
Linear Transformations - Informal

A Linear Transformation is a function from one vector space to another that plays nice
with the underlying structure that makes a vector space a vector space.
That is, a linear transformation from V to W is a function

L : V →W

which plays nice with + and · for the vector spaces V and W .
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Linear Transformations - Formal

We call a function L : V →W a linear transformation if

∀~v1, ~v2 ∈ V , L(~v1 + ~v2) = L(~v1) + L(~v2).

∀a ∈ R, ∀~v ∈ V , L(a~v) = aL(~v).

This basically says + and · can be evaluated before or after the linear transformation.

Immediate consequences: If L is a linear transformation then:

L(~0) = ~0. L(~0) = L(0 ·~0) = 0 · L(~0) = ~0.

L(a1~v1 + · · ·+ ar~vr ) = a1L(~v1) + · · ·+ arL(~vr ). repeatedly using above rules.

Theorem
L : V →W is a linear transformation if and only if for all ~v1, ~v2 ∈ V and a, b ∈ R we
have:

L(a~v1 + b~v2) = aL(~v1) + bL(~v2).

Proof Idea: The case a = b = 1 gives the first rule above, the case b = 0 gives the
second.
You can use this theorem as an alternate definition, it is often a bit faster to check this
condition.
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Example
Show that the map L : R3 → R2 given by

L

x
y
z

 =

(
1 2 3
3 2 1

)x
y
z


is a linear transformation.

Proof Sketch We have that

L

a

x1
y1
z1

+ b

x2
y2
z2

 =

(
1 2 3
3 2 1

)a

x1
y1
z1

+ b

x2
y2
z2


= a

(
1 2 3
3 2 1

)x1
y1
z1

+ b

(
1 2 3
3 2 1

)x2
y2
z2


= aL

x1
y1
z1

+ bL

x2
y2
z2


As you can imagine, this type of thing will work for all matricies, we will say more about
this later.
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Special Transformations - the Zero map

Given any two vector spaces V and W there is a linear transformation

0V ,W : V →W

It is the map
0V ,W (~v) = ~0

which sends everything to zero.

The zero map is very useful for notational purposes, and often a good way to sanity
check theorems because in many cases it will give the simplest counterexample to
something you might think would be a theorem but isn’t.

Theorem
Let L : U → V be a linear transformation. We have the following identities.

0V ,W ◦ L = 0U,W

L ◦ 0W ,U = 0W ,V

All of the above is an easy excercise.
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Special Transformations - the identity map

Given any vector space V , there is a linear transformation:

IdV : V → V

it is the map
IdV (~v) = ~v

which sends every vector to itself.

The identity map is very useful for notational purposes, and also helpful in many other
definitions constructions we will see.

Theorem
Let L : U → V be a linear transformation. We have the following identities.

IdV ◦ L = L

L ◦ IdU = L

All of the above is an easy excercise.
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Special Transformations - the inclusion map

Given any vector space V , and any subspace U ⊂ V , the inclusion map:

inclU,V : U → V

defined by:
inclU,V(~u) = ~u

is a linear transformation.

We often use inclusion maps implicitly, without thinking about it, and this is fine, but it
can be occasionally useful when proving theorems to make an explicit reference to it.

Proof Idea The inclusion map is essentially the identity map, so the proof is identical to
that case.
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Special Transformations - the projection maps for direct sums
Given any vector space V , and any subspaces W1,W2 ⊂ V such that

V = W1 ⊕W2

Recall that ∀~v ∈ V there exists unique ~w1 ∈W1 and ~w2 ∈W2 so that ~v = ~w1 + ~w2.

We can define projection maps

ProjV,W1 : V →W1 and ProjV,W2 : V →W2

by the characteriztion
~v = ProjV,W1(~v) + ProjV,W2(~v)

that is
ProjV,W1(~v) = the unique ~w1 ProjV,W2(~v) = the unique ~w2

are linear transformations.

Proof Sketch: If ~v = ~w1 + ~w2 and ~v ′ = ~w ′1 + ~w ′2 then

a~v + b~v ′ = (a~w1 + b~w ′1) + (a~w2 + b~w ′2)

so that

ProjV,W1(a~v + b~v ′) = a~w1 + b~w ′1 = aProjV,W1(~v) + bProjV,W1(~v ′).

This generalizes the idea of orthogonal projections
Math 3410 (University of Lethbridge) Spring 2018 7 / 15



Linear Transformations - Linear Combinations

Given a pair of vector spaces U,V and a pair of linear transformations:

L : U → V M : U → V

and any two real numbers a, b, we can define a new function

f : U → V

according to the rule:
f (~u) = aL(~u) + bM(~u)

This is definitely a function.
Theorem
With f as above f is a linear transformation.
We leave this as an exercise.

