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Direct Sum Decompositions

Given any vector space V, and subspaces Vi, V, of V we say that V is a direct sum of
Vi and V, and write
V=Vio W

if every vV € V can be written uniquely as

— —

R
V=wvi+Wwn

with i € V4 and b € V,.
In symbols we would write:

YV € V,E||\71 € V1,E|!\72 € V2,\7= i+

unique here means, if you think you have two solutions, they are the same solution:
VeV VA,V € Vi,Vib,ih € Vo, (A + b =V=V+ )= (1 =) and (b = %)

The definition extends to having more than two subspaces. Facts about the general case
typically follow by induction on the case of two subspaces.

V=vieWwae  --aV,
if
vweV,AlmeW,. ... ,.v,eV,, V=04 -+ 1,

What we just defined is a siecial case of the direct sum called an internal direct sum.
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We have a vector subspaces
W = span(é, &) C R? U = span(&:) C R®
and since every vector in R can be written uniquely as
V=aé +b&+ces=w+i

we can see that this gives
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Concrete Example/Model for how to think about direct sums.
Consider V = R® and

Vi ={(a,b,0,0,0) € V| a,b e R} Vo ={(0,0,¢c,d,e) € V|c,d, e e R}

then
V=Vie WV,

We note that V; is isomorphic to R?, and V4 is isomorphic to R3, so each of these two
spaces is individually simpler to study.
Whenever we have a vector (a, b, c,d, e€) € V, we can think of having

i = (a,b,0,0,0) € V4 v =(0,0,c,d,e) € Va.
Given the isomorphisms V4 with R? and V, with R® we can just think of having vectors
Vi = (a,b) €R? ¥ =(c,d,e) eR’.
It isn't unreasonable to think of
V ={((a, b),(c,d,e)) | (a,b) € R*,(c,d, e) € R’}

Note that addition/scalar multiplication all work componentwise, and that this happens
in the more general case.
Writing R® ~ R® @ R? would be an external direct sum.
Spring 2018 3/ 12



Properties of Direct Sums
Lemma
If V=Vi® Vs then ViN Vs = {0}
Proof:
It is obvious that {0} C V4 N V5 so we only need to show the other containment.
Let v € Vi NV, be arbitrary. So v € Vi and vV e V,
Then we can write
%
in apparently two different ways as a sum of vectors from V; and V5.

0=v-v and 0=0+0

but, V = Vi @ V5, so this expression must be unique.

(in the above, we have Vv € Vi and —vV € V, and also 0 € V4 and 0 € V5, so the
exressions are the sort which should be unique, recall unique means, if you think you have
two solutions, they are the same solution:

Ve VY,V € Vi,V b€ Vo,(Vi+ o=V =1+ %)= (ih=1)and (b = %)
so with
V=V, h=-v, % =0, =0
We can use the uniqueness to conclude conclude vi = V4. )
This gives Vv = 0. So every vector in V4 N Vs is the zero vector.
This proves Vi N Vs = {0}.
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Properties of Direct Sums

Lemma
If V=Vi® VW, and é,..., &, are linearly independent vectors in V; and fi, ..., f, are
linearly independent vectors in V, then

€,...,enf,. ... fm
are linearly independent vectors in V.
Proof:
From the previous lemma we know that

Vinv, = {6}

But because
Span(é,...,&) C Vi and Span(f,...,fn) C Vo
we can conclude that

Span(eéi, ..., )N Span(f{, ceey f_,;,) = {0}

From the assignment because éi, ..., &, are linearly independent, and f{, e fry are
linearly independent, and Span(éi,..., &) N Span(f{, ce f,;,) = {0} we get to conclude
that = =

€,...,€nf,. .. fm

are linearly independent.
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Properties of Direct Sums
Lemma

If V=Vi® VWV, and é,...,é, are a generating set for V4 and f{, RN foy are a generating
set for V5 then

