Matricies Give Linear Transformations

Consider the vector spaces $U=\mathbb{R}^{n}$ and $V=\mathbb{R}^{m}$, expressing elements of each as column vectors.
If A is an m by n matrix we can define an associated function

$$
L: U \rightarrow V
$$

according to the rule

$$
L(\vec{u})=A \vec{u}
$$

Theorem

The function L, as defined above, is a linear transformation.
Proof: We have that

$$
\begin{aligned}
L\left(a \vec{u}_{1}+b \vec{u}_{2}\right) & =A\left(a \vec{u}_{1}+b \vec{u}_{2}\right) \\
& =a\left(A \vec{u}_{1}\right)+b\left(A \vec{u}_{2}\right) \\
& =a L\left(\vec{u}_{1}\right)+b L\left(\vec{u}_{2}\right)
\end{aligned}
$$

It is not at all uncommon to not distinguish the matrix A from the function L. So people will talk about a matrix A being a linear transformation.

Examples

The zero transformation between the vector spaces \mathbb{R}^{2} and \mathbb{R}^{3} can be described by the matrix

$$
A=\left(\begin{array}{ll}
0 & 0 \\
0 & 0 \\
0 & 0
\end{array}\right)
$$

indeed, we can see that the associated linear transformation

$$
L(\vec{v})=A \vec{v}
$$

will satisfy

$$
L((x, y))=\left(\begin{array}{ll}
0 & 0 \\
0 & 0 \\
0 & 0
\end{array}\right)\binom{x}{y}=\binom{0}{0}
$$

which always gives the zero vector.

The identity transformation between the vector spaces \mathbb{R}^{3} and \mathbb{R}^{3} can be described by the matrix:

$$
A=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

indeed, we can see that the associated linear transformation

$$
L(\vec{v})=A \vec{v}
$$

will satisfy

$$
L((x, y, z))=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)
$$

which sends every vector to itself.

The inclusion transformations of

$$
\mathbb{R}^{2} \simeq U=\left\{(x, y, 0) \in \mathbb{R}^{3}\right\} \subset \mathbb{R}^{3}
$$

between the vector spaces \mathbb{R}^{2} and \mathbb{R}^{3} can be described by the matrix:

$$
A=\left(\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right)
$$

indeed, we can see that the associated linear transformation

$$
L(\vec{v})=A \vec{v}
$$

will satisfy

$$
L((x, y))=\left(\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right)\binom{x}{y}=\left(\begin{array}{l}
x \\
y \\
0
\end{array}\right)
$$

is precisely the image of (x, y) in \mathbb{R}^{3} under the described inclusion.

If we write

$$
V=\mathbb{R}^{3}=U \oplus W
$$

with

$$
U=\left\{(x, y, 0) \in \mathbb{R}^{3}\right\} \quad W=\left\{(0,0, z) \in \mathbb{R}^{3}\right\}
$$

The projection transformation

$$
P_{V, U}: \mathbb{R}^{3} \rightarrow U \simeq \mathbb{R}^{2}
$$

an be described by the matrix:

$$
A=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)
$$

indeed, we can see that the associated linear transformation

$$
L(\vec{v})=A \vec{v}
$$

will satisfy

$$
L((x, y, z))=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\binom{x}{y}
$$

is precisely the image of (x, y) in \mathbb{R}^{3} under the described projection.

