Choice of Basis Impacts the Matricies of Linear Transformation.

Recall Suppose V and W are finite dimensional vector spaces.
We have seen that by selecting a basis $\vec{e}_{1}, \ldots, \vec{e}_{n}$ of V and $\vec{f}_{1}, \ldots, \vec{f}_{m}$ of W we can identify

$$
V \leftrightarrow \mathbb{R}^{n} \quad W \leftrightarrow \mathbb{R}^{m}
$$

So that a linear transformation $L: V \rightarrow W$ can be thought of as a linear transformation $\mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$.
In this way we associate L to a matrix A (with respect to this choice of basis), and in particular, we have seen that if

$$
L\left(\vec{e}_{j}\right)=a_{1 j} \vec{f}_{1}+\cdots+a_{m j} \vec{f}_{m}=\sum_{i=1}^{m} a_{i j} \vec{f}_{i}
$$

then A associated to L is the matrix

$$
A=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & & \\
\vdots & & \ddots & \vdots \\
a_{m 1} & & \cdots & a_{m n}
\end{array}\right)
$$

But the entire process involves choices of basis, how does this choice effect the matrix A ? Several aspects of this are looked at in A3Q3.

Suppose we pick a new basis $\vec{g}_{1}, \ldots, \vec{g}_{m}$ for W.
If we want to find the matrix

$$
X=\left(\begin{array}{cccc}
x_{11} & x_{12} & \cdots & x_{1 n} \\
x_{21} & x_{22} & & \\
\vdots & & \ddots & \vdots \\
x_{m 1} & & \cdots & x_{m n}
\end{array}\right)
$$

associated to L with respect to the basis $\vec{e}_{1}, \ldots, \vec{e}_{n}$ for V and $\vec{g}_{1}, \ldots, \vec{g}_{m}$ for W, we need the $c_{i j}$ to satisfy:

$$
L\left(\vec{e}_{j}\right)=x_{1 j} \vec{g}_{1}+\cdots+x_{m j} \vec{g}_{m}=\sum_{i=1}^{m} x_{i j} \vec{g}_{i}
$$

Presumably most of the time $A \neq X$! Our goal is to understand how to relate the matrix X to the matrix A

Given the two bases $\vec{f}_{1}, \ldots, \vec{f}_{m}$ and $\vec{g}_{1}, \ldots, \vec{g}_{m}$ of W we know that each \vec{f}_{i} can be written in terms of the basis $\vec{g}_{1}, \ldots, \vec{g}_{m}$, that is there is a formula

$$
\vec{f}_{i}=b_{1 i} \vec{g}_{1}+\cdots+b_{m i} \vec{g}_{m}=\sum_{k=1}^{m} b_{k i} \vec{g}_{k}
$$

for some numbers $b_{k i}$.
Notice that we can, if we would like, arrange the numbers $b_{k i}$ into an m by matrix

$$
B=\left(\begin{array}{cccc}
b_{11} & b_{12} & \cdots & b_{1 m} \\
b_{21} & b_{22} & & \\
\vdots & & \ddots & \vdots \\
b_{m 1} & & \cdots & b_{m m}
\end{array}\right)
$$

With this in hand, we can rewrite:

$$
L\left(\vec{e}_{j}\right)=\sum_{i=1}^{m} a_{i j} \vec{f}_{i}=\sum_{i=1}^{m} a_{i j} \sum_{k=1}^{m} b_{k i} \vec{g}_{k}=\sum_{k=1}^{m}\left(\sum_{i=1}^{m} b_{k i} a_{i j}\right) \vec{g}_{k}
$$

Which gives us the formula we were looking for. So the matrix for L, with respect to the basis $\vec{e}_{1}, \ldots, \vec{e}_{n}$ for V and $\vec{g}_{1}, \ldots, \vec{g}_{m}$ for W, is the matrix X whose $k j$ entry is $x_{k j}$, where

$$
x_{k j}=\sum_{i=1}^{m} b_{k i} a_{i j}=b_{k 1} a_{1 j}+b_{k 2} a_{2 j}+\cdots+b_{k m} a_{m j}
$$

which is precisely the $k j$ entry of the matrix $B A$

Summary

Using bases $\vec{e}_{1}, \ldots, \vec{e}_{n}$ of V and $\vec{f}_{1}, \ldots, \vec{f}_{m}$ of W, we have equation

$$
L\left(\vec{e}_{j}\right)=a_{1 j} \vec{f}_{1}+\cdots+a_{m j} \vec{f}_{m}=\sum_{i=1}^{m} a_{i j} \vec{f}_{i} \quad \text { gives matrix } \quad A=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & & \\
\vdots & & \ddots & \vdots \\
a_{m 1} & & \cdots & a_{m n}
\end{array}\right)
$$

