
Choice of Basis Impacts the Matricies of Linear Transformation.
Recall Suppose V and W are finite dimensional vector spaces.
We have seen that by selecting a basis ~e1, . . . , ~en of V and ~f1, . . . , ~fm of W we can identify

V ↔ Rn W ↔ Rm

So that a linear transformation L : V →W can be thought of as a linear transformation
Rn → Rm.
In this way we associate L to a matrix A (with respect to this choice of basis), and in
particular, we have seen that if

L(~ej) = a1j~f1 + · · ·+ amj
~fm =

m∑
i=1

aij~fi

then A associated to L is the matrix

A =


a11 a12 · · · a1n
a21 a22
...

. . .
...

am1 · · · amn


But the entire process involves choices of basis, how does this choice effect the matrix A?
Several aspects of this are looked at in A3Q3.
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Suppose we pick a new basis ~g1, . . . , ~gm for W .
If we want to find the matrix

X =


x11 x12 · · · x1n
x21 x22
...

. . .
...

xm1 · · · xmn


associated to L with respect to the basis ~e1, . . . , ~en for V and ~g1, . . . , ~gm for W , we need
the cij to satisfy:

L(~ej) = x1j~g1 + · · ·+ xmj~gm =
m∑
i=1

xij~gi

Presumably most of the time A 6= X ! Our goal is to understand how to relate the matrix
X to the matrix A
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Given the two bases ~f1, . . . , ~fm and ~g1, . . . , ~gm of W we know that each ~fi can be written
in terms of the basis ~g1, . . . , ~gm, that is there is a formula

~fi = b1i~g1 + · · ·+ bmi~gm =
m∑

k=1

bki~gk

for some numbers bki .
Notice that we can, if we would like, arrange the numbers bki into an m by m matrix

B =


b11 b12 · · · b1m
b21 b22

...
. . .

...
bm1 · · · bmm


With this in hand, we can rewrite:

L(~ej) =
m∑
i=1

aij~fi =
m∑
i=1

aij

m∑
k=1

bki~gk =
m∑

k=1

(
m∑
i=1

bkiaij

)
~gk

Which gives us the formula we were looking for. So the matrix for L, with respect to the
basis ~e1, . . . , ~en for V and ~g1, . . . , ~gm for W , is the matrix X whose kj entry is xkj , where

xkj =
m∑
i=1

bkiaij = bk1a1j + bk2a2j + · · ·+ bkmamj

which is precisely the kj entry of the matrix BA
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Summary
Using bases ~e1, . . . , ~en of V and ~f1, . . . , ~fm of W , we have equation

L(~ej) = a1j~f1 + · · ·+ amj
~fm =

m∑
i=1

aij~fi gives matrix A =


a11 a12 · · · a1n
a21 a22
...

. . .
...

am1 · · · amn


Using bases ~e1, . . . , ~en for V and ~g1, . . . , ~gm for W , we have equation

L(~ej) = x1j~g1 + · · ·+ xmj~gm =
m∑
i=1

xij~gi gives matrix X =


x11 x12 · · · x1n
x21 x22
...

. . .
...

xm1 · · · xmn


The relationship between A and X is

X = BA

where the equations

~fi = b1i~g1 + · · ·+ bmi~gm =
m∑

k=1

bki~gk gives matrix B =


b11 b12 · · · b1m
b21 b22

...
. . .

...
bm1 · · · bmm
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What we just saw is:

L : V →W .

~e1, . . . , ~en basis of V and ~f1, . . . , ~fm basis of W .

~g1, . . . , ~gm another basis for W .

A is the matrix that describes L for the basis ~e1, . . . , ~en of V and ~f1, . . . , ~fm of W .

B is the matrix that describes how to write ~fi in terms of ~gj .

Then the matrix for L in terms of the basis ~e1, . . . , ~en of V and ~g1, . . . , ~gm of W is

BA

Remark: On the assignment you will prove a couple things about B, for example that it
is invertible and how to describe its inverse.

Also note: left multiplication by an invertible matrix corresponds to row operations...
doing Gaussian elimination...

That is, doing Gaussian elimination is the same as changing the basis for the codomain!!!
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Example
R3 has a basis

~e1 = (1, 0, 0), ~e2 = (0, 1, 0), ~e3 = (0, 0, 1)

R2 has two bases
~f1 = (2, 3), ~f2 = (3, 1)

~g1 = (1, 0), ~g2 = (0, 1)

We have that a linear transformation L : R3 → R2 sends

L(~e1) = ~f1, L(~e2) = ~f2, L(~e3) = ~f1 + ~f2

What is the matrix for L with respect to the basis ~e1, ~e2, ~e3 and ~f1, ~f2?

