
Basis

Let V be a vector space, and let X be a subset. We say X is a Basis if it is both linearly
independent and a generating set.

The first example of a basis is the standard basis for Rn

~e1 = (1, 0, . . . , 0), ~e2 = (0, 1, . . . , 0), . . . , ~en = (0, 0, . . . , 1)

Why is this linearly independent?

Why is this a generating set?
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Example (Picture)

The vectors (3, 2) and (−2, 2) are a basis for R2

because they are generators!
and they are linearly independent.

Notice that every vector in R2 can be described as a linear combination of these vectors.
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Why different bases, Example
Sometimes you have a map, and you want to use it to describe where to go. But the
map isn’t oriented with the top to the north!!

You might prefer the blue vectors, one of these points 100m north, the other 100m west.

Some people like to orient with the map, and so they might like the red vectors.

A really wierd person might pick exactly one red vector and one blue vector.

whichever option you pick, any point on the map can be described as a linear
combination of those two vectors
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Theorems About Basis

Theorem
A set X is a basis if and only if for all ~v ∈ V there exists unique ~x1, . . . , ~x` ∈ X and
unique a1, . . . , a` ∈ R such that:

~v = a1~x1 + · · ·+ a`~x`

Proof Sketch:

By definition: X is Basis ⇔ X is Generating Set + X is Linearly Independent.

By definition: X is Generating Set ⇔ Span(X ) = V .

By theorem: X is Linearly Independent ⇔ expressions for things in Span are unique.

⇒-direction
If X is a basis then it is a generating set and linearly independent, since it is a generating
set there exists some way of writing each vector, since it is linearly independent these are
unique.

⇐-direction
Since there exists a way to write every vector as a linear combination, this means by
definition X is a generating set. Since the expressions are always unique, by one of our
previous theorems X is linearly independent.
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The Existance of a Basis

Theorem
Suppose V is any vector space. Given any linearly independent set L ⊂ V , and
generating set G for V for which L ⊂ G then there exists a basis B of V for which

L ⊂ B ⊂ G

I will give a proof of this, in the finitely generated case on the next few slides.

Corallary
Every vector space has a basis.

Theorem
Suppose V is any vector space, and B1 and B2 are any two basis then |B1| = |B2|, that is
they have the same size.

This theorem (when V is finitely generated) is a bonus question on the assignment. We
will never use this theorem in the infinite case, the proof in that case is very different
than the finitely generated case..
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The Existance of a Basis

Lemma
If V is any vector space. Given any linearly independent set M ⊂ V , and a generating set
G for V for which M ⊂ G then if M is not a basis for V , there exists ~g ∈ G \M such that

M ∪ {~g}

is linearly independent.
Proof:
We know M is not a basis, so it is not a generating set.
From the assignment because M is not a generating set, and G is, we know there is
~g ∈ G such that ~g 6∈ Span(M).
From the assignment because M is linearly independent, and ~g 6∈ Span(M), we know
then that M ∪ {~g} is linearly independent.
This proves the result.
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The Existance of a Basis
Theorem
Suppose V is any vector space. Given any linearly independent set L ⊂ V , and a finite
generating set G for V for which L ⊂ G then there exists a basis B of V for which

L ⊂ B ⊂ G

Proof: Consider the subset L of the power set P(G) of G given by

M = {M ⊂ G | L ⊂ M, and M is linearly independent}

The set of things which could maybe be the B we want.
Consider the subset N ⊂ N of natural numbers:

N = {n ∈ N | ∃M ∈M |M| = n}

We have that ∀n ∈ N , n ≤ |G | because all the sets in M are subsets of G .
Let n be the largest element of N , and let B ∈M (so L ⊂ B ⊂ G) be such that

|B| = n.

Then there is no set M ′ 6= B with B ⊂ M ′ ⊂ G for which M ′ is linearly independent. If
there was, it would be in M and have size larger than n.

We now know that B is a basis, for if it was not, our lemma would find such a set M.
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Theorems About Basis

Theorem
If X is a basis, then no proper subset of X is a generating set, and no strictly larger set is
linearly independent.