Using bases $\vec{e}_{1}, \ldots, \vec{e}_{n}$ for V and $\vec{g}_{1}, \ldots, \vec{g}_{m}$ for W, we have equation

$$
L\left(\vec{e}_{j}\right)=x_{1}, \vec{g}_{1}+\cdots+x_{m j} \vec{g}_{m}=\sum_{i=1}^{m} x_{i j} \vec{g}_{i} \quad \text { gives matrix } \quad X=\left(\begin{array}{cccc}
x_{11} & x_{12} & \cdots & x_{1 n} \\
x_{21} & x_{22} & & \\
\vdots & & \ddots & \vdots \\
x_{m 1} & & \cdots & x_{m n}
\end{array}\right)
$$

The relationship between A and X is

$$
X=B A
$$

where the equations
$\vec{f}_{i}=b_{1 i} \vec{g}_{1}+\cdots+b_{m i} \vec{g}_{m}=\sum_{k=1}^{m} b_{k i} \vec{g}_{k} \quad$ gives matrix $\quad B=\left(\begin{array}{cccc}b_{11} & b_{12} & \cdots & b_{1 m} \\ b_{21} & b_{22} & & \\ \vdots & & \ddots & \vdots \\ b_{m 1} & & \cdots & b_{m m}\end{array}\right)$

What we just saw is:

- $L: V \rightarrow W$.
- $\vec{e}_{1}, \ldots, \vec{e}_{n}$ basis of V and $\vec{f}_{1}, \ldots, \vec{f}_{m}$ basis of W.
- $\vec{g}_{1}, \ldots, \vec{g}_{m}$ another basis for W.
- A is the matrix that describes L for the basis $\vec{e}_{1}, \ldots, \vec{e}_{n}$ of V and $\vec{f}_{1}, \ldots, \vec{f}_{m}$ of W.
- B is the matrix that describes how to write \vec{f}_{i} in terms of \vec{g}_{j}.

Then the matrix for L in terms of the basis $\vec{e}_{1}, \ldots, \vec{e}_{n}$ of V and $\vec{g}_{1}, \ldots, \vec{g}_{m}$ of W is

$B A$

Remark: On the assignment you will prove a couple things about B, for example that it is invertible and how to describe its inverse.

Also note: left multiplication by an invertible matrix corresponds to row operations... doing Gaussian elimination...

That is, doing Gaussian elimination is the same as changing the basis for the codomain!!!

Example

\mathbb{R}^{3} has a basis

$$
\vec{e}_{1}=(1,0,0), \quad \vec{e}_{2}=(0,1,0), \quad \vec{e}_{3}=(0,0,1)
$$

\mathbb{R}^{2} has two bases

$$
\begin{array}{ll}
\vec{f}_{1}=(2,3), & \vec{f}_{2}=(3,1) \\
\vec{g}_{1}=(1,0), & \vec{g}_{2}=(0,1)
\end{array}
$$

We have that a linear transformation $L: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ sends

$$
L\left(\vec{e}_{1}\right)=\vec{f}_{1}, \quad L\left(\vec{e}_{2}\right)=\vec{f}_{2}, \quad L\left(\vec{e}_{3}\right)=\vec{f}_{1}+\vec{f}_{2}
$$

What is the matrix for L with respect to the basis $\vec{e}_{1}, \vec{e}_{2}, \vec{e}_{3}$ and \vec{f}_{1}, \vec{f}_{2} ?

$$
A=\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right)
$$

What is the matrix for L with respect to the basis $\vec{e}_{1}, \vec{e}_{2}, \vec{e}_{3}$ and \vec{g}_{1}, \vec{g}_{2} ?

$$
L\left(\vec{e}_{1}\right)=2 \vec{g}_{1}+3 \vec{g}_{2} \quad L\left(\vec{e}_{2}\right)=3 \vec{g}_{1}+1 \vec{g}_{2}, \quad L\left(\vec{e}_{3}\right)=5 \vec{g}_{1}+4 \vec{g}_{2}
$$

so

$$
A^{\prime}=\left(\begin{array}{lll}
2 & 3 & 5 \\
3 & 1 & 4
\end{array}\right)=\left(\begin{array}{ll}
2 & 3 \\
3 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right)=B A
$$

