The kernel of a linear transformation is a vector subspace.
Given two vector spaces V and W and a linear transformation $L: V \rightarrow W$ we define a set:

$$
\operatorname{Ker}(L)=\{\vec{v} \in V \mid L(\vec{v})=\overrightarrow{0}\}=L^{-1}(\{\overrightarrow{0}\})
$$

which we call the kernel of L. (some people call this the nullspace of L).

Theorem

As defined above, the set $\operatorname{Ker}(L)$ is a subspace of V, in particular it is a vector space. Proof Sketch We check the three conditions
(1) Because we know $L(\overrightarrow{0})=\overrightarrow{0}$ we know $\overrightarrow{0} \in \operatorname{Ker}(L)$.
(2) Let $\overrightarrow{v_{1}}, \overrightarrow{v_{2}} \in \operatorname{Ker}(L)$ then we know

$$
L\left(\overrightarrow{v_{1}}+\overrightarrow{v_{2}}\right)=L\left(\overrightarrow{v_{1}}\right)+L\left(\overrightarrow{v_{2}}\right)=\overrightarrow{0}+\overrightarrow{0}=\overrightarrow{0}
$$

and so $\vec{v}_{1}+\vec{v}_{2} \in \operatorname{Ker}(L)$.

- Let $\vec{v} \in \operatorname{Ker}(L)$ and $a \in \mathbb{R}$ then

$$
L(a \vec{v})=a L(\vec{v})=a \overrightarrow{0}=\overrightarrow{0}
$$

and so $a \vec{v} \in \operatorname{Ker}(L)$.

Example - Kernels Matricies

Describe and find a basis for the kernel, of the linear transformation, L, associated to

$$
A=\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 2 & 1 \\
1 & 1 & 1
\end{array}\right)
$$

The kernel is precisely the set of vectors (x, y, z) such that $L((x, y, z))=(0,0,0)$, so

$$
\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 2 & 1 \\
1 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

but this is precisely the solutions to the system of equations given by $A!$
So we find a basis by solving the system!

Theorem

If A is any matrix, then $\operatorname{Ker}(A)$, or equivalently $\operatorname{Ker}(L)$, where L is the associated linear transformation, is precisely the solutions \vec{x} to the system

$$
A \vec{x}=\overrightarrow{0}
$$

This is immediate from the definition given our understanding of how to associate a system of equations to

$$
M \vec{x}=\overrightarrow{0}
$$

The Kernel and Injectivity
Recall that a function $L: V \rightarrow W$ is injective if

$$
\forall \vec{v}_{1}, \vec{v}_{2} \in V,\left(\left(L\left(\vec{v}_{1}\right)=L\left(\vec{v}_{2}\right)\right) \Rightarrow\left(\vec{v}_{1}=\vec{v}_{2}\right)\right)
$$

Theorem

A linear transformation $L: V \rightarrow W$ is injective if and only if $\operatorname{Ker}(L)=\{\overrightarrow{0}\}$. Proof:
\Rightarrow-direction We assume that L is injective.
Let $\vec{v} \in \operatorname{Ker}(L)$, then

$$
L(\vec{v})=\overrightarrow{0}=L(\overrightarrow{0})
$$

since L is injective this implies $\vec{v}=\overrightarrow{0}$, from which we conclude $\operatorname{Ker}(L)=\{\overrightarrow{0}\}$.
\Leftarrow-direction We assume $\operatorname{Ker}(L)=\{\overrightarrow{0}\}$.
Let $\vec{v}_{1}, \vec{v}_{2} \in V$ be arbitrary and assume $L\left(\vec{v}_{1}\right)=L\left(\vec{v}_{2}\right)$.
We then have that

$$
L\left(\vec{v}_{1}\right)-L\left(\vec{v}_{2}\right)=\overrightarrow{0} \quad \Rightarrow \quad L\left(\vec{v}_{1}-\vec{v}_{2}\right)=\overrightarrow{0}
$$

and so $\overrightarrow{v_{1}}-\overrightarrow{v_{2}} \in \operatorname{Ker}(L)=\{\overrightarrow{0}\}$ and so

$$
\vec{v}_{1}-\vec{v}_{2}=\overrightarrow{0} \quad \Rightarrow \quad \vec{v}_{1}=\vec{v}_{2}
$$

which proves L is injective.

