
Linear Combinations

Let V be a vector space, and let ~x1, . . . , ~x` ∈ V be a collection of vectors.
Given a1, . . . , a` ∈ R we call the vector

~v = a1~x1 + · · ·+ a`~x`

a Linear Combination of ~x1, . . . , ~x`.

Examples
1 The vector (1, 2, 3, 4) is a linear combination of (4, 3, 2, 1) and (1, 1, 1, 1), because

(1, 2, 3, 4) = 5(1, 1, 1, 1) + (−1)(4, 3, 2, 1)

2 Determine if (6, 5, 4, 3) can be expressed as a linear combination of (1, 2, 3, 4) and
(4, 3, 2, 1).
We need to try to solve

(6, 5, 4, 3) = a(1, 2, 3, 4) + b(4, 3, 2, 1)

3 Determine if (1, 2, 1, 2) can be expressed as a linear combination of (1, 2, 3, 4) and
(4, 3, 2, 1).
We need to try to solve

(1, 2, 1, 2) = a(1, 2, 3, 4) + b(4, 3, 2, 1)

These problems always turn into solving a system of equations.
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Examples (Picture)

Consider the vector (3, 2), which vectors can be written as linear compinations of it?

it can only be the vectors on the line 3y = 2x .

What if we have the vectors (3, 2), (−2, 2), and (−1,−2)?

Then it can be any vector in R2.
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Spans

Let V be a vector space, let X be any subset of V . Define the Span of the set X to be:

Span(X ) = {~v ∈ V | ∃~x1, . . . , ~x` ∈ X , ~v is a linear combination of ~x1, . . . , ~x`}

(technical note: even if the set X is infinite, the linear combinations only include finitely many of

the X .)

Likewise, given a list of vectors, ~x1, . . . , ~xn we define

Span(~x1, . . . , ~xn) = {~v ∈ V | ∃a1, . . . , an ∈ R, ~v = a1~x1 + · · ·+ an~xn}

These definitions agree when the set X is finite, as given X = {~x1, . . . , ~x`} then

Span(X ) = Span(~x1, . . . , ~x`) = {a1~x1 + · · ·+ a`~x` | a1, . . . , a` ∈ R}

Put another way:

~v ∈ Span(~x1, . . . , ~x`)⇔ ∃a1, . . . , a`, ~v = a1~x1 + · · ·+ a`~x`
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Examples (Picture)

Consider again the vector (3, 2),

the span of (3, 2) is the line 3y = 2x .

If we have the vectors (3, 2), (−2, 2), and (−1,−2),

then we have R2 = Span((3, 2), (−2, 2), (−1,−2)).

Math 3410 (University of Lethbridge) Spring 2018 4 / 17



Examples

By definition

Span((1, 2, 3, 4), (4, 3, 2, 1)) = {r(1, 2, 3, 4) + s(4, 3, 2, 1) | r , s ∈ R}

Determine if (6, 5, 4, 3) ∈ Span((1, 2, 3, 4), (4, 3, 2, 1))?
We need to try to solve

(6, 5, 4, 3) = a(1, 2, 3, 4) + b(4, 3, 2, 1)

I feel I may have done that already!

Determine if (1, 2, 1, 2) ∈ Span((1, 2, 3, 4), (4, 3, 2, 1))?
We need to try to solve

(1, 2, 1, 2) = a(1, 2, 3, 4) + b(4, 3, 2, 1)

I feel I may have done that already!

When the set ‘X ’ is finite, these questions are identical to the previous questions about
checking if something is a linear combination!
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Theorem about Spans

Theorem
Given X ⊂ V the set Span(X ) is a subspace. It follows that Span(X ) is the smallest
subspace of V containing X .

Proof:
We must check the three subspace conditions

1 ~0 is by convention equal to the empty sum, and so is a linear combination.

2 If ~y = a1~x1 + . . . + a`~x` and ~z = a`+1~x`+1 + . . . + a`+r~x`+r so that ~y , ~z ∈ Span(X ) are two
arbitrary elements then

~y + ~z = a1~x1 + · · ·+ a`~x` + a`+1~x`+1 + · · ·+ a`+r~x`+r

so their sum is also in the span.

3 If ~y = a1~x1 + . . . + a`~x` is an arbitrary element then

x~y = (xa1)~x1 + . . . + (xa`)~x`

is also in the span

Note It is a useful/important technical convention that an empty sum is ~0 and so

Span(∅) = {~0}
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Theorems about Spans
Theorem
Suppose that W ⊂ V is any subspace. If ~v1, . . . , ~vn ∈W then Span(~v1, . . . , ~vn) ⊂W .
Proof:Let ~v ∈ Span(~v1, . . . , ~vn) be arbitrary, then there are a1, . . . , an ∈ R such that

~v = a1~v1 + · · ·+ an~vn.