Theorem:

If A is the matrix for a linear transformation $L: V \rightarrow W$ with respect to the basis $\vec{e}_{1}, \ldots, \vec{e}_{n}$ of V and $\vec{f}_{1}, \ldots, \vec{f}_{m}$ of W and if B is the matrix associated to writing

$$
\vec{f}_{j}=\sum_{i=1}^{m} b_{i j} \vec{g}_{i}
$$

in terms of the basis $\vec{g}_{1}, \ldots, \vec{g}_{m}$ for W then the matrix for L with respect to the basis $\vec{e}_{1}, \ldots, \vec{e}_{n}$ of V and $\vec{g}_{1}, \ldots, \vec{g}_{m}$ of W is

$$
B A
$$

This is exactly what we just proved.

Theorem:

If A is the matrix for a linear transformation $L: V \rightarrow W$ with respect to the basis $\vec{e}_{1}, \ldots, \vec{e}_{n}$ of V and $\vec{f}_{1}, \ldots, \vec{f}_{m}$ of W and if C is the matrix associated to writing

$$
\vec{h}_{j}=\sum_{i=1}^{n} c_{i j} \vec{e}_{i}
$$

where $\vec{h}_{1}, \ldots, \vec{h}_{n}$ is another basis for V, then the matrix for L with respect to the basis $\vec{h}_{1}, \ldots, \vec{h}_{n}$ of V and $\vec{f}_{1}, \ldots, \vec{f}_{m}$ of W is

$$
A C
$$

This is on the assignment.
Note: there is an asymmetry in the definition of B and C can you see it?

Corollary

With the notation as above the matrix for L with respect to the basis $\vec{h}_{1}, \ldots, \vec{h}_{n}$ of V and $\vec{g}_{1}, \ldots, \vec{g}_{m}$ of W is

$$
B A C
$$

where B and C are the matricies as in the previous theorems.
Proof: This directly combines the two results, by first doing the one change of basis, and then doing the other.

Recall: there is an asymmetry in the definition of B and C !

Recall B is the matrix associated to writing

$$
\vec{f}_{j}=\sum_{i=1}^{m} b_{i j} \vec{g}_{i}
$$

Now denote by D the matrix whose entries are $d_{i j}$ which come from the formula

$$
\vec{g}_{j}=\sum_{i=1}^{m} d_{i j} \vec{f}_{i}
$$

We defining $d_{i j}$ in the same way we defined $c_{i j}$, except with the bases for the codomain W rather than the domain V

Lemma

We have the formula

$$
D B=B D=\mathrm{Id}_{m}
$$

so that both B and D are invertible.
This is on the assignment
This lemma gives some insight into the asymmetry in the definition of the matricies B and C

In the special case where $L: V \rightarrow V$, so we start with a single basis $\vec{e}_{1}, \ldots, \vec{e}_{n}$. If A is the matrix for L in the basis $\vec{e}_{1}, \ldots, \vec{e}_{n}$, so

$$
L\left(\vec{e}_{j}\right)=a_{1 j} \vec{e}_{1}+\cdots+a_{n j} \vec{e}_{n}=\sum_{i=1}^{n} a_{i j} \vec{e}_{i}
$$

and if B is the matrix associated to writing

$$
\vec{e}_{j}=\sum_{i=1}^{m} b_{i j} \vec{f}_{i}
$$

and C is the matrix associated to writing

$$
\vec{f}_{j}=\sum_{i=1}^{m} c_{i j} \vec{e}_{i}
$$

then by the previous lemma $B=C^{-1}$.

Theorem

With the notation as above, the matrix for L in the basis $\vec{f}_{1}, \ldots, \vec{f}_{n}$ is

$$
B A C=C^{-1} A C=B A B^{-1}
$$

Follows immediately from what we have just shown.
Note: there is again hopefully clarifies the asymmetry in the definition of B and C. It is an annoying consequence of the above, that it is often hard to remember exactly which of B or C you want to use at any given time!