A =

(
1 0 1
0 1 1

)
What is the matrix for L with respect to the basis ~e1, ~e2, ~e3 and ~g1, ~g2?

L(~e1) = 2~g1 + 3~g2 L(~e2) = 3~g1 + 1~g2, L(~e3) = 5~g1 + 4~g2

so

A′ =

(
2 3 5
3 1 4

)
=

(
2 3
3 1

)(
1 0 1
0 1 1

)
= BA
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Theorem:
If A is the matrix for a linear transformation L : V →W with respect to the basis
~e1, . . . , ~en of V and ~f1, . . . , ~fm of W and if B is the matrix associated to writing

~fj =
m∑
i=1

bij~gi

in terms of the basis ~g1, . . . , ~gm for W then the matrix for L with respect to the basis
~e1, . . . , ~en of V and ~g1, . . . , ~gm of W is

BA

This is exactly what we just proved.

Theorem:
If A is the matrix for a linear transformation L : V →W with respect to the basis
~e1, . . . , ~en of V and ~f1, . . . , ~fm of W and if C is the matrix associated to writing

~hj =
n∑

i=1

cij~ei

where ~h1, . . . , ~hn is another basis for V , then the matrix for L with respect to the basis
~h1, . . . , ~hn of V and ~f1, . . . , ~fm of W is

AC

This is on the assignment.
Note: there is an asymmetry in the definition of B and C can you see it?
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Corollary
With the notation as above the matrix for L with respect to the basis ~h1, . . . , ~hn of V and
~g1, . . . , ~gm of W is

BAC

where B and C are the matricies as in the previous theorems.
Proof: This directly combines the two results, by first doing the one change of basis, and
then doing the other.

Recall: there is an asymmetry in the definition of B and C !
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Recall B is the matrix associated to writing

~fj =
m∑
i=1

bij~gi

Now denote by D the matrix whose entries are dij which come from the formula

~gj =
m∑
i=1

dij~fi

We defining dij in the same way we defined cij , except with the bases for the codomain
W rather than the domain V

Lemma
We have the formula

DB = BD = Idm

so that both B and D are invertible.
This is on the assignment
This lemma gives some insight into the asymmetry in the definition of the matricies B
and C
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In the special case where L : V → V , so we start with a single basis ~e1, . . . , ~en.
If A is the matrix for L in the basis ~e1, . . . , ~en, so

L(~ej) = a1j~e1 + · · ·+ anj~en =
n∑

i=1

aij~ei ,

and if B is the matrix associated to writing

~ej =
m∑
i=1

bij~fi

and C is the matrix associated to writing

~fj =
m∑
i=1

cij~ei

then by the previous lemma B = C−1.
Theorem
With the notation as above, the matrix for L in the basis ~f1, . . . , ~fn is

BAC = C−1AC = BAB−1

Follows immediately from what we have just shown.
Note: there is again hopefully clarifies the asymmetry in the definition of B and C .
It is an annoying consequence of the above, that it is often hard to remember exactly
which of B or C you want to use at any given time!
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Example
R3 has two basis ~h1 = (3, 2, 1), ~h2 = (1, 2, 3), ~h3 = (1, 0, 1)

~e1 = (1, 0, 0), ~e2 = (0, 1, 0), ~e3 = (0, 0, 1)

R2 has two bases ~f1 = (2, 3), ~f2 = (3, 1)

~g1 = (1, 0), ~g2 = (0, 1)

We have that a linear transformation L : R3 → R2 sends

L(~h1) = ~f1, L(~h2) = ~f2, L(~h3) = ~f1 + ~f2

The matrix for L with respect to the basis ~h1, ~h2, ~h3 and ~f1, ~f2 is

A =

(
1 0 1
0 1 1

)
What is the matrix for L with respect to the basis ~e1, ~e2, ~e3 and ~g1, ~g2?
Either solve:

L(~e1) =? L(~e2) =?, L(~e3) =?

Or find:

A′ = BAC =

(
2 3
3 1

)(
1 0 1
0 1 1

)3 1 1
2 2 0
1 3 1

−1

It is typically faster to directly solve for L((1, 0, 0)), L((0, 1, 0)), L((0, 0, 1)) than
compute the inverse and take the product.
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A few examples where we know the matrix of a

transformation.
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Matrix of the identity
Let V be any finite dimensional vector space, and let ~e1, . . . , ~en be any basis.