-

€, s€nyfyeyfm
are a generating set for V.
Proof: Let V € V be arbitrary. Because V = Vi & V> we may write

where vi € V4 and b € V>,
As €1, ..., €, are a generating set for V4, and Vi € V4, there are a1,...,a, € R with

71:3151+"'+3ngn
As f{, R F,;, are a generating set for V5, and v, € V), there are by,..., by € R with
% =bifi++ by
Putting this together gives
V=114 =28+ +ad+bfi+ o+ bty
so every vector in V is a linear combination of &, ..., &, f{, A f., and hence
-0 SN 8
are a generating set for V.
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Properties of Direct Sums

Theorem . .
If V=Vi® VW, and é,...,é&,is a basis for V4 and fi,...,fn is a basis for V5 then

61,...,en,f1,...,fm

is a basis for V/, in particular, the dimension of V is the sum of the dimensions of V4 and
Va.

Proof:

This is an immediate consequence of the two previous lemmas.
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Constructing Direct Sums

Theorem =
If Span(S) N Span(R) = {0} then Span(S U R) = Span(S) @ Span(R).
Proof:

The first thing to point out is that indeed, both of Span(S) and Span(R) are subsets of
Span(S U R) (Why?).

From the assignment we know that every element of Span(S U R) can be written in the
form:

S+ 7
where §' € Span(S) and 7 € Span(R).

From the assignment we also know that because Span(S) N Span(R) = {0} this
representation is unique.

This proves that
Span(S U R) = Span(S) @ Span(R)
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Constructing Direct Sums

Theorem
If &,...,&nhf,...,fmis a basis for V then
V = Span(é, ..., &) ® Span(fi, ..., m)
Proof:
From the assignment we know that because é,...,&,,f,..., fn are linearly

indepentent that

-

Span(éi, ..., &) N Span(ﬁ, . ﬁn) = {0}
We then know that

V:Span(a7...,é,,ﬁ,...,ﬁn):Span(a,...,é',,)@Span(ﬁ,...,f;)

One way to interpret a bunch of the results, is that specifying a direct sum
decomposition is basically the same thing as cutting a basis into pieces and vice versa.
We shall use this idea much later when we try to change bases.
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Theorem
If W C V is any vector subspace of a vector space V, then there exists a subspace
U C V such that

V=WwaoU

Proof:

Let L be a basis for W, then L is linearly independent.

By our theorem on the existance of basis, we know that because L is linearly independent
there exists a basis B for V such that

LCB
Consider the set
M=B\L
so that
B=MuUL

is a basis for V.
By the previous theorem we then know that

V = Span(L) & Span(M).
As we know W = Span(L), by letting U = Span(M) we thus obtain
V=WaeoU.
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Abstract Example

Consider V a vector space with basis &1, &, &, &, & and
i= Span(é’l, §2) Vo = Span(ééa é:;, g5)

then
V=VieWw
We note that V4 is isomorphic to ]RQ, and V4 is isomorphic to ]R3, so each of these two
spaces is individually simpler to study.
Whenever we have a vector a1€1 + a,& + a3€; + as€ + asé € V, we can think of having

Vi =a16 + aé& e Vs Vo = 2383 + a4é, + a6 € Vo

It is reasonably clear that both addition/scalar multiplication work componentwise, so it
isn't unreasonable to think of

V={(n,n)|hecWirclW}

which under the isomorphism Vi with R? and V,» with R? is compatible with the
isomorphism V with R® in our last example.

Note that this componentwise interpretation works in the more general case.

Benefit: lower dimensional vector spaces are simpler to think about, by cutting things
into pieces we can study simpler things before combining them!
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Orthogonal Direct Sums

The entire idea of direct sums generalizes the following sort of construction:
Given R", if W C R" is a subspace we can define:

W+ ={VeR"|vYwe W, (V,w) =0}
this is the set of vectors perpendicular to all vectors in W.

If W was a plane (through the origin) in R?, then W™ is the normal line (through the
origin).

If W was a line (through the origin) in R3, then W is the perpendicular plane (through
the origin).

It is always the case that
R"=Wao W

For now, the details are an exercise.
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