part of Fourier Analysis.
I Studying differentiation and differential equations is often the equivalent of studying

linear transformations.
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Concrete Example - Digital Audio Recording

Sounds can be represented by graphs, acurately reproducing the sound requires storing
enough data to accurately reproduce the graph.

For complicated sounds, this would require plotting a lot of data points.

Most complicated sounds are approximately just superpositions of simple sounds:

[complexsound ] ≈ a[simplesound1] + b[simplesound2] + c[simplesound3]

so I only need to know a, b, c and the graphs of the simple sounds.

Simple sounds have very simple graphs sin(nπx), so require very little data to describe
(just remember the single number n).

Problem
How can we find the coefficients (that is a, b, and c)?
Solutions
Construct a “dot product” so that the coefficients come from projections.
This is basically Fourier analysis, and is one of the core ideas of signal processing.
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Why Abstract Vector Spaces?

Because even Rn can have different descriptions.

Two lists of numbers, might have the same length, say 5, but thinking of them as
both being in the same R5 can be misleading.
If one of the vectors is in V , and one is in W , you can think of these as ‘different
sets’ even if they are both essentially R5.
It is a good idea not to confuse a list that tracks the outcomes of sporting events
with one that tracks the number of cats we all own.

We have also aready seen, that there can be more than one way to assign a list of
numbers to something as simple as baking ingredients (the brown/white sugar bias).
Understanding the fact that there are different ways to identify V with Rn is easier if
you don’t already come with a preconcieved notion of how they should match up.

It will make talking about subspaces easier.
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Vector Space Definition - Summary

A vector space is a set, where addition and scalar multiplication make sense, and work
the way you think they should.

In this class most, but not all, examples will end up being subsets of Rn.

The next thing we want to talk about, is the special case of subsets of vector spaces as
vector spaces.
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Natural Questions to ask about Abstract Vector Spaces

Is the set with the operations described on it actually a vector space?
this can be technical but you need to understand what this means.

What meaning can I associate to objects in some abstractly described vector space?
This question is open ended.
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