Relations

Let V be a vector space, and let $\vec{x}_{1}, \ldots, \vec{x}_{\ell} \in V$ be a collection of vectors. We call the set of numbers $a_{1}, \ldots, a_{\ell} \in \mathbb{R}$ a relation between $\vec{x}_{1}, \ldots, \vec{x}_{\ell}$ if

$$
a_{1} \vec{x}_{1}+\cdots+a_{\ell} \vec{x}_{\ell}=\overrightarrow{0}
$$

Examples

Vectors $\vec{x}_{1}, \ldots, \vec{x}_{\ell} \in V$ always have the zero relation (or trivial relation)

$$
0 \vec{x}_{1}+\cdots+0 \vec{x}_{\ell}=\overrightarrow{0}
$$

We also have a non-trivial relation:

$$
(1,3,1)+2(2,1,2)-5(1,1,1)=(0,0,0)
$$

Find a (non-trivial) relation between:

$$
(1,2,3) \quad(3,2,1) \quad(1,1,1)
$$

Solve the system $a(1,2,3)+b(3,2,1)+c(1,1,1)=(0,0,0)$. Finding relations is always about solving a system of equations.

Example - Picture

There is a relation between the vectors $(3,2),(-2,2)$, and $(-1,6)$

we see this because $(-1,6)=(3,2)+2(-2,2)$.
There is no relation between the vectors $(3,2)$ and $(-2,2)$

Linear Dependence

Let V be a vector space, and let X be a subset. We say X is Linearly Dependent if there exists distinct $\vec{x}_{1}, \ldots, \vec{x}_{\ell} \in X$ with a non-zero relation

$$
a_{1} \vec{x}_{1}+\cdots+a_{\ell} \overrightarrow{x_{\ell}}=\overrightarrow{0}
$$

Given a list of vectors $\vec{x}_{1}, \ldots, \overrightarrow{x_{\ell}}$ they are Linearly Dependent if

$$
\exists a_{1}, \ldots, a_{\ell} \in \mathbb{R},\left(a_{1} \vec{x}_{1}+\cdots+a_{\ell} \vec{x}_{\ell}=\overrightarrow{0}\right) \text { and not all } a_{i} \text { are } 0
$$

Note: There is a minor distinction between the case of $X=\left\{\vec{x}_{1}, \ldots, \vec{x}_{\ell}\right\}$ and the list $\vec{x}_{1}, \ldots, \vec{x}_{\ell}$ in that in the list $\vec{x}_{1}, \ldots, \vec{x}_{\ell}$, their may be repeated vectors, but sets $X=\left\{\vec{x}_{1}, \ldots, \vec{x}_{\ell}\right\}$ do not contain repeats.
Note the inclusion of the word distinct in the definition when there is a set X. This distinction is mostly annoying from the point of view of correctly stating theorems, not so much using/understanding them.

Example

The vectors $(1,2,3),(3,2,1),(1,1,1)$ are linearly dependent because

$$
(1,2,3)+(3,2,1)-4(1,1,1)=(0,0,0)
$$

Example - Picture

The vectors $(4,2),(2,1)$ are linearly dependent

and we can see that they are on the same line $2 y=x$.
with more vectors, the condition is no longer the same as being on the same line

we shall see the more general condition eventually.

Linear Independence

Let V be a vector space, and let X be a subset. We say X is Linearly Independent if it is not linearly dependent, concretely this means that for any distinct collection of vectors $\vec{x}_{1}, \ldots, \vec{x}_{\ell} \in X$ the only relation

$$
a_{1} \vec{x}_{1}+\cdots+a_{\ell} \vec{x}_{\ell}=\overrightarrow{0}
$$

is the zero relation $a_{1}=a_{2}=\cdots=a_{\ell}=0$.
Likewise, given a list of vectors $\vec{x}_{1}, \ldots, \overrightarrow{x_{\ell}}$ we say it is Linearly Independent if it is not linearly dependent.