If L is the linear transformation $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ associated to the matrix A given by

$$
A=\left(\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right)
$$

then the inverse linear transformation

$$
L^{-1}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}
$$

is associated to the matrix

$$
A^{-1}=\left(\begin{array}{cc}
1 & -2 \\
0 & 1
\end{array}\right)
$$

indeed, we can see that the associated linear transformation

$$
L(\vec{v})=A \vec{v}
$$

will satisfy

$$
L^{-1}(L(\vec{v}))=A^{-1}(L(\vec{v}))=A^{-1} A \vec{v}=\operatorname{Id} \vec{v}=\vec{v}
$$

for all $\vec{v} \in \mathbb{R}^{2}$, and likewise

$$
L\left(L^{-1}(\vec{v})\right)=A\left(L^{-1}(\vec{v})\right)=A A^{-1} \vec{v}=\operatorname{Id} \vec{v}=\vec{v}
$$

If L is the linear transformation $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ associated to the matrix A given by

$$
A=\left(\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right)
$$

and if M is the linear transformation $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ associated to the matrix B given by

$$
B=\left(\begin{array}{ll}
1 & 3 \\
0 & 2
\end{array}\right)
$$

then the linear transformations

$$
(3 L+2 M): \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}
$$

is associated to the matrix

$$
3 A+2 B=\left(\begin{array}{cc}
5 & 12 \\
0 & 7
\end{array}\right)
$$

The linear transformation

$$
L \circ M
$$

is associated to the matrix

$$
A B=\left(\begin{array}{ll}
1 & 7 \\
0 & 2
\end{array}\right)
$$

Both of the above can be checked in the same way

If a transformation comes from a matrix, everything we do transformations corresponds to doing something with matricies and vice versa. certain linear transformation $L: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n} \quad \leftrightarrow \quad n$ by m matrix

zero transformation	\leftrightarrow	zero matrix
identity Transformation	\leftrightarrow	identity matrix
inclusion/projections	\leftrightarrow	specific matricies
linear combinations of transformations	\leftrightarrow	adding matricies
composition of transformations	\leftrightarrow	multiplying matricies
inverses of transformations	\leftrightarrow	inverses of matricies

We will eventually prove these things really do correspond in general.
Linear transformations for \mathbb{R}^{n} don't seem any worse than matricies. What if there are linear transformations not described by matricies?

We want to prove all linear transformations from $U=\mathbb{R}^{n}$ to $V=\mathbb{R}^{m}$ come from m by n matricies.
Two key facts you will prove on the assignment:

Theorem

Two linear transformations $L_{1}: U \rightarrow V$ and $L_{2}: U \rightarrow V$ are equal, if for any basis $\overrightarrow{e_{1}}, \ldots, \vec{e}_{n}$ we have

$$
L_{1}\left(\vec{e}_{1}\right)=L_{2}\left(\vec{e}_{1}\right), \quad L_{1}\left(\vec{e}_{2}\right)=L_{2}\left(\vec{e}_{2}\right), \quad \cdots \quad L_{1}\left(\vec{e}_{n}\right)=L_{2}\left(\vec{e}_{n}\right)
$$

Theorem

If $\vec{e}_{1}, \ldots, \vec{e}_{n}$ is any basis for U, and $\vec{w}_{1}, \ldots, \vec{w}_{n}$ any vectors in V, then there is a unique linear transformation $L: U \rightarrow V$ so that

$$
L\left(\vec{e}_{1}\right)=\vec{w}_{1}, \quad L\left(\vec{e}_{2}\right)=\vec{w}_{2}, \quad \cdots \quad L\left(\vec{e}_{n}\right)=\vec{w}_{n}
$$

Lemma

Let A be an n by m matrix, and denote by \vec{a}_{i} the columns of A, so

$$
A=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 m} \\
a_{21} & a_{22} & \cdots & a_{2 m} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n m}
\end{array}\right)=\left(\begin{array}{cccc}
\vdots & \vdots & & \vdots \\
\vec{a}_{1} & \vec{a}_{2} & \cdots & \vec{a}_{m} \\
\vdots & \vdots & & \vdots
\end{array}\right) \quad \vec{a}_{i}=\left(\begin{array}{c}
a_{1 i} \\
a_{2 i} \\
\vdots \\
a_{n i}
\end{array}\right)
$$

