
Linear Transformations From Direct Sums
Recall that we say

V = V1 ⊕ V2

if for every ~v in V we can write ~v = ~v1 + ~v2 with ~v1 ∈ V1 and ~v2 ∈ V2 in a unique way.
Lemma
Suppose V = V1 ⊕ V2 and W is any other vector space. Suppose also L1 : V1 →W and
L2 : V2 →W are linear transformations.
Then we can define a function L : V →W according to the rule

∀~v1 ∈ V1, ∀~v2 ∈ V2, L(~v1 + ~v2) = L1(~v1) + L2(~v2)

Explanation: To convince you this is a function I need to convince you of two things:
1 For every value in the domain, V , this rule associates at least one value in the codomain, W .

2 For every value in the domain, V , the value associated value in the codomain, W , is unique.

For the first point, we note that given an arbitrary ~v in V , that we can find ~v1 ∈ V1 and ~v2 ∈ V2

so that ~v = ~v1 + ~v2 and so the above rule tells us

L(~v) = L(~v1 + ~v2) = L1(~v1) + L2(~v2)

and because the rules L1 and L2 (and ′+′) are functions, this does give us a value in W .
Importantly, this proceedure worked for an arbitrary element of V .

For the second point, we note that the above proceedure gives a unique value, because once we

had fixed ~v the process involved no choices. That is ~v1 and ~v2 were uniquely determined, this is a

condition of V = V1 ⊕ V2, the values of L1(~v1) and L2(~v2) were uniquely determined because

these are functions, as is the value of their sum.
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Linear Transformations From Direct Sums
Lemma
Suppose V = V1 ⊕ V2 and W is any other vector space. Suppose also L1 : V1 →W and
L2 : V2 →W are linear transformations.
The function L : V →W given by the rule

∀~v1 ∈ V1, ∀~v2 ∈ V2, L(~v1 + ~v2) = L1(~v1) + L2(~v2)

is linear.
Proof Let ~x , ~y ∈ V be arbitrary and a, b ∈ R be arbitrary.
We can write ~x = ~x1 + ~x2 where ~xi ∈ Vi and ~y = ~y1 + ~y2 where ~yi ∈ Vi .
Denote ~z1 = a~x1 + b~y1 ∈ V1 and ~z2 = a~x2 + b~y2 ∈ V2 then we have

L(a~x + b~y) = L(a(~x1 + ~x2) + b(~y1 + ~y2))

= L(~z1 + ~z2) def of ~z1, ~z2

= L1(~z1) + L2(~z2) rule for L

= L1(a~x1 + b~y1) + L2(a~x2 + b~y2)) def of ~z1, ~z2

= aL1(~x1) + bL1(~y1) + aL2(~x2) + bL2(~y2)) Linearity of L1, L2

= a(L1(~x1) + L2(~x2)) + b(L1(~y1) + L2(~y2))) rearrange terms

= aL(~x) + bL(~y) Definition of L

which proves the function is linear.
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Linear Transformations From Direct Sums

Recall If U ⊂ V then inclU : U → V is the function inclU(~u) = ~u.

Lemma
Suppose V = V1 ⊕V2 and W is any other vector space and suppose also L : V →W is a
linear transformation. Then with

L1 = L ◦ inclV1 : V1 →W L2 = L ◦ inclV2 : V2 →W

The map L satisfies

∀~v1 ∈ V1, ∀~v2 ∈ V2, L(~v1 + ~v2) = L1(~v1) + L2(~v2)

Proof:
Let ~v1 ∈ V1, ~v2 ∈ V2 be arbitrary then calculate the left hand side by linearity

L(~v1 + ~v2) = L(~v1) + L(~v2)

Then we calculate the right hand side:

L1(~v1) + L2(~v2) = L ◦ inclV1
(~v1) + L ◦ inclV2

(~v2) = L(~v1) + L(~v2)

which proves the equality.
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Linear Transformations From Direct Sums

Theorem
Every linear transformation L : V1 ⊕ V2 →W is uniquely determined by two linear
transformations

L1 : V1 →W L2 : V2 →W

according to the rule

∀~v1 ∈ V1, ∀~v2 ∈ V2, L(~v1 + ~v2) = L1(~v1) + L2(~v2)

Follows from previous three lemmas
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Abstract Example

The projection maps:

ProjV1
: V1 ⊕ V2 → V1 ProjV2

: V1 ⊕ V2 → V2

where characterized by the rules

ProjV1
(~v1 + ~v2) = ~v1 ProjV2

(~v1 + ~v2) = ~v2

So ProjV1
: V1 ⊕ V2 → V1 is associated to

IdV1 : V1 → V1, the identity map from V1 to itself, and

OV2,V1 : V2 → V1, the zero map from V2 to V1.