Example

\mathbb{R}^{3} has two basis

$$
\begin{array}{r}
\vec{h}_{1}=(3,2,1), \quad \vec{h}_{2}=(1,2,3), \quad \vec{h}_{3}=(1,0,1) \\
\vec{e}_{1}=(1,0,0), \quad \vec{e}_{2}=(0,1,0), \quad \vec{e}_{3}=(0,0,1) \\
\vec{f}_{1}=(2,3), \quad \overrightarrow{f_{2}}=(3,1) \\
\vec{g}_{1}=(1,0), \quad \vec{g}_{2}=(0,1)
\end{array}
$$

\mathbb{R}^{2} has two bases

We have that a linear transformation $L: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ sends

$$
L\left(\vec{h}_{1}\right)=\vec{f}_{1}, \quad L\left(\vec{h}_{2}\right)=\vec{f}_{2}, \quad L\left(\vec{h}_{3}\right)=\vec{f}_{1}+\vec{f}_{2}
$$

The matrix for L with respect to the basis $\vec{h}_{1}, \vec{h}_{2}, \vec{h}_{3}$ and \vec{f}_{1}, \vec{f}_{2} is

$$
A=\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right)
$$

What is the matrix for L with respect to the basis $\vec{e}_{1}, \vec{e}_{2}, \vec{e}_{3}$ and $\vec{g}_{1}, \overrightarrow{g_{2}}$?
Either solve:

$$
L\left(\vec{e}_{1}\right)=? \quad L\left(\vec{e}_{2}\right)=?, \quad L\left(\vec{e}_{3}\right)=?
$$

Or find:

$$
A^{\prime}=B A C=\left(\begin{array}{ll}
2 & 3 \\
3 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right)\left(\begin{array}{lll}
3 & 1 & 1 \\
2 & 2 & 0 \\
1 & 3 & 1
\end{array}\right)^{-1}
$$

It is typically faster to directly solve for $L((1,0,0)), L((0,1,0)), L((0,0,1))$ than

A few examples where we know the matrix of a transformation.

Matrix of the identity

Let V be any finite dimensional vector space, and let $\vec{e}_{1}, \ldots, \vec{e}_{n}$ be any basis.

Proposition

The matrix associated to $\operatorname{Id} v$ is the identity matrix.
Proof Sketch For any basis $\vec{e}_{1}, \ldots, \vec{e}_{n}$ we will have

$$
\operatorname{Id} v\left(\vec{e}_{j}\right)=\vec{e}_{j}=\sum_{i=1}^{n} a_{i j} \vec{e}_{i}
$$

But because $\vec{e}_{1}, \ldots, \vec{e}_{n}$ are a basis, the expressions

$$
\vec{e}_{j}=\sum_{i=1}^{n} a_{i j} \vec{e}_{i}
$$

must agree, and so

$$
a_{i j}= \begin{cases}1 & i=j \\ 0 & \text { otherwise }\end{cases}
$$

this exactly describes the identity matrix.
The above description of the identity matrix is a useful way to prove things are the identity matrix.

Matrix of the Zero Transformation

Let V and W be any finite dimensional vector space, and let $\vec{e}_{1}, \ldots, \vec{e}_{n}, \vec{f}_{1}, \ldots, \vec{f}_{m}$ be any basis.

Proposition

The matrix associated to $0_{V, w}$ is the n by m zero matrix.

Proof Sketch

For any basis $\vec{e}_{1}, \ldots, \vec{e}_{n}$ we will have

$$
0_{v, w}\left(\vec{e}_{j}\right)=\overrightarrow{0}=\sum_{i=1}^{n} a_{i j} \vec{f}_{i}
$$

Because $\vec{f}_{1}, \ldots, \vec{f}_{m}$ are a basis, they are linearly independent, which implies so $a_{i j}=0$ for all i and j.
From which we can see that matrix A must be the zero matrix.

Matrix of Combinations

Let $L: V \rightarrow W$ and $M: V \rightarrow W$ be linear transformations and $x, y \in \mathbb{R}$ real numbers. Let $\vec{e}_{1}, \ldots, \vec{e}_{n}$ be a basis for V and $\vec{f}_{1}, \ldots, \vec{f}_{m}$ be a basis for W.