Then the linear transformation $L: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ is the transformation which takes the basis vectors

$$
\vec{e}_{1}=(1,0, \ldots, 0), \quad \overrightarrow{e_{2}}=(0,1, \ldots, 0), \quad \ldots, \quad, \vec{e}_{m}=(0,0, \ldots, 1)
$$

to $\vec{a}_{1}, \ldots, \vec{a}_{m}$. That is $L\left(\vec{e}_{i}\right)=\vec{a}_{i}$
Proof (sketch):
from the assignment There is a unique linear transformation $M: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ for which $M\left(\vec{e}_{i}\right)=\vec{a}_{i}$.
So, we really just need to check that this one does that, and indeed,

$$
L\left(\vec{e}_{i}\right)=A \vec{e}_{i}=\left(\begin{array}{cccc}
\vdots & \vdots & & \vdots \\
\vec{a}_{1} & \vec{a}_{2} & \cdots & \vec{a}_{m} \\
\vdots & \vdots & & \vdots
\end{array}\right)\left(\begin{array}{c}
0 \\
\vdots \\
0 \\
1 \\
0 \\
\vdots \\
0
\end{array}\right) \leftarrow \text { ith spot }=\left(\begin{array}{c}
a_{1 i} \\
a_{2 i} \\
\vdots \\
a_{n i}
\end{array}\right)=\vec{a}_{i}
$$

The key, is that when you multiply a matrix, by \vec{e}_{i}, you obtain the i-th column of A.

Matricies Give All Linear Transformations

Consider the vector spaces $U=\mathbb{R}^{n}$ and $V=\mathbb{R}^{m}$.

Theorem

If $L: U \rightarrow V$ is a linear transformation, then there exists a unique m by n matrix A so that:

$$
L(\vec{u})=A \vec{u}
$$

Moreover, we can determine the i-th column \vec{a}_{i} of A by computing

$$
\vec{a}_{i}=L\left(\vec{e}_{i}\right)
$$

for $\vec{e}_{i}=(0, \ldots, 0,1,0, \ldots, 0)$ the vector which has a 1 in precisely the i th coordinate.

Proof

We can definitely write down the matrix A, whose columns are $\overrightarrow{a_{i}}=L\left(\vec{e}_{i}\right)$. By the lemma, there is a linear transformation M, associated to A given by:

$$
M(\vec{v})=A \vec{v}
$$

But we have

$$
M\left(\vec{e}_{i}\right)=\vec{a}_{i}=L\left(\vec{e}_{i}\right)
$$

so these agree on the basis, so by our lemma they must be equal, $L=M$ so L comes from a matrix.

Example - Matrix of a linear transformation

We know from that result on the assignment, that we can specify a linear transformation by talking about what it does to any basis, so what happens if some jerk (hi guys!) doesn't use the basis \vec{e}_{i} ?

Notice that $(1,2),(3,4)$ is a basis of \mathbb{R}^{2} (Why?)
Suppose $L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ is a linear transformation which satisfies

$$
L((1,2))=(1,1,1) \quad L((3,4))=(1,2,3)
$$

what is the matrix for L ?
First question, what is $L((1,0))$? then what is $L((0,1))$?
This sort of process is pretty much always works if the person gave you enough information to determine a unique transformation.

Linear Transformations $V \rightarrow W$ between finite dimensional vector spaces.

It is often convenient when doing concrete problems about a finite dimensional vector space to use the identification

$$
a_{1} \vec{f}_{1}+\cdots+a_{n} \vec{f}_{n} \leftrightarrow\left(a_{1}, \ldots, a_{n}\right)
$$

If I pretend I am working with \mathbb{R}^{n}, can I pretend my linear transformations are matricies?

$$
L: V \rightarrow W \quad \Leftrightarrow \quad A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}
$$

Linear Transformations $V \rightarrow W$ between finite dimensional vector spaces.