Theorem
With addition and scalar multiplication as defined above, the set:

Hom(U,V ) = {f : U → V | f is a linear transformation}

of linear transformations from U to V is a vector space.
We won’t use it crucially in this course.
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Linear Transformations - Composition
Given three vector spaces U,V ,W and a pair of linear transformations:

L : V →W M : U → V

We can always write down the composition of the functions L ◦M:

L ◦M : U →W

Theorem
With L and M as above the function L ◦M : U → V is a linear transformation.

Proof Sketch:

L ◦M(a~x + b~y) = L(M(a~x + b~y)) definition of L ◦M
= L(aM(~x) + bM(~y)) linearity of M

= aL(M(~x)) + bL(M(~y)) linearity of L

= aL ◦M(~x) + bL ◦M(~y) definition of L ◦M
Theorem: With notation above, both the maps:

m : Hom(V ,W )→ Hom(U,W ) and ` : Hom(U,V )→ Hom(U,W )

given by
m(N) = N ◦M and `(N) = L ◦ N

are linear transformations.
We won’t use it for anything in this course.
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Linear Combinations and Compositions

Theorem
Let A,B be linear transformations V →W and C ,D be linear transformations U → V
then:

(A + B) ◦ (C + D) = A ◦ C + A ◦ D + B ◦ C + B ◦ D

This basically says composition works like multiplication.

Proof: We have

(A + B) ◦ (C + D)(~x)

=((A + B)((C + D))(~x)) definition of composition

=(A + B)(C(~x) + D(~x)) definition of (C + D)

=A(C(~x) + D(~x)) + B(C(~x) + D(~x)) definition of (A + B)

=A(C(~x)) + A(D(~x)) + B(C(~x)) + B(D(~x)) linearity of A and B

=A ◦ C(~x) + A ◦ D(~x) + B ◦ C(~x) + B ◦ D(~x) definition of composition

this shows that the function in the LHS has the same output values as the function on
the RHS for all values of the input, hence the functions are equal.
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Linear Transformations - Inverses
Given a vector spaces V ,W and a linear transformation L : V →W if the function L is
bijective as a function, then there exists a function:

L−1 : W → V

Theorem
With L as above, a bijective linear transformation, then the function L−1 is a linear
transformation.
That L−1 is a function is clear, that it is a linear transformation is what we need to check!
Proof Sketch: We calculate that

L(L−1(a~x + b~y)− aL−1(~x)− bL−1(~y))

= L(L−1(a~x + b~y))− aL(L−1(~x))− bL(L−1(~y)) linearity of L

= a~x + b~y − a~x − b~y L ◦ L−1(~x) = ~x

= ~0 cancelling terms

= L(~0) because L(~0) = ~0

Now because L is injective, this implies

L−1(a~x + b~y)− aL−1(~x)− bL−1(~y) = ~0

but this says
L−1(a~x + b~y) = aL−1(~x) + bL−1(~y)

and so L−1 is linear.
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Definitions about inverses

Definition
Given L : U → V , a map M : V → U is the inverse if and only if:

L ◦M = IdV M ◦ L = IdU

We generally write M = L−1 to denote the inverse when it exists.

Definition
A bijective linear transformation is called an isomorphism of vector spaces.
Vector spaces U and V are said to be Isomorphic if there exists a bijective linear
transformation between them.
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Identification of Finite dimensional vector spaces with Rn

Recall that if V is a finite dimensional vector space with basis ~e1, . . . , ~en then we wanted
to identify:

V ↔ Rn

by the rules:
L(a1~e1 + · · ·+ an~en) = (a1, . . . , an)

M((a1, . . . , an)) = a1~e1 + · · ·+ an~en

Theorem
The expression above defines a function L that is a bijective linear transformation, that
is, an isomorphism.
Consequently, every finite dimensional vector space V is isomorphic to Rn where n is the
dimension of V .
We leave this as an exercise.

Important The isomorphisms M and L depend on a choice of basis ~f1, . . . , ~fn for V !!!
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Comparing/Defining Linear Transformations

Lemma
Two linear transformations L1, L2 : V →W are equal, that is:

∀~v ∈ V , L1(~v) = L2(~v)

if and only if they are equal on a basis S of V , that is if

∀~v ∈ S , L1(~v) = L2(~v).

This is on the assignment

Lemma
If ~e1, . . . , ~en are a basis for a vector space V , and ~w1, . . . , ~wn are any n vectors in a vector
space W then there is a linear transformation L : V →W such that

L(~ei ) = wi i ∈ {1, . . . , n}

This is on the assignment

What the above results say is that linear transformations are determined by, and can be
specified by, what happens to a basis.
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Natural Questions About Abstract Linear Transformations

Given some description of a function f : V →W , is f a linear transformation?
One simply needs to check that f (a~x + b~y) = af (~x) + bf (~y) for all a, b, ~x , ~y . How
one does this depends on the description of f , as we shall see on the assignment.

Given some description of a linear transformation L : V →W , what is L(~v)?
How one does this depends on the description of f , as we shall see on the
assignment.

Math 3410 (University of Lethbridge) Spring 2018 15 / 15