Proposition
The matrix associated to IdV is the identity matrix.

Proof Sketch For any basis ~e1, . . . , ~en we will have

IdV (~ej) = ~ej =
n∑

i=1

aij~ei

But because ~e1, . . . , ~en are a basis, the expressions

~ej =
n∑

i=1

aij~ei

must agree, and so

aij =

{
1 i = j

0 otherwise

this exactly describes the identity matrix.

The above description of the identity matrix is a useful way to prove things are the
identity matrix.
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Matrix of the Zero Transformation

Let V and W be any finite dimensional vector space, and let ~e1, . . . , ~en, ~f1, . . . , ~fm be any
basis.

Proposition
The matrix associated to 0V ,W is the n by m zero matrix.

Proof Sketch
For any basis ~e1, . . . , ~en we will have

0V ,W (~ej) = ~0 =
n∑

i=1

aij~fi

Because ~f1, . . . , ~fm are a basis, they are linearly independent, which implies so aij = 0 for
all i and j .
From which we can see that matrix A must be the zero matrix.
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Matrix of Combinations
Let L : V →W and M : V →W be linear transformations and x , y ∈ R real numbers.
Let ~e1, . . . , ~en be a basis for V and ~f1, . . . , ~fm be a basis for W .

Proposition
Suppose A is the matrix for L with respect to these basis and B is the matrix for M with
respect to these basis then the matrix for

xL + yM

with respect to this basis is:
xA + yB

Proof Sketch The matrix A for L comes from the identities

L(~ej ) =
m∑
i=1

aij ~fi

and the matrix B for M comes from the identities

M(~ej ) =
m∑
i=1

bij ~fi

It follows that we have the identities

(xL+ yM)(~ej ) = xL(~ej ) + yM(~ej ) =
m∑
i=1

(xaij + ybij )~fi

So that the entries of the matrix associated to aL+ bM are given by (xaij + ybij ), which agree

with the entries for xA+ yB.
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Matrix of Compositions
Let L : V →W and M : U → V be linear transformations. Let ~e1, . . . , ~en be a basis for
U and ~f1, . . . , ~fm be a basis for W and let ~g1, . . . , ~g` be a basis for V .
Proposition
Suppose A is the matrix for L with respect to these basis and B is the matrix for M with
respect to these basis then the matrix for

L ◦M : U →W

with respect to the basis ~e1, . . . , ~en and ~f1, . . . , ~fm is

AB.

Moreover, though the matricies A and B both may depend on ~g1, . . . , ~g`, this product
AB does not depend on the choice of basis except in so far that the same basis for V
must be used for both L and M.
Proof: The matrix A for L and B for M and C for L ◦M come from the identities

L(~gi ) =
m∑

k=1

aki ~fk M(~ej ) =
∑̀
i=1

bij~gi L ◦M(~ej ) =
m∑

k=1

ckj ~fk

But by observing that

L◦M(~ej ) = L

(∑̀
i=1

bij~gi

)
=
∑̀
i=1

bijL(~gi ) =
∑̀
i=1

bij

m∑
k=1

aki ~fk =
∑̀
i=1

m∑
k=1

akibij ~fk =
m∑

k=1

(∑̀
i=1

akibij

)
~fk

we conclude ckj =
∑`

i=1 akibij and obtain the result.
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Matrix of an Inverse

Let L : U → V be an invertible linear transformation and L−1 : V → U be its inverse.
Let ~e1, . . . , ~en be a basis for U and ~f1, . . . , ~fn be a basis for V
Proposition
Suppose A is the matrix for L with respect to these basis and B is the matrix for L−1,
then the matrices A and B satisfy

AB = Idn = BA

so that B = A−1.
Proof
We know by the previous proposition that the matrix for L ◦ L−1 is AB and the matrix for
L−1 ◦ L is BA.
But because they are inverses, we know

L ◦ L−1 = IdV L−1 ◦ L = IdU

We have seen that the matrix for IdV and IdU must both be Idn.

This gives the result.
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Natural Questions About Linear Transformations/Matricies

Suppose L : V →W is a linear transformation, given the matrix for L in one basis,
find the matrix for L in another basis.
The details are on the assignment, though I have skimmed over the idea here.

Suppose L : V →W is a linear transformation, find a basis for V and/or W so that
the matrix associated to L in this basis is nice in some way.
This question is open ended, we will spend a lot of time on this later.
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