Suppose V is a finite dimensial vector space with a basis $\overrightarrow{1}_{1}, \ldots, \vec{f}_{n}$.
Suppose W is a finite dimensial vector space with a basis $\vec{g}_{1}, \ldots, \vec{g}_{m}$.
Then I can identify V with \mathbb{R}^{n} and W with \mathbb{R}^{m} by using:

$$
L_{v}\left(a_{1} \vec{f}_{1}+\cdots+a_{n} \vec{f}_{n}\right) \rightarrow\left(a_{1}, \ldots, a_{n}\right) \quad L_{W}\left(b_{1} \vec{g}_{1}+\cdots+b_{m} \vec{g}_{m}\right) \rightarrow\left(b_{1}, \ldots, b_{m}\right)
$$

Now, every linear transformation $M: V \rightarrow W$ leads to a transformation

$$
M^{\prime}=L_{w} \circ M \circ L_{V}^{-1}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}
$$

So M^{\prime} is a matrix!!
Every linear transformation (matrix) $M^{\prime}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ leads to a transformation

$$
M^{\prime \prime}=L_{W}^{-1} \circ M^{\prime} \circ L_{V}: V \rightarrow W
$$

Linear transformations give matricies and matricies give linear transformations!
Important: This association of a matrix depends on the choices of basis!!

This association gives a bijection

Key Idea The association between linear transformations and matricies is a well defined bijection once we pick a basis.

Theorem

The function $R: \operatorname{Hom}(V, W) \rightarrow \operatorname{Hom}\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)$ given by $R:(M)=M^{\prime}$ is a bijection with inverse given by $S:\left(M^{\prime}\right)=M^{\prime \prime}$.

Proof (sketch)

To check that its a bijection we only need to check that the compositions

$$
R \circ S(M)=M \quad S \circ R\left(M^{\prime}\right)=M^{\prime}
$$

indeed

$$
R \circ S(M)=R\left(L_{W} \circ M \circ L_{V}^{-1}\right)=L_{W}^{-1} \circ\left(L_{w} \circ M \circ L_{V}^{-1}\right) \circ L_{V}=M
$$

The other direction is similar.

If we start with M, we shall call the associated matrix A, the matrix associated to M with respect to the basis $\vec{f}_{1}, \ldots, \vec{f}_{n}$ for V and $\vec{g}_{1}, \ldots, \vec{g}_{m}$ for W.

Conversely, if we start with A, we shall call the associated linear transformation M, the linear transformation associated to A with respect to the basis $\vec{f}_{1}, \ldots, \vec{f}_{n}$ for V and $\vec{g}_{1}, \ldots, \vec{g}_{m}$ for W.

Concretely Associating a Matrix to a Linear Transformation

 Suppose V and W are vector spaces with a basis $\vec{f}_{1}, \ldots, \vec{f}_{n}$ for V and $\vec{g}_{1}, \ldots, \vec{g}_{m}$ for W. LemmaIf $M: V \rightarrow W$ is any linear transformation, then the matrix associated to M, with respect to the basis $\vec{f}_{1}, \ldots, \vec{f}_{n}$ for V and $\vec{g}_{1}, \ldots, \vec{g}_{m}$ for W is a matrix

$$
A=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & & \\
\vdots & & \ddots & \vdots \\
a_{m 1} & & \cdots & a_{m n}
\end{array}\right)
$$

which satisfies

$$
M\left(\vec{f}_{j}\right)=a_{1 j} \vec{g}_{1}+\cdots+a_{m j} \vec{g}_{m}=\sum_{i=1}^{m} a_{i j} \vec{g}_{i}
$$

Conversely, given a matrix A, as above, the linear transformation $S\left(M_{A}^{\prime}\right)$ associated to it with respect to the basis $\vec{f}_{1}, \ldots, \vec{f}_{n}$ for V and $\vec{g}_{1}, \ldots, \vec{g}_{m}$ for W is the unique one which satisfies:

$$
M\left(\overrightarrow{f_{j}}\right)=a_{1 j} \vec{g}_{1}+\cdots+a_{m j} \vec{g}_{m}=\sum_{i=1}^{m} a_{i j} \vec{g}_{i}
$$

Proof to come!
The above equation, $M\left(\vec{f}_{j}\right)=a_{1 j} \vec{g}_{1}+\cdots+a_{m j} \vec{g}_{m}=\sum_{i=1}^{m} a_{i j} \vec{g}_{i}$ therefore characterizes how we associate matricies to linear transformations given a choice of basis.