We know ~vi ∈W , so each ai~vi ∈W because W is a subspace.But then their sum,
a1~v1 + · · ·+ an~vn is also in W , because again W is a subspace.This shows that ~v ∈W ,
and so Span(~v1, . . . , ~vn) ⊂W .

Corollary
Suppose ~v1, . . . , ~vn and ~x1, . . . , ~xm are two collections of vectors in V . Then

Span(~v1, . . . , ~vn) ⊂ Span(~x1, . . . , ~xm)

if and only if
~v1, . . . , ~vn ∈ Span(~x1, . . . , ~xm)

Corollary
Suppose ~v1, . . . , ~vn and ~x1, . . . , ~xm are two collections of vectors in V . Then

Span(~v1, . . . , ~vn) = Span(~x1, . . . , ~xm)

if and only if

~v1, . . . , ~vn ∈ Span(~x1, . . . , ~xm) and ~x1, . . . , ~xm ∈ Span(~v1, . . . , ~vn)

This is often the best way to check if subspaces are subsets, this can take a lot of checks
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Examples

Consider the vector subspace W ⊂ R4 given by:

W = {(w , x , y , z) ∈ R4 | w − x − y + z = 0 and w − 2x + y = 0}

Determine if
Span((1, 2, 3, 4), (4, 3, 2, 1)) ⊂W

Need to check if (1, 2, 3, 4), (4, 3, 2, 1) ∈W .

Determine if
Span((1, 2, 1, 2), (4, 3, 2, 1)) ⊂W

Need to check if (1, 2, 1, 2), (4, 3, 2, 1) ∈W .
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Generators

Given a subset of vectors X ⊂ V we say X generates V if and only if every vector in V
can be written as a linear combination of vectors from X .
In symbols this means

∀~v ∈ V , ∃~x1, . . . , ~xn ∈ X , ∃a1, . . . , an ∈ R, ~v = a1~x1 + · · ·+ an~xn

Given a collection of vectors ~x1, . . . , ~xn ∈ V , we say they generate V if and only if

∀~v ∈ V , ∃a1, . . . , an ∈ R, ~v = a1~x1 + · · ·+ an~xn

This is the same definition as for the set X = {~x1, . . . , ~xn}

This is very useful when X is finite, as it gives an alternative way to describe vectors in
V , for example, say X = {(1, 2, 3), (3, 2, 1)} is a generating set for V , then this would say

V = {r(1, 2, 3) + s(3, 2, 1) | r , s ∈ R}

A good way to describe a vector (sub)space is to try to find a small set which generates it.
Most examples of vector spaces we deal with will be finitely generated

Theorem
Every vector space (and every subspace) has a generating set.
Proof Idea: The set V is a generating set.
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Examples (Picture)
So the vector (3, 2)

is a generator for the subspace W = {(x , y) ∈ R2 | 3y = 2x}.
But it is not on its own a generator for R2.

The vectors (3, 2), (−2, 2), and (−1,−2),

are generators for R2 = Span((3, 2), (−2, 2), (−1,−2)).
But they are not generators for W = {(x , y) ∈ R2 | 3y = 2x}.
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Notes on terminology

The following sentences mean the same thing, (because people use them
interchangeably):

The vectors ~v1, . . . , ~vn are generators for V .

The vectors ~v1, . . . , ~vn are a generating set for V .

The vectors ~v1, . . . , ~vn generate V .

The vectors ~v1, . . . , ~vn are a spanning set for V .

The vectors ~v1, . . . , ~vn span V .

The last two are justified by the theorem:
Theorem The vectors ~v1, . . . , ~vn are generators for V if and only if

V = Span(~v1, . . . , ~vn)

The proof is just to compare the definitions

So the span of the collection ~v1, . . . , ~vn is precisely the vector space they generate, that is
~v1, . . . , ~vn generates Span(~v1, . . . , ~vn)
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Examples

Consider the vector subspace W in R4 defined by:

W = {(x1, x2, x3, x4) ∈ R4 | 2x1 + 3x3 = 0 and 4x2 + x4 = 0}

Find a finite set X which generates it.
By solving the system of equations 2x1 + 3x3 = 0 and 4x2 + x4 = 0 we notice that evey
solution can be written as:

(−3

2
r ,−1

4
s, r , s) = r(−3

2
, 0, 1, 0) + s(0,−1

4
, 0, 1)

and so (− 3
2
, 0, 1, 0), (0,− 1

4
, 0, 1) is by definition a generating set.

