Vector Subspaces - Informal

A subspace is a space, that is inside another space.
A vector subspace (which we will also just call a subspace) of a vector space V is just a subset $W \subset V$, which is still a vector space without needing to muck around with the definitions of + and \cdot

If V with + and • is a vector space, and W is a subset of V, then by restricting the domain of + and \cdot we definitely have maps:

$$
\cdot: \mathbb{R} \times W \rightarrow V \quad+: W \times W \rightarrow V
$$

and although we can easily just restrict the domain, the first major condition to being a subspace is that the range of the above maps lands in W so that I can also restrict the codomain so that I actually have maps:

$$
\cdot: \mathbb{R} \times W \rightarrow W \quad+: W \times W \rightarrow W
$$

It is important to realize this is a serious condition, you can't normally just randomly change the codomain of a function!

Vector Subspaces - Formal

Given a vector space V (with + and $\cdot)$ we say that W is a subspace of V if $W \subset V$ and
(1) $\overrightarrow{0} \in W$.
(2) $\forall \vec{v}_{1}, \overrightarrow{v_{2}} \in W$ we have $\vec{v}_{1}+\vec{v}_{2} \in W$.
(3) $\forall \vec{v} \in W$ and $a \in \mathbb{R}$ we have $a \vec{v} \in W$.

The last two rules say that we can restrict the codomain as on the previous slide

Theorem

If V is a vector space and W is a subspace of V, then W is a vector space using the maps

$$
\cdot: \mathbb{R} \times W \rightarrow W \quad+: W \times W \rightarrow W
$$

Lemma 2.I.2.9 p. 92 of Hefferon's textbook says something very similar to this Proof Idea: Rule 2 and 3 for subspaces say that we can restrict the domain to get functions. In order to check rules 1-8 of being a vector space for these functions notice that

- Rules 3-8 for vector spaces are just forall statements, which follow immediately.
- Rule 2 for vector spaces follows from $\vec{v}+(-1) \vec{v}=\overrightarrow{0}$ and that $(-1) \vec{v} \in W$ if $\vec{w} \in W$ (rule 3 for subspaces).
- Rule 1 for vector spaces is rule 1 for subspaces.

Example (Picture)

Consider the two following subsets of $V=\mathbb{R}^{2}$.

$$
W_{1}=\{(x, y) \in V \mid x=y\}
$$

$$
W_{2}=\left\{(x, y) \in V \mid x^{2}=y^{2}\right\}
$$

One of these is a subspace, one is not!
If you pick any two vectors on W_{1}, and add them, the result is still on the line. If you pick one vector from each of the two lines in W_{2}, and add them, the result is probably not on either line!
The pictures aren't proofs though, we will give an example of a proof shortly!

Examples (Proofs)

- The emptyset $W=\emptyset \subset V$ is never a subspace of V. proof: It fails rule 1 of being a subspace, because $\overrightarrow{0} \notin \emptyset$.
- The set $W=\{\overrightarrow{0}\} \subset V$ is always a subspace of V. proof: We must check the three conditions to be a subspace of W :
(1) By definition $\overrightarrow{0} \in W$.
(2) Given any two vectors in W, they are both $\overrightarrow{0}$ and we know

$$
\overrightarrow{0}+\overrightarrow{0}=\overrightarrow{0} \in W
$$

(3) Given any vector in W it is $\overrightarrow{0}$, and given any $a \in \mathbb{R}$ we know

$$
a \overrightarrow{0}=\overrightarrow{0} \in W
$$

- The set $W=\left\{(a, 2 a, 3 a) \in \mathbb{R}^{3} \mid a \in \mathbb{R}\right\}$ is a subspace of \mathbb{R}^{3}. proof: We must check the three conditions to be a subspace of \mathbb{R}^{3} :
(1) Taking $a=0$ we see that $\overrightarrow{0}=(0,0,0)=(0,2(0), 3(0)) \in W$, and so $\overrightarrow{0} \in W$.
(2) Let $(a, 2 a, 3 a),(b, 2 b, 3 b)$ be two arbitrary elements in W then by taking $c=a+b$ we see that

$$
(a, 2 a, 3 a)+(b, 2 b, 3 b)=(c, 2 c, 3 c)
$$

is also an element of W.
(3) Let $(a, 2 a, 3 a)$ be two arbitrary element in W and x an arbitrary element in \mathbb{R} then by taking $c=a x$ we see that

$$
x(a, 2 a, 3 a)=(c, 2 c, 3 c)
$$

is also an element of W.

