Direct Sum Decompositions

Given any vector space V, and subspaces V_{1}, V_{2} of V we say that V is a direct sum of V_{1} and V_{2} and write

$$
V=V_{1} \oplus V_{2}
$$

if every $\vec{v} \in V$ can be written uniquely as

$$
\vec{v}=\vec{v}_{1}+\vec{v}_{2}
$$

with $\vec{v}_{1} \in V_{1}$ and $\vec{v}_{2} \in V_{2}$. In symbols we would write:

$$
\forall \vec{v} \in V, \exists!\vec{v}_{1} \in V_{1}, \exists!\vec{v}_{2} \in V_{2}, \vec{v}=\vec{v}_{1}+\vec{v}_{2}
$$

unique here means, if you think you have two solutions, they are the same solution:

$$
\forall \vec{v} \in V, \forall \vec{v}_{1}, \vec{v}_{1}^{\prime} \in V_{1}, \forall \vec{v}_{2}, \vec{v}_{2}^{\prime} \in V_{2},\left(\vec{v}_{1}+\vec{v}_{2}=\vec{v}=\vec{v}_{1}^{\prime}+\vec{v}_{2}^{\prime}\right) \Rightarrow\left(\vec{v}_{1}=\vec{v}_{1}^{\prime}\right) \text { and }\left(\vec{v}_{2}=\vec{v}_{2}^{\prime}\right)
$$

The definition extends to having more than two subspaces. Facts about the general case typically follow by induction on the case of two subspaces.

$$
V=V_{1} \oplus V_{2} \oplus \cdots \oplus V_{r}
$$

if

$$
\forall \vec{v} \in V, \exists!\vec{v}_{1} \in V_{1}, \ldots, \vec{v}_{r} \in V_{r}, \vec{v}=\vec{v}_{1}+\cdots+\vec{v}_{r}
$$

We have a vector subspaces

$$
W=\operatorname{span}\left(\vec{e}_{1}, \vec{e}_{2}\right) \subset \mathbb{R}^{3} \quad U=\operatorname{span}\left(\vec{e}_{3}\right) \subset \mathbb{R}^{3}
$$

and since every vector in \mathbb{R}^{3} can be written uniquely as

$$
\vec{v}=a \vec{e}_{1}+b \vec{e}_{2}+c \vec{e}_{3}=\vec{w}+\vec{u}
$$

we can see that this gives

$$
\mathbb{R}^{3}=U \oplus W
$$

Concrete Example/Model for how to think about direct sums.

Consider $V=\mathbb{R}^{5}$ and

$$
V_{1}=\{(a, b, 0,0,0) \in V \mid a, b \in \mathbb{R}\} \quad V_{2}=\{(0,0, c, d, e) \in V \mid c, d, e \in \mathbb{R}\}
$$

then

$$
V=V_{1} \oplus V_{2}
$$

We note that V_{1} is isomorphic to \mathbb{R}^{2}, and V_{2} is isomorphic to \mathbb{R}^{3}, so each of these two spaces is individually simpler to study.
Whenever we have a vector $(a, b, c, d, e) \in V$, we can think of having

$$
\vec{v}_{1}=(a, b, 0,0,0) \in V_{1} \quad \vec{v}_{2}=(0,0, c, d, e) \in V_{2} .
$$

Given the isomorphisms V_{1} with \mathbb{R}^{2} and V_{2} with \mathbb{R}^{3} we can just think of having vectors

$$
\vec{v}_{1}=(a, b) \in \mathbb{R}^{2} \quad \vec{v}_{2}=(c, d, e) \in \mathbb{R}^{3}
$$

It isn't unreasonable to think of

$$
V=\left\{((a, b),(c, d, e)) \mid(a, b) \in \mathbb{R}^{2},(c, d, e) \in \mathbb{R}^{3}\right\}
$$

Note that addition/scalar multiplication all work componentwise, and that this happens in the more general case.
Writing $\mathbb{R}^{5} \simeq \mathbb{R}^{3} \oplus \mathbb{R}^{2}$ would be an external direct sum.