Reinterpretted in symbols:
Given a list of vectors $\vec{x}_{1}, \ldots, \vec{x}_{\ell}$ they are Linearly Independent if

$$
\forall a_{1}, \ldots, a_{\ell} \in \mathbb{R},\left(a_{1} \vec{x}_{1}+\cdots+a_{\ell} \overrightarrow{x_{\ell}}=\overrightarrow{0}\right) \Rightarrow\left(a_{1}=a_{2}=\cdots=a_{\ell}=0\right)
$$

Note: As before there is a minor distinction between the case of $X=\left\{\vec{x}_{1}, \ldots, \vec{x}_{\ell}\right\}$ and the list $\vec{x}_{1}, \ldots, \vec{x}_{\ell}$ in that in the list $\vec{x}_{1}, \ldots, \vec{x}_{\ell}$, their may be repeated vectors, but sets $X=\left\{\vec{x}_{1}, \ldots, \vec{x}_{\ell}\right\}$ do not contain repeats.

Example - Picture

There is no relation between the vectors $(3,2)$ and $(-2,2)$

so they are linearly independent.
There is no relation involving only the vector $(4,2)$

so this single vector is independent.

Examples

Show that vectors are linearly independent.

$$
(1,2,3,4) \quad(4,3,2,1) \quad(1,-1,1,-1)
$$

Solve the system $a(1,2,3,4)+b(4,3,2,1)+c(1,-1,1,-1)=(0,0,0,0)$ and show that the only solution is trivial.

If you are trying to convince someone vectors are independent then your work must include enough details for someone to check it, and you must explain why you know the only solution is the trivial solution.

Determine whether or not the vectors

$$
(1,2,3,4) \quad(4,3,2,1) \quad(1,1,1,1)
$$

are linearly dependent.
Solve the system $a(1,2,3,4)+b(4,3,2,1)+c(1,1,1,1)=(0,0,0,0)$ and see if you find a non-trivial solution.

It is a very good idea when you conclude vectors are dependent to actually write down and check an explicit solution to be sure you have not made a mistake.

For dependent, the explicit solution is the proof, for independent your work and explanation are the proof

Suppose that $\vec{e}_{1}, \overrightarrow{e_{2}}, \overrightarrow{e_{3}}$ are linearly independent.
Prove that with

$$
\vec{f}_{1}=\vec{e}_{1}+\vec{e}_{2}, \quad \vec{f}_{2}=\vec{e}_{2}+\vec{e}_{3}, \quad \vec{f}_{3}=\vec{e}_{1}+\vec{e}_{3}
$$

that $\vec{f}_{1}, \vec{f}_{2}, \vec{f}_{3}$ are linearly independent.
When asked to prove vectors are independent, you often want a first sentance to be: Let $a_{1}, a_{2}, a_{3} \in \mathbb{R}$ be arbitrary and assume

$$
a_{1} \vec{f}_{1}+a_{2} \vec{f}_{2}+a_{3} \vec{f}_{3}=\overrightarrow{0}
$$

what remains to do is prove that $a_{1}=a_{2}=a_{3}=0$.
you will eventually have several ways to approach a question like this, though from the perspective of making a clear self contained proof, this is still typically the simplest.

Theorems About Independence

Theorem

The collection, $\overrightarrow{v_{1}}$ is linearly indpendent if and only if $\overrightarrow{v_{1}} \neq \overrightarrow{0}$.

Proof:

\Rightarrow-direction We assume $\overrightarrow{v_{1}}$ is linearly indpendent, we claim $\overrightarrow{v_{1}} \neq \overrightarrow{0}$ and we shall prove this by contradiction, so assume $\overrightarrow{v_{1}}=\overrightarrow{0}$.
Then we have a relation

$$
\text { (1) } \overrightarrow{v_{1}}=(1) \overrightarrow{0}=\overrightarrow{0}
$$

and $1 \neq 0$, this is a contradiction.
\Leftarrow-direction We assume $\vec{v}_{1} \neq \overrightarrow{0}$ and wish to show \vec{v}_{1} is linearly independent.
Let $a_{1} \in \mathbb{R}$ be arbitrary and assume

$$
a_{1} \overrightarrow{v_{1}}=\overrightarrow{0}
$$

we claim a_{1} must be 0 , for the purpose of contradiction, suppose it is not. Then by multiplying the above by a_{1}^{-1} we obtain:

$$
\left(a_{1}^{-1}\right) a_{1} \overrightarrow{v_{1}}=\left(a_{1}^{-1}\right) \overrightarrow{0}
$$

but the left hand side is $\left(a_{1}^{-1}\right) a_{1} \overrightarrow{v_{1}}=(1) \overrightarrow{v_{1}}=\overrightarrow{v_{1}}$ and the right hand side is $\overrightarrow{0}$, which is a contradiction.