The Nullity of a Linear Transformation

We define the Nullity of a linear transformation L to be the dimension of $\operatorname{Ker}(L)$.

Theorem

A linear transformation $L: V \rightarrow W$ is injective if and only if $\operatorname{Ker}(L)=\{\overrightarrow{0}\}$. In particular this is if and only if $\operatorname{null}(L)=0$.

Proof:

We just proved the first claim, the second is an immediate consequence because we know

$$
\{\overrightarrow{0}\} \subset \operatorname{Ker}(L)
$$

and so they are equal only if they have the same dimension, that is 0 .

Linear Independence and Injectivity

$L: V \rightarrow W$ is a linear tranformation, $\vec{s}_{1}, \ldots, \vec{s}_{n}$ is a collection of vectors in V and hence $L\left(\vec{s}_{1}\right), \ldots, L\left(\vec{s}_{n}\right)$ is a collection of vectors in W.

Theorem

If $\vec{s}_{1}, \ldots, \vec{s}_{n}$ are a basis for V, and L is not injective, then $L\left(\vec{s}_{1}\right), \ldots, L\left(\vec{s}_{n}\right)$ are linearly dependent.
Proof Sketch As L is not injective there is $\overrightarrow{0} \neq \vec{v} \in \operatorname{Ker}(L)$.
Because $\vec{s}_{1}, \ldots, \vec{s}_{n}$ are a basis for V we can find $a_{1}, \ldots, a_{n} \in \mathbb{R}$ so that

$$
\vec{v}=a_{1} \vec{v}_{1}+\cdots+a_{n} \vec{v}_{n}
$$

and as $\vec{v} \neq \overrightarrow{0}$, at least one of the $a_{i} \neq 0$. But then we have

$$
\overrightarrow{0}=L(\vec{v})=L\left(a_{1} \vec{v}_{1}+\cdots+a_{n} \vec{v}_{n}\right)=a_{1} L\left(\vec{v}_{1}\right)+\cdots+a_{n} L\left(\vec{v}_{n}\right)
$$

which gives a non-trivial relation on $L\left(\vec{s}_{1}\right), \ldots, L\left(\vec{s}_{n}\right)$ and so they are linearly dependent.

Theorem

If $L\left(\vec{s}_{1}\right), \ldots, L\left(\vec{s}_{n}\right)$ are linearly independent then $\vec{s}_{1}, \ldots, \vec{s}_{n}$ are linearly independent.
On the assignment A3Q1(b)

Theorem

If $\vec{s}_{1}, \ldots, \vec{s}_{n}$ are linearly independent, and L is injective, then $L\left(\vec{s}_{1}\right), \ldots, L\left(\vec{s}_{n}\right)$ are linearly independent.
Direct Consequence of $\mathrm{A} 3 \mathrm{Q} 1(\mathrm{c})$, using that L is injective implies $\operatorname{Ker}(L)=\{\overrightarrow{0}\}$

Compositions of Injective Maps

The following is actually a result about functions:
Theorem
if $f: A \rightarrow B$ and $g: B \rightarrow C$ are injective functions, then $g \circ f: A \rightarrow C$ is injective.
Theorem
if $f: A \rightarrow B$ and $g: B \rightarrow C$ are functions, and if $g \circ f: A \rightarrow C$ is injective then f is injective.

These theorems immediately implies the same for linear transformations.

Natural Questions About Images

- Find a basis for the kernel.

For \mathbb{R}^{n} this is just solving the system for the associated matrix.

- Find the dimension of the kernel.

Typically find a basis.

- Is the vector \vec{v} in the kernel?

Check the definition.

- Is the map injective?

Check if the kernel is $\{\overrightarrow{0}\}$.