Properties of Direct Sums

Lemma

If $V=V_{1} \oplus V_{2}$ then $V_{1} \cap V_{2}=\{\overrightarrow{0}\}$.
Proof:
It is obvious that $\{\overrightarrow{0}\} \subset V_{1} \cap V_{2}$ so we only need to show the other containment.
Let $\vec{v} \in V_{1} \cap V_{2}$ be arbitrary. So $\vec{v} \in V_{1}$ and $\vec{v} \in V_{2}$
Then we can write

$$
\overrightarrow{0} \in V
$$

in apparently two different ways as a sum of vectors from V_{1} and V_{2}.

$$
\overrightarrow{0}=\vec{v}-\vec{v} \quad \text { and } \quad \overrightarrow{0}=\overrightarrow{0}+\overrightarrow{0}
$$

but, $V=V_{1} \oplus V_{2}$, so this expression must be unique.
(in the above, we have $\vec{v} \in V_{1}$ and $-\vec{v} \in V_{2}$ and also $\overrightarrow{0} \in V_{1}$ and $\overrightarrow{0} \in V_{2}$, so the exressions are the sort which should be unique, recall unique means, if you think you have two solutions, they are the same solution:

$$
\vec{v} \in V, \forall \vec{v}_{1}, \vec{v}_{1}^{\prime} \in V_{1}, \forall \vec{v}_{2}, \vec{v}_{2}^{\prime} \in V_{2},\left(\vec{v}_{1}+\vec{v}_{2}=\vec{v}=\vec{v}_{1}^{\prime}+\vec{v}_{2}^{\prime}\right) \Rightarrow\left(\vec{v}_{1}=\vec{v}_{1}^{\prime}\right) \text { and }\left(\vec{v}_{2}=\vec{v}_{2}^{\prime}\right)
$$

so with

$$
\vec{v}_{1}=\vec{v}, \quad \vec{v}_{2}=-\vec{v}, \quad \vec{v}_{1}^{\prime}=\overrightarrow{0}, \quad \vec{v}_{2}^{\prime}=\overrightarrow{0}
$$

We can use the uniqueness to conclude conclude $\vec{v}_{1}=\vec{v}_{1}^{\prime}$.) This gives $\vec{v}=\overrightarrow{0}$. So every vector in $V_{1} \cap V_{2}$ is the zero vector. This proves $V_{1} \cap V_{2}=\{\overrightarrow{0}\}$.

Properties of Direct Sums

Lemma

If $V=V_{1} \oplus V_{2}$ and $\vec{e}_{1}, \ldots, \vec{e}_{n}$ are linearly independent vectors in V_{1} and $\vec{f}_{1}, \ldots, \vec{f}_{m}$ are linearly independent vectors in V_{2} then

$$
\vec{e}_{1}, \ldots, \vec{e}_{n}, \vec{f}_{1}, \ldots, \vec{f}_{m}
$$

are linearly independent vectors in V.
Proof:
From the previous lemma we know that

$$
V_{1} \cap V_{2}=\{\overrightarrow{0}\}
$$

But because

$$
\operatorname{Span}\left(\vec{e}_{1}, \ldots, \vec{e}_{n}\right) \subset V_{1} \quad \text { and } \quad \operatorname{Span}\left(\vec{f}_{1}, \ldots, \vec{f}_{m}\right) \subset V_{2}
$$

we can conclude that

$$
\operatorname{Span}\left(\vec{e}_{1}, \ldots, \vec{e}_{n}\right) \cap \operatorname{Span}\left(\vec{f}_{1}, \ldots, \vec{f}_{m}\right)=\{\overrightarrow{0}\}
$$

From the assignment because $\vec{e}_{1}, \ldots, \vec{e}_{n}$ are linearly independent, and $\vec{f}_{1}, \ldots, \vec{f}_{m}$ are linearly independent, and $\operatorname{Span}\left(\vec{e}_{1}, \ldots, \vec{e}_{n}\right) \cap \operatorname{Span}\left(\vec{f}_{1}, \ldots, \vec{f}_{m}\right)=\{\overrightarrow{0}\}$ we get to conclude that

$$
\vec{e}_{1}, \ldots, \vec{e}_{n}, \vec{f}_{1}, \ldots, \vec{f}_{m}
$$

are linearly independent.