Corollary

The collection \vec{v}_{1} is linealy dependent if and only if $\overrightarrow{V_{1}}=\overrightarrow{0}$.
Note: a direct proof of this statement avoids the proofs by contradiction above.

Theorem

A set X is linearly independent if and only if for all $\vec{v} \in \operatorname{Span}(X)$ there exists unique $\overrightarrow{x_{1}}, \ldots, \vec{x}_{\ell} \in X$ and unique $a_{1}, \ldots, a_{\ell} \in \mathbb{R}$ such that:

$$
\vec{v}=a_{1} \vec{x}_{1}+\cdots+a_{\ell} \vec{x}_{\ell}
$$

Proof Sketch: It is automatic that for all $\vec{v} \in \operatorname{Span}(X)$ there exists a way to write it as a linear combination so the theorem can be thought of as saying

$$
\text { Linearly Independent } \Leftrightarrow \text { Unique }
$$

\Rightarrow-direction, that is Linear Independent \Rightarrow Unique.
Assume X is linearly independent and assume for the purpose of contradiction there are two ways to write some vector \vec{v}. So we can write

$$
\vec{v}=a_{1} \vec{x}_{1}+\cdots+a_{\ell} \vec{x}_{\ell} \quad \text { and } \quad \vec{v}=b_{1} \vec{x}_{1}+\cdots+b_{\ell} \vec{x}_{\ell}
$$

By rearraning this we obtain:

$$
\left(a_{1}-b_{1}\right) \vec{x}_{1}+\cdots+\left(a_{\ell}-b_{\ell}\right) \vec{x}_{\ell}=\overrightarrow{0}
$$

But linear independence then implies that $a_{i}=b_{i}$ for all i.
This means that any two solutions, are the same solution, so the solution must be unique.
\Leftarrow-direction, that is Unique \Rightarrow Linearly Independent
We instead prove the contrapositive, that is that Linearly Dependent \Rightarrow Not Unique By assumption the vectors are Linearly dependent, so there exists a relation: $a_{1} \vec{x}_{1}+\cdots+a_{\ell} \vec{x}_{\ell}=\overrightarrow{0}$ with distinct \vec{x}_{i} and not all $a_{i}=0$, we may assume without loss of generality by relabelling that it is $a_{1} \neq 0$, we then have

$$
\vec{x}_{1}=\frac{-a_{2}}{a_{1}} \vec{x}_{2}+\cdots+\frac{-a_{\ell}}{a_{1}} \vec{x}_{\ell}
$$

gives two ways to express \vec{x}_{1} as a linear combination of elements from X. This constradicts the assumption on uniqueness.

Theorem

If a set X is linearly independent, and $Y \subset X$ but $Y \neq X$ then $\operatorname{Span}(Y) \neq \operatorname{Span}(X)$
This says, that linearly indepentent sets are in some sense 'the smallest possible generating sets for their span'

Proof:

Because $Y \subset X$ and $Y \neq X$ there is an element, $\vec{x} \in Y \backslash X$.
We claim $\vec{x} \notin \operatorname{Span}(Y)$, we will do so by contradiction, so assume $\vec{x} \in \operatorname{Span}(Y)$. Because $\vec{x} \in \operatorname{Span}(Y)$ then there $\overrightarrow{y_{1}}, \ldots, \vec{y}_{n} \in Y$ distinct, and $a_{1}, \ldots, a_{n} \in \mathbb{R}$ so that

$$
\vec{x}=a_{1} \overrightarrow{y_{1}}+\cdots a_{n} \vec{y}_{n}
$$

But then

$$
\overrightarrow{0}=a_{1} \vec{y}_{1}+\cdots a_{n} \vec{y}_{n}-\vec{x}
$$

is a non-trivial relation among distinct elements of X. This is a contradiction as X was assumed to be linearly independent.
This proves that $\operatorname{Span}(Y) \neq \operatorname{Span}(X)$

Theorem

If a set X is linearly dependent, then there is a subset $Y \subset X$ with $Y \neq X$ such that $\operatorname{Span}(Y)=\operatorname{Span}(X)$.
Note: This is a rephrased version of the converse of the previous theorem.