Examples (continued)

- The set $W=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x+y-z=0\right\}$ is a subspace of \mathbb{R}^{3}.

We must check the three conditions to be a subspace of \mathbb{R}^{3} :
(1) We see that $\overrightarrow{0}=(0,0,0)$, satisfies $(0)+(0)-(0)=0$ and so $\overrightarrow{0} \in W$.
(2) Let $\left(x_{1}, y_{1}, z_{1}\right),\left(x_{2}, y_{2}, z_{2}\right)$ be two arbitrary elements in W so that we know $x_{1}+y_{1}-z_{1}=0$ and $x_{2}+y_{2}-z_{2}=0$ then

$$
\left(x_{3}, y_{3}, z_{3}\right)=\left(x_{1}, y_{1}, z_{1}\right)+\left(x_{2}, y_{2}, z_{2}\right)=\left(x_{1}+x_{2}, y_{1}+y_{2}, z_{1}+z_{2}\right)
$$

will have
$x_{3}+y_{3}-z_{3}=\left(x_{1}+x_{2}\right)+\left(y_{1}+y_{2}\right)-\left(z_{1}+z_{2}\right)=\left(x_{1}+y_{1}-z_{1}\right)+\left(x_{2}+y_{2}-z_{2}\right)=0$
so is also an element of W.
(3) Let $\left(x_{1}, y_{1}, z_{1}\right)$ be two arbitrary element in W, so we know $x_{1}+y_{1}-z_{1}=0$ and let c an arbitrary element in \mathbb{R} then

$$
\left(x_{2}, y_{2}, z_{2}\right)=c\left(x_{1}, y_{1}, z_{1}\right)=\left(c x_{1}, c y_{1}, c z_{1}\right)
$$

will have

$$
x_{2}+y_{2}-z_{2}=c x_{1}+c y_{1}-c z_{1}=c\left(x_{1}+y_{1}-z_{1}\right)=c(0)=0
$$

so is also an element of W.

Subspaces in \mathbb{R}^{3}

In \mathbb{R}^{3} (and more generally \mathbb{R}^{n}) subspaces are not so mysterious. We will see that in \mathbb{R}^{3} all of the subspaces must be of the form:

- $\{0\}$
- A line through the origin
- A plane containing the origin
- All of \mathbb{R}^{3}.

Why Subspaces?

It turns out that the answers to a lot of questions that people end up asking about vectors and matricies

- Can be reinterpretted as a question about subspaces.
- Have answers which will actually just be subspaces.

This is true of both the problems of determining if a system of equations has a solution, and the problem of describing all the solutions to a system of equations.

Theorems about Subspaces

Theorem

If W_{1} and W_{2} are subspaces of a vector space V then $W_{1} \cap W_{2}$ is also a subspace.
This is a direct check, which we leave as an exercise.

Theorem

If we have $W \subset U \subset V$ with V a vector space, and U a subspace of V then: W is a subspace of U if and only if W is a subspace of V

This is a straight forward check, just notice that the conditions to be a subspace don't depend on the weather you check relative to U of V.

Natural Questions to ask about Subspaces

- Is the subset $X \subset V$ actually a subspace?

Basically always solved by checking the three conditions.

- Is the specific vector $\vec{x} \in V$ actually in the subspace W ?

How to check this clearly depends on the definition of the subspace!! We will see a couple ways to introduce subspaces, each will ultimately come with a way to check.

- What are the simplest descriptions of the subspace W?

This question is open ended, but it does make sense to ask for alternate descriptions.