Connection to \mathbb{R}^{n}

It is worth noticing that the above lemma even applies directly to

$$
L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}
$$

indeed, it just says in this case that, when we use \vec{e}_{j}

$$
\begin{aligned}
L\left(\vec{e}_{j}\right) & =a_{1 j}(1,0, \ldots, 0)+a_{2 j}(0,1, \ldots, 0)+\cdots+a_{m j}(0,0, \ldots, 1) \\
& =\left(a_{1 j}, a_{2 j}, \ldots, a_{m j}\right) \\
& =\vec{a}_{j}
\end{aligned}
$$

where \vec{a}_{j} is as before the j-th column of A.

Proof of the lemma

Proof: We know that if $M: V \rightarrow W$ is a linear transformation, the matrix, A, we should be associating is the one from

$$
M^{\prime}=L_{W} \circ M \circ L_{V}^{-1}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}
$$

We recall (from what we just saw) that

$$
L_{W} \circ M \circ L_{V}^{-1}\left(\vec{e}_{j}\right)=M^{\prime}\left(\vec{e}_{j}\right)=\left(a_{1 j}, a_{2 j}, \ldots, a_{m j}\right)
$$

where $\vec{a}_{j}=\left(a_{1 j}, a_{2 j}, \ldots, a_{m j}\right)$ is the j-th column of A. (This is just the definition of the associated matrix)
Now we compute

$$
\begin{aligned}
M\left(\vec{f}_{j}\right) & =L_{W}^{-1} \circ L_{W}\left(M\left(\vec{f}_{j}\right)\right) \\
& =L_{W}^{-1} \circ L_{W}\left(M\left(L_{V}^{-1}\left(\vec{e}_{j}\right)\right)\right) \\
& =L_{W}^{-1}\left(\left(a_{1 j}, a_{2 j}, \ldots, a_{m j}\right)\right) \\
& =a_{1 j} \vec{g}_{1}+\cdots+a_{m j} \vec{g}_{m}
\end{aligned}
$$

composition with identity

$$
L_{V}^{-1}\left(\vec{e}_{j}\right)=\vec{f}_{j}
$$

from above
definition of L_{W}^{-1}

This proves the one direction, the proof of the other direction can be done similarly, or by using the fact that S and R were inverses, we leave this as an exercise.

Summary picture of what is being described

This picture is how we associate a matrix to a transformation and a choice of bases Suppose U has basis $\vec{e}_{1}, \ldots, \vec{e}_{n}$ and V has basis $\vec{f}_{1}, \ldots, \vec{f}_{m}$.
The matrix for a linear transformation $L: U \rightarrow V$ has the form:

$$
\begin{array}{ccccccc}
L\left(\vec{e}_{1}\right) & L\left(\vec{e}_{2}\right) & L\left(\vec{e}_{3}\right) & \cdots & L\left(\vec{e}_{j}\right) & \cdots & L\left(\vec{e}_{n}\right) \\
\downarrow & \downarrow & \downarrow & & \downarrow & & \downarrow \\
\left(\begin{array}{cccccc}
a_{11} & a_{12} & a_{13} & \cdots & a_{1 j} & \cdots \\
a_{21} & a_{22} & a_{23} & \cdots & a_{2 j} & \cdots \\
a_{31} & a_{32} & a_{33} & \cdots & a_{3 j} & \cdots \\
a_{2 n} & a_{3 n} & \leftarrow \vec{f}_{1} \\
\vdots & \vdots & \vdots & & \vdots & \\
\vdots \vec{f}_{2} \\
a_{i 1} & a_{i 2} & a_{i 3} & \cdots & a_{i j} & \cdots \\
\vdots & \vdots & \vdots & & \vdots & \\
a_{3 n} \\
a_{m 1} & a_{m 2} & a_{m 3} & \cdots & a_{m j} & \cdots \\
\vdots \\
\vdots
\end{array}\right) & \leftarrow \overrightarrow{f_{i}} \\
\vdots
\end{array}
$$