This is on the assignment.
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Examples
Find a basis for

W = {(w , x , y , z) ∈ R4 | w − x − y + z = 0 and w − 2x + y = 0}

We first need to find a generating set.
We then need to find a linearly independent subset.

Solution:
We know that every vector ~v = (w , x , y , z) ∈W satisfies the equations
w − x − y + z = 0 and w − 2x + y = 0. But this is equivalent to satisfying
w − x − y + z = 0 and − x + 2y − z = 0 and hence also equivalent to satisfying
w = 3y − 2z and x = 2y − z . So by taking z = s and y = t we can write

~v = (3t − 2s, 2t − s, t, s) = t(3, 2, 1, 0) + s(−2,−1, 0, 1)

From this we can see that every element of W can be writte in terms of (3, 2, 1, 0),
(−2,−1, 0, 1) hence these are a generating set.
These vectors are linearly independent because if

~0 = t(3, 2, 1, 0) + s(−2,−1, 0, 1) = (3t − 2s, 2t − s, t, s)

then we immediately have t = s = 0.
As they are generators and linearly independent, we know that (3, 2, 1, 0), (−2,−1, 0, 1)
are a basis.
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Theorem
A basis for a vector space described by a system of equations can always be found by
finding the general form for the solution to the system of equations
Proof Idea: This is equivalent to the fact that writing the general form of the solution to
a system of equations using gaussian elimination and back substitution is something that
actually works.

If you want your solution to finding a basis for a vector space to be a proof, it is
important you include enough details about the process that someone can know you have
found the general solution!
Ideally you would also say why you know the vectors you find are generators and
independent.
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Examples
Find a basis for:

W = Span((1, 2, 3, 4), (4, 3, 2, 1), (1, 1, 1, 1))

Solution: We notice that (1, 1, 1, 1) = 1
5
(1, 2, 3, 4) + 1

5
(4, 3, 2, 1) so that

(1, 1, 1, 1) ∈ Span((1, 2, 3, 4), (4, 3, 2, 1))

It follows from what we know about Spans (one of our theorems) that

Span((1, 2, 3, 4), (4, 3, 2, 1)) = Span((1, 2, 3, 4), (4, 3, 2, 1), (1, 1, 1, 1)) = W

thus any basis for Span((1, 2, 3, 4), (4, 3, 2, 1)) is a basis for
Span((1, 2, 3, 4), (4, 3, 2, 1), (1, 1, 1, 1)).

The vectors (1, 2, 3, 4), (4, 3, 2, 1) are linearly independent, because the equation

a(1, 2, 3, 4) + b(4, 3, 2, 1) = (0, 0, 0, 0)

leads a + 4b = 0 amd 2a + 3b = 0 from which we conclude by subtracting twice the first
equation from the second that

−5b = 0

and hence b = 0, plugging this into first equation gives a = 0. So the only solution to

a(1, 2, 3, 4) + b(4, 3, 2, 1) = (0, 0, 0, 0)

is a = b = 0 so the vectors are linearly independent.
As (1, 2, 3, 4), (4, 3, 2, 1) are linearly independent and span W , they are a basis.
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Theorem
A basis for a vector space described by a span can always be found by finding a maximal
linearly independent subset.
Proof Idea: This is basically how we proved a basis existed in the first place!!

In order to convince someone you have found a maximally linearly independent subset
you must convince them it is Linearly independent, and that all the other vectors are still
in the Span of these vectors.
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Dimension of a Vector Space

Let V be a vector space, and let X be a basis.
The dimension of V is the size of X , if X is finite we say V is finite dimensional.
The theorem that says all basis have the same size is crucial to make sense of this.

Note: Every finitely generated vector space is finite dimensional.

Theorem
The dimension of Rn is n.
Proof Idea: Because we know a basis!

Theorem
If a subspace W of Rn is described as the solutions to a system of equations

A~x = ~0

Then the dimension of W is exactly the number of parameters needed to express the
general form of the solution to the system.
Proof Idea: Because we know how to write the general form to a solution of a system of
equations.
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Theorems About Dimension
Lemma
If U ⊂ V is a subspace then there exists a basis B for V of the form:

B = B1 ∪ B2

where B1 is a basis for U and B1 ∩ B2 = ∅.
Proof: We know that U has a basis, call it B1.
Then as B1 is linearly independent, V has a basis B with B1 ⊂ B.
setting B2 = B \ B1 gives the result.