Properties of Direct Sums

Lemma

If $V=V_{1} \oplus V_{2}$ and $\vec{e}_{1}, \ldots, \vec{e}_{n}$ are a generating set for V_{1} and $\vec{f}_{1}, \ldots, \vec{f}_{m}$ are a generating set for V_{2} then

$$
\vec{e}_{1}, \ldots, \vec{e}_{n}, \vec{f}_{1}, \ldots, \vec{f}_{m}
$$

are a generating set for V.
Proof: Let $\vec{v} \in V$ be arbitrary. Because $V=V_{1} \oplus V_{2}$ we may write

$$
\vec{v}=\overrightarrow{v_{1}}+\overrightarrow{v_{2}}
$$

where $\overrightarrow{v_{1}} \in V_{1}$ and $\overrightarrow{v_{2}} \in V_{2}$.
As $\vec{e}_{1}, \ldots, \vec{e}_{n}$ are a generating set for V_{1}, and $\overrightarrow{v_{1}} \in V_{1}$, there are $a_{1}, \ldots, a_{n} \in \mathbb{R}$ with

$$
\vec{v}_{1}=a_{1} \vec{e}_{1}+\cdots+a_{n} \vec{e}_{n}
$$

As $\vec{f}_{1}, \ldots, \vec{f}_{m}$ are a generating set for V_{2}, and $\vec{V}_{2} \in V_{2}$, there are $b_{1}, \ldots, b_{m} \in \mathbb{R}$ with

$$
\overrightarrow{V_{2}}=b_{1} \vec{f}_{1}+\cdots+b_{m} \vec{f}_{m}
$$

Putting this together gives

$$
\vec{v}=\vec{v}_{1}+\vec{v}_{2}=a_{1} \vec{e}_{1}+\cdots+a_{n} \vec{e}_{n}+b_{1} \vec{f}_{1}+\cdots+b_{m} \vec{f}_{m}
$$

so every vector in V is a linear combination of $\vec{e}_{1}, \ldots, \vec{e}_{n}, \vec{f}_{1}, \ldots, \vec{f}_{m}$ and hence

$$
\vec{e}_{1}, \ldots, \vec{e}_{n}, \vec{f}_{1}, \ldots, \vec{f}_{m}
$$

are a generating set for V.

Properties of Direct Sums

Theorem

If $V=V_{1} \oplus V_{2}$ and $\vec{e}_{1}, \ldots, \vec{e}_{n}$ is a basis for V_{1} and $\vec{f}_{1}, \ldots, \vec{f}_{m}$ is a basis for V_{2} then

$$
\vec{e}_{1}, \ldots, \vec{e}_{n}, \vec{f}_{1}, \ldots, \vec{f}_{m}
$$

is a basis for V, in particular, the dimension of V is the sum of the dimensions of V_{1} and V_{2}.
Proof:
This is an immediate consequence of the two previous lemmas.

Constructing Direct Sums

Theorem

If $\operatorname{Span}(S) \cap \operatorname{Span}(R)=\{\overrightarrow{0}\}$ then $\operatorname{Span}(S \cup R)=\operatorname{Span}(S) \oplus \operatorname{Span}(R)$.
Proof:
The first thing to point out is that indeed, both of $\operatorname{Span}(S)$ and $\operatorname{Span}(R)$ are subsets of $\operatorname{Span}(S \cup R)$ (Why?).

From the assignment we know that every element of $\operatorname{Span}(S \cup R)$ can be written in the form:

$$
\vec{s}+\vec{r}
$$

where $\vec{s} \in \operatorname{Span}(S)$ and $\vec{r} \in \operatorname{Span}(R)$.
From the assignment we also know that because $\operatorname{Span}(S) \cap \operatorname{Span}(R)=\{\overrightarrow{0}\}$ this representation is unique.

This proves that

$$
\operatorname{Span}(S \cup R)=\operatorname{Span}(S) \oplus \operatorname{Span}(R)
$$

Constructing Direct Sums

Theorem

If $\vec{e}_{1}, \ldots, \vec{e}_{n}, \vec{f}_{1}, \ldots, \vec{f}_{m}$ is a basis for V then

$$
V=\operatorname{Span}\left(\vec{e}_{1}, \ldots, \vec{e}_{n}\right) \oplus \operatorname{Span}\left(\vec{f}_{1}, \ldots, \vec{f}_{m}\right)
$$

Proof:

From the assignment we know that because $\vec{e}_{1}, \ldots, \vec{e}_{n}, \vec{f}_{1}, \ldots, \vec{f}_{m}$ are linearly indepentent that

$$
\operatorname{Span}\left(\vec{e}_{1}, \ldots, \vec{e}_{n}\right) \cap \operatorname{Span}\left(\vec{f}_{1}, \ldots, \vec{f}_{m}\right)=\{\overrightarrow{0}\}
$$