According to the rule

$$
L\left(\vec{e}_{j}\right)=\overbrace{a_{1 j} \vec{f}_{1}+a_{2 j} \vec{f}_{2}+a_{3 j} \vec{f}_{3}+\cdots+a_{i j} \vec{f}_{i}+\cdots+a_{m j} \vec{f}_{m}}^{\text {gives entries jth column }}
$$

Because \vec{f}_{i} are a basis, this expression is unique!
Because \vec{e}_{j} are a basis, this expression determines L

Example

If V has a basis $\vec{e}_{1}, \overrightarrow{e_{2}}, \overrightarrow{e_{3}}$ and W has a basis $\vec{f}_{1}, \vec{f}_{2}, \vec{f}_{3}$ and the linear transformations

$$
L: V \rightarrow W
$$

satisfies

$$
L\left(\vec{e}_{1}\right)=2 \vec{f}_{1}+3 \vec{f}_{3}, \quad L\left(\vec{e}_{2}\right)=2 \vec{f}_{1}+\vec{f}_{2} \quad L\left(\vec{e}_{3}\right)=\vec{f}_{2}
$$

then the matrix assoicated to L with respect to the basis $\vec{e}_{1}, \vec{e}_{2}, \vec{e}_{3}$ for V and $\vec{f}_{1}, \vec{f}_{2}, \vec{f}_{3}$ for W is

$$
\left(\begin{array}{lll}
2 & 2 & 0 \\
0 & 1 & 1 \\
3 & 0 & 0
\end{array}\right)
$$

It is important to realize if we use a different basis for either side, then we really should expect the matrix to change, how so, is something we will discuss in the future.

Example

If V has a basis $\vec{e}_{1}, \overrightarrow{e_{2}}, \vec{e}_{3}$ and the linear transformations

$$
L: V \rightarrow V
$$

satisfies

$$
L\left(\vec{e}_{1}\right)=2 \vec{e}_{1}+3 \vec{e}_{3}, \quad L\left(\vec{e}_{2}\right)=2 \vec{e}_{1}+\vec{e}_{2} \quad L\left(\vec{e}_{3}\right)=\vec{e}_{2}
$$

then the matrix assoicated to L with respect to the basis $\vec{e}_{1}, \vec{e}_{2}, \vec{e}_{3}$ (for both the domain and codomain) is

$$
\left(\begin{array}{lll}
2 & 2 & 0 \\
0 & 1 & 1 \\
3 & 0 & 0
\end{array}\right)
$$

It is important to realize if the map goes from V to V you typically want the same basis for the domain and codomain.

Natural Questions About Linear Transformations/Matricies

- Given some description of a linear transformation $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, what is the matrix for L ?
The key is to figuring out where the standard basis goes, what this involves depends on what you were told, but usually involves solving a system of equations.
- Given some description of a linear transformation $L: V \rightarrow W$, and identifications of V, W with \mathbb{R}^{n} and \mathbb{R}^{m}, what is the associated matrix for L ?
The key is to figuring out where the basis goes, what this involves depends on what you were told, but usually involves solving a system of equations.
- How does the identification of V and W with \mathbb{R}^{n} and \mathbb{R}^{m} effect the matrix for L ? We will come back to this, it is also on the assignment.