Corollary
If U ⊂ V is a subspace of V then

dim(U) ≤ dim(V )

moreover, if the dimension is finite, then equality holds if and only if V = U.
Proof: By the lemma, a basis B1 for U is a subset of a basis B for V , so we have

|B1| ≤ |B|
from which the first claim follows.
For the second claim we notice that if the dimensions are the same, then B1 = B and so

U = Span(B1) = Span(B) = V

and conversely, we have already seen if Span(B1) = Span(B) and B1 ⊂ B are both
linearly independent, then B1 = B.
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Example Uses of Dimension

Consider the vector subspace W ⊂ R4 given by:

W = {(w , x , y , z) ∈ R4 | w − x − y + z = 0 and w − 2x + y = 0}

Show that
Span((1, 2, 3, 4), (4, 3, 2, 1)) = W

We have already seen that Span((1, 2, 3, 4), (4, 3, 2, 1)) ⊂W .

We know that Span((1, 2, 3, 4), (4, 3, 2, 1)) has dimension 2, because
(1, 2, 3, 4), (4, 3, 2, 1) are a basis.

Likewise W = {(w , x , y , z) ∈ R4 | w − x − y + z = 0 and w − 2x + y = 0} has
dimension 2, as we have found a basis.

Therefor by the previous theorem they are equal.
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Finite Dimensional Vector Spaces

Suppose V is a vector space and ~e1, . . . , ~en is a basis so that V has dimension n.
Then every vector in ~v ∈ V has a unique representation of the form:

~v = a1~e1 + a2~e2 + · · ·+ an~en

The information in a1~e1 + a2~e2 + · · ·+ an~en is essentially the same as the information in

(a1, a2, . . . , an)

(provided you remember the basis ~e1, . . . , ~en you can translate back and forth.)

Importantly, all operations in the vector space V , that is addition, scalar multiplication
and confirming if vectors are equal, can be performed with representatives in the form

a1~e1 + a2~e2 + · · ·+ an~en

in a way which is equivalent to performing operations with

(a1, a2, . . . , an)

in Rn.
So answering questions about linear independence, generating sets, so forth will tend also
to translate immediately, once we pick a basis.
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What all of that is saying is summarized by the following theorem:
Theorem
Every vector space V of dimension n is isomorphic to Rn (as a vector space).

We will eventually make this more precise, but for now:
An Isomorphism is a map between two mathematical objects which

preserves the underlying structure of the objects
and has an inverse which does the same.
In the present context that means the function:

a1~e1 + a2~e2 + · · ·+ an~en ↔ (a1, a2, . . . , an)

on an assignment you will explain why this is a function.
An isomorphism is a map that tells you two objects are essentially the same, that is to
say, in some sense equivalent. Despite the fact that they are not literally the same object.

The notion of isomorphism for vector spaces gives an equivalence relation on the
category (collection of all) vector spaces.
We will define (soon) what types of maps preserves the underlying structure of vector
spaces (they will be called Linear Transformations).

One of the main usefulnesses of basis, is that they let us do solve problems for an
arbitrary vector space V , in the same way that we would solve them for Rn.
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Finite Dimensional Vector Spaces vs Rn

The following operations are strictly equivalent between the two representations:

Adding vectors

Multiplying by scalars

Checking equality (note: this is what requires linear independence)

Compare:

(a1~e1 + · · ·+ an~en) + (b1~e1 + · · ·+ bn~en) = (a1 + b1)~e1 + · · ·+ (an + bn)~en

against
(a1, . . . , an) + (b1, . . . , bn) = (a1 + b1, . . . , an + bn)

Despite this, it is important to note that the choice of basis is a critical component of
this identification. It has a significant impact on:

How you might choose a dot product, hence on angles and lengths.

How you might represent matricies.

What the values of the numbers in the vectors you want to deal with are.
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Finite Dimensional Vector Spaces vs Rn (example of the good)
If ~e1, ~e2, ~e3 is a basis for V then

a1~e1 + b1~e2 + c1~e3, a2~e1 + b2~e2 + c2~e3, a3~e1 + b3~e2 + c3~e3

are linearly independent if and only if

(a1, b1, c1), (a2, b2, c2), (a3, b3, c3)

are linearly indepdent.