Proposition

Suppose A is the matrix for L with respect to these basis and B is the matrix for M with respect to these basis then the matrix for

$$
x L+y M
$$

with respect to this basis is:

$$
x A+y B
$$

Proof Sketch The matrix A for L comes from the identities

$$
L\left(\vec{e}_{j}\right)=\sum_{i=1}^{m} a_{i j} \vec{f}_{i}
$$

and the matrix B for M comes from the identities

$$
M\left(\vec{e}_{j}\right)=\sum_{i=1}^{m} b_{i j} \vec{f}_{i}
$$

It follows that we have the identities

$$
(x L+y M)\left(\vec{e}_{j}\right)=x L\left(\vec{e}_{j}\right)+y M\left(\vec{e}_{j}\right)=\sum_{i=1}^{m}\left(x a_{i j}+y b_{i j}\right) \vec{f}_{i}
$$

So that the entries of the matrix associated to $a L+b M$ are given by $\left(x a_{i j}+y b_{i j}\right)$, which agree with the entries for $x A+y B$.

Matrix of Compositions

Let $L: V \rightarrow W$ and $M: U \rightarrow V$ be linear transformations. Let $\vec{e}_{1}, \ldots, \vec{e}_{n}$ be a basis for U and $\vec{f}_{1}, \ldots, \vec{f}_{m}$ be a basis for W and let $\vec{g}_{1}, \ldots, \vec{g}_{\ell}$ be a basis for V.

Proposition

Suppose A is the matrix for L with respect to these basis and B is the matrix for M with respect to these basis then the matrix for

$$
L \circ M: U \rightarrow W
$$

with respect to the basis $\vec{e}_{1}, \ldots, \vec{e}_{n}$ and $\vec{f}_{1}, \ldots, \vec{f}_{m}$ is
$A B$.
Moreover, though the matricies A and B both may depend on $\vec{g}_{1}, \ldots, \vec{g}_{\ell}$, this product $A B$ does not depend on the choice of basis except in so far that the same basis for V must be used for both L and M.
Proof: The matrix A for L and B for M and C for $L \circ M$ come from the identities

$$
L\left(\vec{g}_{i}\right)=\sum_{k=1}^{m} a_{k i} \vec{f}_{k} \quad M\left(\vec{e}_{j}\right)=\sum_{i=1}^{\ell} b_{i j} \vec{g}_{i} \quad L \circ M\left(\vec{e}_{j}\right)=\sum_{k=1}^{m} c_{k j} \vec{f}_{k}
$$

But by observing that
$L \circ M\left(\vec{e}_{j}\right)=L\left(\sum_{i=1}^{\ell} b_{i j} \vec{g}_{i}\right)=\sum_{i=1}^{\ell} b_{i j} L\left(\vec{g}_{i}\right)=\sum_{i=1}^{\ell} b_{i j} \sum_{k=1}^{m} a_{k i} \vec{f}_{k}=\sum_{i=1}^{\ell} \sum_{k=1}^{m} a_{k i} b_{i j} \vec{f}_{k}=\sum_{k=1}^{m}\left(\sum_{i=1}^{\ell} a_{k i} b_{i j}\right) \vec{f}_{k}$ we conclude $c_{k j}=\sum_{i=1}^{\ell} a_{k i} b_{i j}$ and obtain the result.

Matrix of an Inverse

Let $L: U \rightarrow V$ be an invertible linear transformation and $L^{-1}: V \rightarrow U$ be its inverse. Let $\vec{e}_{1}, \ldots, \vec{e}_{n}$ be a basis for U and $\vec{f}_{1}, \ldots, \vec{f}_{n}$ be a basis for V

Proposition

Suppose A is the matrix for L with respect to these basis and B is the matrix for L^{-1}, then the matrices A and B satisfy

$$
A B=\mathrm{Id}_{n}=B A
$$

so that $B=A^{-1}$.

Proof

We know by the previous proposition that the matrix for $L \circ L^{-1}$ is $A B$ and the matrix for $L^{-1} \circ L$ is $B A$.
But because they are inverses, we know

$$
L \circ L^{-1}=\operatorname{Id}_{V} \quad L^{-1} \circ L=\operatorname{Id}_{U}
$$

We have seen that the matrix for Id_{V} and Id_{U} must both be Id_{n}. This gives the result.

Natural Questions About Linear Transformations/Matricies

- Suppose $L: V \rightarrow W$ is a linear transformation, given the matrix for L in one basis, find the matrix for L in another basis.
The details are on the assignment, though I have skimmed over the idea here.
- Suppose $L: V \rightarrow W$ is a linear transformation, find a basis for V and/or W so that the matrix associated to L in this basis is nice in some way.
This question is open ended, we will spend a lot of time on this later.

