Vector Subspaces - Informal

A subspace is a space, that is inside another space.

A vector subspace (which we will also just call a subspace) of a vector space V is just a subset $W \subset V$, which is still a vector space without needing to muck around with the definitions of + and \cdot .

If V with + and \cdot is a vector space, and W is a subset of V, then by restricting the domain of + and \cdot we definitely have maps:

 $\cdot : \mathbb{R} \times W \to V + : W \times W \to V$

and although we can easily just restrict the domain, the first major condition to being a subspace is that the **range** of the above maps lands in W so that I can also restrict the codomain so that I actually have maps:

$$: \mathbb{R} \times W \to W + : W \times W \to W$$

It is important to realize this is a serious condition, you can't normally just randomly change the codomain of a function!

Vector Subspaces - Formal

Given a vector space V (with + and \cdot) we say that W is a **subspace** of V if $W \subset V$ and

- $\vec{0} \in W.$
- **2** $\forall \vec{v_1}, \vec{v_2} \in W$ we have $\vec{v_1} + \vec{v_2} \in W$.
- **3** $\forall \vec{v} \in W$ and $a \in \mathbb{R}$ we have $a\vec{v} \in W$.

The last two rules say that we can restrict the codomain as on the previous slide

Theorem

If V is a vector space and W is a subspace of V, then W is a vector space using the maps

$$\cdot : \mathbb{R} \times \mathcal{W} \to \mathcal{W} \quad + : \mathcal{W} \times \mathcal{W} \to \mathcal{W}$$

Lemma 2.1.2.9 p. 92 of Hefferon's textbook says something very similar to this **Proof Idea:** Rule 2 and 3 for subspaces say that we can restrict the domain to get functions. In order to check rules 1-8 of being a vector space for these functions notice that

- Rules 3-8 for vector spaces are just forall statements, which follow immediately.
- Rule 2 for vector spaces follows from $\vec{v} + (-1)\vec{v} = \vec{0}$ and that $(-1)\vec{v} \in W$ if $\vec{w} \in W$ (rule 3 for subspaces).
- Rule 1 for vector spaces is rule 1 for subspaces.

Example (Picture)

Consider the two following subsets of $V = \mathbb{R}^2$.

One of these is a subspace, one is not!

If you pick any two vectors on W_1 , and add them, the result is still on the line. If you pick one vector from each of the two lines in W_2 , and add them, the result is probably not on either line!

The pictures aren't proofs though, we will give an example of a proof shortly!

Math 3410 (University of Lethbridge)

Examples (Proofs)

- The emptyset W = Ø ⊂ V is never a subspace of V.
 proof: It fails rule 1 of being a subspace, because 0 ∉ Ø.
- The set W = {0
 ⁱ ⊂ V is always a subspace of V.
 proof: We must check the three conditions to be a subspace of W:
 - **(4)** By definition $\vec{0} \in W$.
 - **2** Given any two vectors in W, they are both $\vec{0}$ and we know

$$\vec{0} + \vec{0} = \vec{0} \in W$$

(3) Given any vector in W it is $\vec{0}$, and given any $a \in \mathbb{R}$ we know

 $a\vec{0}=\vec{0}\in W$

- The set W = {(a, 2a, 3a) ∈ ℝ³ | a ∈ ℝ} is a subspace of ℝ³.
 proof: We must check the three conditions to be a subspace of ℝ³:
 - **(**) Taking a = 0 we see that $\vec{0} = (0, 0, 0) = (0, 2(0), 3(0)) \in W$, and so $\vec{0} \in W$.
 - (a) Let (a, 2a, 3a), (b, 2b, 3b) be two arbitrary elements in W then by taking c = a + b we see that

$$(a, 2a, 3a) + (b, 2b, 3b) = (c, 2c, 3c)$$

is also an element of W.

(a) Let (a, 2a, 3a) be two arbitrary element in W and x an arbitrary element in \mathbb{R} then by taking c = ax we see that

$$x(a,2a,3a) = (c,2c,3c)$$

is also an element of W.

Examples (continued)

- The set $W = \{(x, y, z) \in \mathbb{R}^3 \mid x + y z = 0\}$ is a subspace of \mathbb{R}^3 . We must check the three conditions to be a subspace of \mathbb{R}^3 :
 - **(**) We see that $\vec{0} = (0, 0, 0)$, satisfies (0) + (0) (0) = 0 and so $\vec{0} \in W$.
 - **Q** Let $(x_1, y_1, z_1), (x_2, y_2, z_2)$ be two arbitrary elements in W so that we know

$$x_1 + y_1 - z_1 = 0$$
 and $x_2 + y_2 - z_2 = 0$ then

$$(x_3, y_3, z_3) = (x_1, y_1, z_1) + (x_2, y_2, z_2) = (x_1 + x_2, y_1 + y_2, z_1 + z_2)$$

will have

$$x_3 + y_3 - z_3 = (x_1 + x_2) + (y_1 + y_2) - (z_1 + z_2) = (x_1 + y_1 - z_1) + (x_2 + y_2 - z_2) = 0$$

so is also an element of W.

(a) Let (x_1, y_1, z_1) be two arbitrary element in W, so we know $x_1 + y_1 - z_1 = 0$ and let c an arbitrary element in \mathbb{R} then

$$(x_2, y_2, z_2) = c(x_1, y_1, z_1) = (cx_1, cy_1, cz_1)$$

will have

$$x_2 + y_2 - z_2 = cx_1 + cy_1 - cz_1 = c(x_1 + y_1 - z_1) = c(0) = 0$$

so is also an element of W.

In \mathbb{R}^3 (and more generally \mathbb{R}^n) subspaces are not so mysterious. We will see that in \mathbb{R}^3 all of the subspaces must be of the form:

• {0}

- A line through the origin
- A plane containing the origin
- All of \mathbb{R}^3 .

It turns out that the answers to a lot of questions that people end up asking about vectors and matricies

- Can be reinterpretted as a question about subspaces.
- Have answers which will actually just be subspaces.

This is true of both the problems of determining if a system of equations has a solution, and the problem of describing all the solutions to a system of equations.

Theorem

If W_1 and W_2 are subspaces of a vector space V then $W_1 \cap W_2$ is also a subspace.

This is a direct check, which we leave as an exercise.

Theorem

If we have $W \subset U \subset V$ with V a vector space, and U a subspace of V then: W is a subspace of U if and only if W is a subspace of V

This is a straight forward check, just notice that the conditions to be a subspace don't depend on the weather you check relative to U of V.

Natural Questions to ask about Subspaces

- Is the subset X ⊂ V actually a subspace? Basically always solved by checking the three conditions.
- Is the specific vector x ∈ V actually in the subspace W? How to check this clearly depends on the definition of the subspace!! We will see a couple ways to introduce subspaces, each will ultimately come with a way to check.
- What are the *simplest* descriptions of the subspace *W*? This question is open ended, but it does make sense to ask for alternate descriptions.