Theorem
Gaussian elimination (when done correctly) will always find a generating set for a vector
subspace defined by a system of linear equations.
This process always works because Gausian elimination finds all the solutions
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From the previous slide, we know (− 3
2
, 0, 1, 0), (0,− 1

4
, 0, 1) generate

W = {(x1, x2, x3, x4) ∈ R4 | 2x1 + 3x3 = 0 and 4x2 + x4 = 0}

Show that the set {(3, 1,−2,−4), (3,−1,−2, 4)} also generates W .
First we notice that we can write:

(−3

2
, 0, 1, 0) =

1

4
(3, 1,−2,−4) +

1

4
(3,−1,−2, 4)

(0,−1

4
, 0, 1) =

−1

8
(3, 1,−2,−4) +

1

8
(3,−1,−2, 4)

How did I notice I could do that?
So let ~v ∈W be arbitrary, then we know that there exists r , s ∈ R so that

~v = r(−3

2
, 0, 1, 0) + s(0,−1

4
, 0, 1).

But then we can write

~v = r

(
1

4
(3, 1,−2,−4) +

1

4
(3,−1,−2, 4)

)
+ s

(
−1

8
(3, 1,−2,−4) +

1

8
(3,−1,−2, 4)

)
So is also a linear combination of (3, 1,−2,−4), (3,−1,−2, 4), hence these are also a
generating set.
This process always works as explained by the next two theorems.
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Suppose that ~e1, ~e2 are generators for a vector space V .
Prove that with

~f1 = ~e1 + ~e2, ~f2 = ~e1 − ~e2

we have ~f1, ~f2 are generators for V .

To prove that we have generators, the first line of the proof is often something like:
Let ~v ∈ V be arbitrary

we then just need to figure out how to write ~v in terms of ~fi

If you ever know you have generators, like ~e1, ~e2 above, and you have a vector ~v , you
probably want to use this fact:

As ~v ∈ V and ~e1, ~e2 are generators for a vector space V
we know that there are real numbers a1, a2 so that

~v = a1~e1 + a2~e2
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Theorems about generating sets
Theorem
If G = {~g1, . . . , ~gn} is a generating set for V , and ~gn ∈ Span(~g1, . . . , ~gn−1) then
~g1, . . . , ~gn−1 is a generating set for V .

Proof: Let ~v ∈ V be arbitrary.
Because ~g1, . . . , ~gn generate V we know there are a1, . . . , an ∈ R so that

~v = a1~g1 + · · ·+ an~gn

Because ~gn ∈ Span(~g1, . . . , ~gn−1) we know there are b1, . . . , bn−1 ∈ R so that

~gn = b1~g1 + · · ·+ bn−1~gn−1

Combining these we can write:

~v = a1~g1 + · · ·+ an~gn

= a1~g1 + · · ·+ an−1~gn−1 + an (b1~g1 + · · ·+ bn−1~gn−1)

= (a1 + anb1)~g1 + · · ·+ (a1 + an−1b1)~gn−1

from which we see ~v is a linear combination of ~g1, . . . , ~gn−1 and hence these are a
generating set for V .

Theorem
If G is a generating set for V , and G ⊂ Span(S), then S is a generating set for V .

This is a homework exercise!.
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Common Patterns in Patterns in Proofs About Generators and Spans

If you are trying to prove that something is a generating set for V , your first line should
probably be something like:

Let ~v ∈ V be arbitrary

If you know that ~g1, . . . , ~gn is a generating set for V , and you ever have a vector ~v ∈ V ,
it is likely that at some point you will want to explain:

As ~v ∈ V , and ~g1, . . . , ~gn is a generating set for V ,
we know there exist a1, . . . , an ∈ R so that

~v = a1~g1 + · · ·+ an~gn
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Natural Questions to ask about generating sets

Is the vector ~v contained in Span(X )?
if X is finite, this usually is solved using a system of equations as we have done.

Does the set X generate the subspace W ?
This is often easier to solve using dimension (which we will see), but you can also
solve it directly if you can solve the next question as we have done.

Find a (small/finite) set X that generates the subspace W .
Depending on how W is described, this can be solved using a system of equations as
we have done. .

What is the smallest set X that generates W ?
This is an important concept, which we will come back to soon.
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