Indeed, trying to solve

x(a1~e1 + b1~e2 + c1~e3) + y(a2~e1 + b2~e2 + c2~e3) + z(a3~e1 + b3~e2 + c3~e3) = ~0

is the same as solving:

(a1x + a2y + a3z)~e1 + (b1x + b2y + b3z)~e2 + (c1x + c2y + c3z)~e3 = ~0

Because ~e1, ~e2, ~e3 are Linearly independent happens exactly when:

a1x + a2y + a3z = 0

b1x + b2y + b3z = 0

c1x + c2y + c3z = 0

But this is the same equations as for

x(a1, b1, c1) + y(a2, b2, c2) + z(a3, b3, c3) = (0, 0, 0)

which corresponds to doing the check for independence in R3.
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Assume that ~e1, ~e2, ~e3 is a basis for V , demonstrate whether or not the following vectors
are linearly independent.

~e1 + 2~e2, ~e2 + ~e3

We translate the problem to R3 using the identification a~e1 +b~e2 + c~e3 ↔ (a, b, c) so that

~e1 + 2~e2, ~e2 + ~e3 ↔ (1, 2, 0), (0, 1, 1)

and so we need to check if (1, 2, 0), (0, 1, 1) are linearly independent.
We check this by solving a(1, 2, 0) + b(0, 1, 1) = (0, 0, 0) which becomes:

1a + 0b = 0

2a + 1b = 0

0a + 1b = 0

We see from the first and last equation the only solution is a = b = 0 which shows these
vectors are linearly independent.
It is important when doing this kind of translation you explain what you are doing. If you
want your solution to be a proof, it must be clear what you are doing in each step!
People often will skip steps and try to solve

1x + 2y + 0z = 0

0x + 1y + 1z = 0

there is a way to solve the problem this way... but if you don’t explain what you are doing
(or worse don’t understand it) you can’t really have a proof.
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Finite Dimensional Vector Spaces vs Rn (example of the ugly)

For example, every subspace U ⊂ R5 has a finite basis, say it is

~f1 = (3, 5, 7, 19, 32), ~f2 = (1, 2, 3, 2, 3), ~f3 = (0, 2, 0, 1, 0), ~f4 = (1, 1, 1, 1, 4).

so that U = Span(~f1, ~f2, ~f3, ~f4).

This means we can view:

U ↔ R4 via a1~f1 + a2~f2 + a3~f3 + a4~f4 ↔ (a1, a2, a3, a4)

With this identification (1, 0, 0, 0) ∈ R4 corresponds to ~f1 which is a vector in R5.
It is likely not a good idea to ever write:

(1, 0, 0, 0) = ~f1 = (3, 5, 7, 19, 32)

as this would be confusing, and certainly you can see why these have different lengths.
And it would definitely be confusing to write R4 = U ⊂ R5.

So even when talking about finite dimensional vector spaces, it can be useful to not
automatically identify then with Rn.
At the same time, it can be very useful to do so sometimes.
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Finite Dimensional vs Infinite Dimensional

Throughout this course I will state many theorems and pose many questions were we
introduce a basis (or a linearly independent set, or a generating set) as

~v1, . . . , ~vn

when we write it like this the set is clearly finite.

It is almost always the case that the same theorems will be true if we just say

{~vi | i ∈ I}

is a basis (or a linearly independent set, or a generating set) or even just say

B

is a basis (or a linearly independent set, or a generating set).

In fact, the proofs are almost always virtually identical, just with a bit of extra notation
to track the index set I .
There is some extra ambiguity and clarification in proving things about the word unique
in this context, because now order of things is not fixed.
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Natural Questions About Basis and Dimension

Find a basis for V .
The proof that they exist implies an algorithm.
The processes we used in Rn are much more concrete. In most cases the key is to
start by finding a (finite) generating set, then find a maximal linearly independent
subset.

Is X a basis for V ?
Check the definition. Iis it linearly independent, are they generators?

Find the dimension of V .
Find a basis and count.
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