We then know that

$$
V=\operatorname{Span}\left(\vec{e}_{1}, \ldots, \vec{e}_{n}, \vec{f}_{1}, \ldots, \vec{f}_{m}\right)=\operatorname{Span}\left(\vec{e}_{1}, \ldots, \vec{e}_{n}\right) \oplus \operatorname{Span}\left(\vec{f}_{1}, \ldots, \vec{f}_{m}\right)
$$

One way to interpret a bunch of the results, is that specifying a direct sum decomposition is basically the same thing as cutting a basis into pieces and vice versa. We shall use this idea much later when we try to change bases.

Theorem

If $W \subset V$ is any vector subspace of a vector space V, then there exists a subspace $U \subset V$ such that

$$
V=W \oplus U
$$

Proof:

Let L be a basis for W, then L is linearly independent.
By our theorem on the existance of basis, we know that because L is linearly independent there exists a basis B for V such that

$$
L \subset B
$$

Consider the set

$$
M=B \backslash L
$$

so that

$$
B=M \cup L
$$

is a basis for V.
By the previous theorem we then know that

$$
V=\operatorname{Span}(L) \oplus \operatorname{Span}(M)
$$

As we know $W=\operatorname{Span}(L)$, by letting $U=\operatorname{Span}(M)$ we thus obtain

$$
V=W \oplus U
$$

Abstract Example

Consider V a vector space with basis $\vec{e}_{1}, \overrightarrow{e_{2}}, \overrightarrow{e_{3}}, \vec{e}_{4}, \overrightarrow{e_{5}}$ and

$$
V_{1}=\operatorname{Span}\left(\vec{e}_{1}, \vec{e}_{2}\right) \quad V_{2}=\operatorname{Span}\left(\vec{e}_{3}, \vec{e}_{4}, \vec{e}_{5}\right)
$$

then

$$
V=V_{1} \oplus V_{2}
$$

We note that V_{1} is isomorphic to \mathbb{R}^{2}, and V_{2} is isomorphic to \mathbb{R}^{3}, so each of these two spaces is individually simpler to study.
Whenever we have a vector $a_{1} \vec{e}_{1}+a_{2} \vec{e}_{2}+a_{3} \vec{e}_{3}+a_{4} \vec{e}_{4}+a_{5} \vec{e}_{5} \in V$, we can think of having

$$
\vec{v}_{1}=a_{1} \vec{e}_{1}+a_{2} \vec{e}_{2} \in V_{1} \quad \overrightarrow{v_{2}}=a_{3} \vec{e}_{3}+a_{4} \vec{e}_{4}+a_{5} \vec{e}_{5} \in V_{2}
$$

It is reasonably clear that both addition/scalar multiplication work componentwise, so it isn't unreasonable to think of

$$
V=\left\{\left(\vec{v}_{1}, \overrightarrow{v_{2}}\right) \mid \overrightarrow{v_{1}} \in V_{1}, \vec{v}_{2} \in V_{2}\right\}
$$

which under the isomorphism V_{1} with \mathbb{R}^{2} and V_{2} with \mathbb{R}^{3} is compatible with the isomorphism V with \mathbb{R}^{5} in our last example.
Note that this componentwise interpretation works in the more general case.
Benefit: lower dimensional vector spaces are simpler to think about, by cutting things into pieces we can study simpler things before combining them!

Orthogonal Direct Sums

The entire idea of direct sums generalizes the following sort of construction: Given \mathbb{R}^{n}, if $W \subset \mathbb{R}^{n}$ is a subspace we can define:

$$
W^{\perp}=\left\{\vec{v} \in \mathbb{R}^{n} \mid \forall \vec{w} \in W,(\vec{v}, \vec{w})=0\right\}
$$

this is the set of vectors perpendicular to all vectors in W.
If W was a plane (through the origin) in \mathbb{R}^{3}, then W^{\perp} is the normal line (through the origin).
If W was a line (through the origin) in \mathbb{R}^{3}, then W^{\perp} is the perpendicular plane (through the origin).

It is always the case that

$$
\mathbb{R}^{n}=W \oplus W^{\perp}
$$

For now, the details are an exercise.

