The Image

Given two vector spaces V and W and a linear transformation $L: V \rightarrow W$ we define a set:

$$
\operatorname{Im}(L)=\{\vec{w} \in W \mid \exists \vec{v} \in V, L(\vec{v})=\vec{w}\}=L(V)
$$

which we call the image of L. (sometimes called the range of L as a function)

Theorem

As defined above, the set $\operatorname{Im}(L)$ is a subspace of W, in particular it is a vector space. Proof Sketch: We check the three conditions.
(1) We know that $L(\overrightarrow{0})=\overrightarrow{0}$, and so $\overrightarrow{0} \in \operatorname{Im}(L)$.
(2) Let $\vec{w}_{1}, \vec{w}_{2} \in \operatorname{Im}(L)$, then by definition there exists $\vec{v}_{1}, \vec{v}_{2} \in V$ such that

$$
L\left(\vec{v}_{1}\right)=\vec{w}_{1} \quad \text { and } \quad L\left(\vec{v}_{2}\right)=\vec{w}_{2}
$$

we then have that $\overrightarrow{v_{3}}=\overrightarrow{v_{1}}+\overrightarrow{v_{2}} \in U$ and so

$$
L\left(\vec{v}_{3}\right)=L\left(\vec{v}_{1}+\vec{v}_{2}\right)=L\left(\vec{v}_{1}\right)+L\left(\vec{v}_{2}\right)=\vec{w}_{1}+\vec{w}_{2}
$$

which shows that $\vec{w}_{1}+\vec{w}_{2} \in \operatorname{Im}(L)$.
(3) Let $\vec{w} \in \operatorname{Im}(L)$,then by definition there exists $\vec{v} \in V$ such that

$$
L(\vec{v})=\vec{w}
$$

now let $a \in \mathbb{R}$ be arbitrary, then we have $a \vec{v} \in V$ and so

$$
L(a \vec{v})=a L(\vec{v})=a \vec{w}
$$

which shows $a \vec{w} \in \operatorname{Im}(L)$.

Example - Images for Matricies

Describe and find a basis for, the image of the linear transformation, L, associated to

$$
A=\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 2 & 1 \\
1 & 1 & 1
\end{array}\right)
$$

Well, things in the image look like

$$
L((x, y, z))=\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 2 & 1 \\
1 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=x\left(\begin{array}{l}
1 \\
3 \\
1
\end{array}\right)+y\left(\begin{array}{l}
2 \\
2 \\
1
\end{array}\right)+z\left(\begin{array}{l}
3 \\
1 \\
1
\end{array}\right)
$$

as we run over $x, y, z \in \mathbb{R}$, but that also describes

$$
\operatorname{Span}((1,3,1),(2,2,1),(3,1,1))
$$

So what is a basis? We find it by finding a basis of the span.

Theorem

If A is any matrix, then $\operatorname{Im}(A)$, or equivalently $\operatorname{Im}(L)$ for L the linear transformation associated to A, is precisely the span of the columns of A

Proof Idea: If A has columns $\vec{a}_{1}, \ldots, \vec{a} \ell$ then

$$
\operatorname{Im}(A)=\left\{A \vec{x} \mid \vec{x} \in \mathbb{R}^{\ell}\right\}=\left\{x_{1} \vec{a}_{1}+\cdots+x_{\ell} \vec{a}_{\ell} \mid\left(x_{1}, \ldots, x_{\ell}\right) \in \mathbb{R}^{\ell}\right\}
$$

But this is precisely the span of $\vec{a}_{1}, \ldots, \vec{a}_{\ell}$.

Generating Sets and The Image.

Let V and W be a pair of vector spaces, suppose

$$
L: V \rightarrow W
$$

is a linear transformation.
Theorem
If $\vec{g}_{1}, \ldots, \vec{g}_{n}$ is a generating set for V then

$$
L\left(\vec{g}_{1}\right), \ldots, L\left(\vec{g}_{n}\right)
$$

is a generating set for $\operatorname{Im}(L)$.
This is on the assignment A3Q1(a).

Recall in the previous example that $(1,0,0),(0,1,0),(0,0,1)$ are a generating set for \mathbb{R}^{3}, and the columns of A are

$$
L((1,0,0)), \quad L((0,1,0)), \quad L((0,0,1))
$$

which were a generating set for the image.

The Rank of a Linear Transformation

We define the Rank of a linear transformation L to be the dimension of $\operatorname{Im}(L)$. Recall that a function $L: V \rightarrow W$ is surjective if and only if

$$
\forall \vec{w} \in W, \exists \vec{v} \in V, L(\vec{v})=\vec{w}
$$

We can rewrite this as saying, $L: V \rightarrow W$ is surjective if and only if

$$
\forall \vec{w} \in W, \vec{w} \in \operatorname{Im}(L)
$$

which is the same as

$$
\operatorname{Im}(L)=W
$$

Theorem

A linear transformation $L: V \rightarrow W$ is surjective if and only if $\operatorname{Im}(L)=W$. If V is finite dimensional, this is if and only if $\operatorname{rank}(L)=\operatorname{dim}(W)$.
Proof Idea: We have just explained the first claim above, for the second recall that for finite dimensional vector spaces, if one is a subspace of the other, they are equal if and only if they have the same dimension.
This gives us a simple numerical characterization of surjectivity.

Generating Sets and Surjectivity.

Theorem

If $\vec{g}_{1}, \ldots, \vec{g}_{n}$ a generating set for V then L is surjective if and only if $L\left(\vec{g}_{1}\right), \ldots, L\left(\vec{g}_{n}\right)$ is a generating set for W.

Proof: We know

$$
\operatorname{Im}(L)=W \Leftrightarrow L \text { is surjective }
$$

but we also know from the above that

$$
\operatorname{Im}(L)=\operatorname{Span}\left(L\left(\vec{g}_{1}\right), \ldots, L\left(\vec{g}_{n}\right)\right)
$$

so the above becomes

$$
\operatorname{Span}\left(L\left(\vec{g}_{1}\right), \ldots, L\left(\vec{g}_{n}\right)\right)=W \Leftrightarrow L \text { is surjective }
$$

which is the result.

Compositions of Surjective Maps

The following is actually a result about functions:
Theorem
if $f: A \rightarrow B$ and $g: B \rightarrow C$ are surjective functions, then $g \circ f: A \rightarrow C$ is surjective.

Theorem

if $f: A \rightarrow B$ and $g: B \rightarrow C$ are functions, and if $g \circ f: A \rightarrow C$ is surjective then g is surjective.

These theorems immediately implies the same for linear transformations.

Natural Questions About Images

- Find a generating set for the image. When dealing with \mathbb{R}^{n} this is just the columns of the matrix.
- Find a basis for the image.
do what you always do to find a basis. Use generators from V to get generators for the image, then find a linearly independent subset.
- Is the vector \vec{v} in the image?

This leads directly to a system of equations, solve $A \vec{x}=\vec{v}$.

- Is the map surjective?
check that the rank $=$ dimension or check the definition.

