
Direct Sum Decompositions

Given any vector space V , and subspaces V1,V2 of V we say that V is a direct sum of
V1 and V2 and write

V = V1 ⊕ V2

if every ~v ∈ V can be written uniquely as

~v = ~v1 + ~v2

with ~v1 ∈ V1 and ~v2 ∈ V2.
In symbols we would write:

∀~v ∈ V , ∃!~v1 ∈ V1,∃!~v2 ∈ V2, ~v = ~v1 + ~v2

unique here means, if you think you have two solutions, they are the same solution:

∀~v ∈ V , ∀~v1, ~v ′
1 ∈ V1,∀~v2, ~v ′

2 ∈ V2, (~v1 + ~v2 = ~v = ~v ′
1 + ~v ′

2)⇒ (~v1 = ~v ′
1) and (~v2 = ~v ′

2)

The definition extends to having more than two subspaces. Facts about the general case
typically follow by induction on the case of two subspaces.

V = V1 ⊕ V2 ⊕ · · · ⊕ Vr

if
∀~v ∈ V , ∃!~v1 ∈ V1, . . . , ~vr ∈ Vr , ~v = ~v1 + · · ·+ ~vr

What we just defined is a special case of the direct sum called an internal direct sum.
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We have a vector subspaces

W = span(~e1, ~e2) ⊂ R3 U = span(~e3) ⊂ R3

and since every vector in R3 can be written uniquely as

~v = a~e1 + b~e2 + c~e3 = ~w + ~u

we can see that this gives
R3 = U ⊕W
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Concrete Example/Model for how to think about direct sums.
Consider V = R5 and

V1 = {(a, b, 0, 0, 0) ∈ V | a, b ∈ R} V2 = {(0, 0, c, d , e) ∈ V | c, d , e ∈ R}

then
V = V1 ⊕ V2

We note that V1 is isomorphic to R2, and V2 is isomorphic to R3, so each of these two
spaces is individually simpler to study.
Whenever we have a vector (a, b, c, d , e) ∈ V , we can think of having

~v1 = (a, b, 0, 0, 0) ∈ V1 ~v2 = (0, 0, c, d , e) ∈ V2.

Given the isomorphisms V1 with R2 and V2 with R3 we can just think of having vectors

~v1 = (a, b) ∈ R2 ~v2 = (c, d , e) ∈ R3.

It isn’t unreasonable to think of

V = {((a, b), (c, d , e)) | (a, b) ∈ R2, (c, d , e) ∈ R3}

Note that addition/scalar multiplication all work componentwise, and that this happens
in the more general case.

Writing R5 ' R3 ⊕ R2 would be an external direct sum.
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Properties of Direct Sums
Lemma
If V = V1 ⊕ V2 then V1 ∩ V2 = {~0}.
Proof:
It is obvious that {~0} ⊂ V1 ∩ V2 so we only need to show the other containment.
Let ~v ∈ V1 ∩ V2 be arbitrary. So ~v ∈ V1 and ~v ∈ V2

Then we can write
~0 ∈ V

in apparently two different ways as a sum of vectors from V1 and V2.

~0 = ~v − ~v and ~0 = ~0 +~0

but, V = V1 ⊕ V2, so this expression must be unique.
(in the above, we have ~v ∈ V1 and −~v ∈ V2 and also ~0 ∈ V1 and ~0 ∈ V2, so the
exressions are the sort which should be unique, recall unique means, if you think you have
two solutions, they are the same solution:

~v ∈ V , ∀~v1, ~v ′
1 ∈ V1, ∀~v2, ~v ′

2 ∈ V2, (~v1 + ~v2 = ~v = ~v ′
1 + ~v ′

2)⇒ (~v1 = ~v ′
1) and (~v2 = ~v ′

2)

so with
~v1 = ~v , ~v2 = −~v , ~v ′

1 = ~0, ~v ′
2 = ~0

We can use the uniqueness to conclude conclude ~v1 = ~v ′
1. )

This gives ~v = ~0. So every vector in V1 ∩ V2 is the zero vector.
This proves V1 ∩ V2 = {~0}.
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Properties of Direct Sums
Lemma
If V = V1 ⊕ V2 and ~e1, . . . , ~en are linearly independent vectors in V1 and ~f1, . . . , ~fm are
linearly independent vectors in V2 then

~e1, . . . , ~en, ~f1, . . . , ~fm

are linearly independent vectors in V .
Proof:
From the previous lemma we know that

V1 ∩ V2 = {~0}

But because
Span(~e1, . . . , ~en) ⊂ V1 and Span(~f1, . . . , ~fm) ⊂ V2

we can conclude that

Span(~e1, . . . , ~en) ∩ Span(~f1, . . . , ~fm) = {~0}

From the assignment because ~e1, . . . , ~en are linearly independent, and ~f1, . . . , ~fm are
linearly independent, and Span(~e1, . . . , ~en) ∩ Span(~f1, . . . , ~fm) = {~0} we get to conclude
that

~e1, . . . , ~en, ~f1, . . . , ~fm

are linearly independent.
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Properties of Direct Sums
Lemma
If V = V1 ⊕ V2 and ~e1, . . . , ~en are a generating set for V1 and ~f1, . . . , ~fm are a generating
set for V2 then