Proof:

By assumption the X is linearly dependent, so there exists a non-trivial relation:

$$
a_{1} \vec{x}_{1}+\cdots+a_{\ell} \vec{x}_{\ell}=\overrightarrow{0}
$$

with distinct $\vec{x}_{i} \in X$ and not all $a_{i}=0$, we may assume without loss of generality by relabelling that it is $a_{1} \neq 0$, we then have

$$
\vec{x}_{1}=\frac{-a_{2}}{a_{1}} \vec{x}_{2}+\cdots+\frac{-a_{\ell}}{a_{1}} \vec{x}_{\ell}
$$

This proves that $x_{1} \in \operatorname{Span}\left(X \backslash\left\{x_{1}\right\}\right)$.
But we have seen, that this implies

$$
\operatorname{Span}\left(X \backslash\left\{x_{1}\right\}\right)=\operatorname{Span}(X)
$$

which proves the result.

Example

Find a linearly independent subset Y of

$$
X=\{(1,2,3),(3,2,1),(1,1,1),(2,0,-2)\}
$$

with $\operatorname{Span}(X)=\operatorname{Span}(Y)$.
We first should check if the vectors are already independent, if not we need to find a relation amongst the vectors so that we can identify one to delete!
We can notice that

$$
(2,0,-2)-(3,2,1)+(1,2,3)=(0,0,0) \quad \Rightarrow \quad(2,0,-2)=(3,2,1)-(1,2,3)
$$

(How do we notice such a thing?) so

$$
\operatorname{Span}((1,2,3),(3,2,1),(1,1,1),(2,0,-2))=\operatorname{Span}((1,2,3),(3,2,1),(1,1,1))
$$

Is the new set LI?

The solution I just gave is not necissarily the most time efficient.
We will eventually see that the above problem always has a solution.

Common Patterns in Patterns in Proofs About Linear Independence

 If you are trying to prove that a collection $\vec{v}_{1}, \ldots, \vec{v}_{n}$ are linearly independent, you will most often start your proof something like:$$
\begin{aligned}
& \text { Let } a_{1}, \ldots, a_{n} \in \mathbb{R} \text { be arbitrary, and assume } \\
& \qquad a_{1} \vec{v}_{1}+\cdots+a_{n} \vec{v}_{n}=\overrightarrow{0} \\
& \text { now your goal is to prove all the } a_{i} \text { are zero }
\end{aligned}
$$

Many people like to phrase the proof instead as a proof by contradiction that the collection is not linearly dependent, this is also fine.

The key thing you need to happen, is end up with some essentially arbitrary numbers: a_{1}, \ldots, a_{n}, about which the only assumption is $a_{1} \vec{v}_{1}+\cdots+a_{n} \vec{v}_{n}=\overrightarrow{0}$.

If you know that $\vec{v}_{1}, \ldots, \vec{v}_{n}$ are linearly independent, you should expect at some point in your proof to write a line like
and because we now know that

$$
a_{1} \overrightarrow{v_{1}}+\cdots+a_{n} \vec{v}_{n}=\overrightarrow{0}
$$

and because we know that $\vec{v}_{1}, \ldots, \vec{v}_{n}$ are linearly independent, we conclude that all the a_{i} are zero.

The fact that you have the equation being equal to zero is key!

Natural Questions to ask independence

- Find a non-zero relation among the vectors $\vec{x}_{1}, \ldots, \vec{x}_{\ell}$?

This is pretty much always turns into a system of equations.

- Does there exists a non-zero relation among the vectors $\vec{x}_{1}, \ldots, \vec{x}_{\ell}$? This is pretty much always turns into a system of equations.
- Prove that the set X is linearly (in)dependent.

This is pretty much always turns into a system of equations.

- Determine/prove if the set X is linearly dependent or independent.

This is pretty much always turns into a system of equations.

- Find a linearly independent subset Y of X with $\operatorname{Span}(X)=\operatorname{Span}(Y)$.

Applying the final theorem, and using what we know about spans, we can keep finding relations and deleting some elements.