~e1, . . . , ~en, ~f1, . . . , ~fm

are a generating set for V .
Proof: Let ~v ∈ V be arbitrary. Because V = V1 ⊕ V2 we may write

~v = ~v1 + ~v2

where ~v1 ∈ V1 and ~v2 ∈ V2.
As ~e1, . . . , ~en are a generating set for V1, and ~v1 ∈ V1, there are a1, . . . , an ∈ R with

~v1 = a1~e1 + · · ·+ an~en

As ~f1, . . . , ~fm are a generating set for V2, and ~v2 ∈ V2, there are b1, . . . , bm ∈ R with

~v2 = b1~f1 + · · ·+ bm~fm

Putting this together gives

~v = ~v1 + ~v2 = a1~e1 + · · ·+ an~en + b1~f1 + · · ·+ bm~fm

so every vector in V is a linear combination of ~e1, . . . , ~en, ~f1, . . . , ~fm and hence

~e1, . . . , ~en, ~f1, . . . , ~fm

are a generating set for V .
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Properties of Direct Sums

Theorem
If V = V1 ⊕ V2 and ~e1, . . . , ~en is a basis for V1 and ~f1, . . . , ~fm is a basis for V2 then

~e1, . . . , ~en, ~f1, . . . , ~fm

is a basis for V , in particular, the dimension of V is the sum of the dimensions of V1 and
V2.
Proof:
This is an immediate consequence of the two previous lemmas.
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Constructing Direct Sums

Theorem
If Span(S) ∩ Span(R) = {~0} then Span(S ∪ R) = Span(S)⊕ Span(R).
Proof:
The first thing to point out is that indeed, both of Span(S) and Span(R) are subsets of
Span(S ∪ R) (Why?).

From the assignment we know that every element of Span(S ∪ R) can be written in the
form:

~s + ~r

where ~s ∈ Span(S) and ~r ∈ Span(R).

From the assignment we also know that because Span(S) ∩ Span(R) = {~0} this
representation is unique.

This proves that
Span(S ∪ R) = Span(S)⊕ Span(R)
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Constructing Direct Sums

Theorem
If ~e1, . . . , ~en, ~f1, . . . , ~fm is a basis for V then

V = Span(~e1, . . . , ~en)⊕ Span(~f1, . . . , ~fm)

Proof:
From the assignment we know that because ~e1, . . . , ~en, ~f1, . . . , ~fm are linearly
indepentent that

Span(~e1, . . . , ~en) ∩ Span(~f1, . . . , ~fm) = {~0}

We then know that

V = Span(~e1, . . . , ~en, ~f1, . . . , ~fm) = Span(~e1, . . . , ~en)⊕ Span(~f1, . . . , ~fm)

One way to interpret a bunch of the results, is that specifying a direct sum
decomposition is basically the same thing as cutting a basis into pieces and vice versa.
We shall use this idea much later when we try to change bases.
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Theorem
If W ⊂ V is any vector subspace of a vector space V , then there exists a subspace
U ⊂ V such that

V = W ⊕ U

Proof:
Let L be a basis for W , then L is linearly independent.
By our theorem on the existance of basis, we know that because L is linearly independent
there exists a basis B for V such that

L ⊂ B

Consider the set
M = B \ L

so that
B = M ∪ L

is a basis for V .
By the previous theorem we then know that

V = Span(L)⊕ Span(M).

As we know W = Span(L), by letting U = Span(M) we thus obtain

V = W ⊕ U.
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Abstract Example
Consider V a vector space with basis ~e1, ~e2, ~e3, ~e4, ~e5 and

V1 = Span(~e1, ~e2) V2 = Span(~e3, ~e4, ~e5)

then
V = V1 ⊕ V2

We note that V1 is isomorphic to R2, and V2 is isomorphic to R3, so each of these two
spaces is individually simpler to study.
Whenever we have a vector a1~e1 + a2~e2 + a3~e3 + a4~e4 + a5~e5 ∈ V , we can think of having

~v1 = a1~e1 + a2~e2 ∈ V1 ~v2 = a3~e3 + a4~e4 + a5~e5 ∈ V2

It is reasonably clear that both addition/scalar multiplication work componentwise, so it
isn’t unreasonable to think of

V = {(~v1, ~v2) | ~v1 ∈ V1, ~v2 ∈ V2}

which under the isomorphism V1 with R2 and V2 with R3 is compatible with the
isomorphism V with R5 in our last example.
Note that this componentwise interpretation works in the more general case.
Benefit: lower dimensional vector spaces are simpler to think about, by cutting things
into pieces we can study simpler things before combining them!
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Orthogonal Direct Sums

The entire idea of direct sums generalizes the following sort of construction:
Given Rn, if W ⊂ Rn is a subspace we can define:

W⊥ = {~v ∈ Rn | ∀~w ∈W , (~v , ~w) = 0}

this is the set of vectors perpendicular to all vectors in W .

If W was a plane (through the origin) in R3, then W⊥ is the normal line (through the
origin).
If W was a line (through the origin) in R3, then W⊥ is the perpendicular plane (through
the origin).

It is always the case that
Rn = W ⊕W⊥

For now, the details are an exercise.
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