Whereas ProjV2
: V1 ⊕ V2 → V2 is associated to

OV1,V2 : V1 → V2, the zero map from V1 to V2.

IdV2 : V2 → V2, the identity map from V2 to itself, and
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Matrix Example

Recall the example V = R5 and

V1 = {(a, b, 0, 0, 0) ∈ V | a, b ∈ R} V2 = {(0, 0, c, d , e) ∈ V | c, d , e ∈ R}

then V = V1 ⊕ V2, where V1 ' R2 and V2 ' R3

To give a linear transformation L : V → R2 is to give a 2 by 5 matrix.
Consider for example:(

1 2 3 4 5
5 4 3 2 1

)
=

(
1 2 0 0 0
5 4 0 0 0

)
+

(
0 0 3 4 5
0 0 3 2 1

)
Under this decomposition when we evalute the linear transformation:((

1 2 0 0 0
5 4 0 0 0

)
+
(

0 0 3 4 5
0 0 3 2 1

))(( a
b
0
0
0

)
+

( 0
0
c
d
e

))
=
(

1 2 0 0 0
5 4 0 0 0

)( a
b
0
0
0

)
+
(

1 2 0 0 0
5 4 0 0 0

)( 0
0
c
d
e

)
+
(

0 0 3 4 5
0 0 3 2 1

)( a
b
0
0
0

)
+
(

0 0 3 4 5
0 0 3 2 1

)( 0
0
c
d
e

)

=
(

1 2 0 0 0
5 4 0 0 0

)( a
b
0
0
0

)
+
(

0 0 3 4 5
0 0 3 2 1

)( 0
0
c
d
e

)

The linear transformation L1 : V1 ' R2 → R2 is the map

(
1 2
5 4

)
.

The linear transformation L2 : V2 ' R3 → R2 is the map

(
3 4 5
3 2 1

)
.
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Linear Transformations Into Direct Sums

Lemma
Suppose W = W1 ⊕W2 and V is any vectorspace.
If L1 : V →W1 and L2 : V →W2 are linear transformations then the function
L : V →W given by:

L(~v) = L1(~v) + L2(~v)

is a linear transformation.
Proof:
We let ~v1, ~v2 ∈ V and a, b ∈ R be arbitrary.
Then

L(a~v1 + b~v2) = L1(a~v1 + b~v2) + L2(a~v1 + b~v2) definition of L

= aL1(~v1) + bL1(~v2) + aL2(~v1) + bL2(~v2) Linearity of L1, L2

= a(L1(~v1) + L2(~v1)) + b(L1(~v2) + L2(~v2))

= aL(~v1) + bL(~v2) definition of L

which shows the map is linear.
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Linear Transformations Into Direct Sums

Lemma
Suppose W = W1 ⊕W2 and V is any vectorspace and suppose L : V →W is any linear
transformation. If we define L1 : V →W1 and L2 : V →W2 by:

L1 = ProjW1
◦ L L2 = ProjW2

◦ L

Then the function L satisfies
L(~v) = L1(~v) + L2(~v)

Proof:
Let ~v ∈ V be arbitrary and for notational convenience write ~w = L(~v).
Because we have a direct sum decomposition ~w = ~w1 + ~w2 with ~w1 ∈W1 and ~w2 ∈W2.
By definition of projection ProjW1

(~w) = ~w1 and ProjW2
(~w) = ~w2. It follows that

L1(~v) + L2(~v) = ProjW1
◦ L(~v) + ProjW2

◦ L(~v)

= ProjW1
(~w) + ProjW2

(~w)

= ~w1 + ~w2 = ~w

= L(~v)
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Linear Transformations Into Direct Sums

Theorem
Every linear transformation L : V →W1 ⊕W2 is of the form

L(~v) = L1(~v) + L2(~v)

for unique linear transformations L1 : V →W1 and L2 : V →W2.
Follows from previous two lemmas

Math 3410 (University of Lethbridge) Spring 2018 9 / 25



Abstract Example

The inclusion maps:
inclV1 → V1 ⊕ V2 inclV2 → V1 ⊕ V2

are constructed as:
inclV1 = IdV1 + OV1,V2

and
inclV2 = OV2,V1 + IdV2

So these satisfy
inclV1 (~v1) = ~v1 inclV2 (~v2) = ~v2

Moreover we have:

projV1
◦ inclV1 = IdV1 projV2

◦ inclV2 = IdV2

whereas
projV2

◦ inclV1 = 0V1V2 projV1
◦ inclV2 = 0V2V1

are the zero maps.

Math 3410 (University of Lethbridge) Spring 2018 10 / 25



Matrix Example
Consider W = R4 and

W1 = {(a, b, 0, 0) ∈W | a, b ∈ R} W2 = {(0, 0, c, d) ∈W | c, d ∈ R}

So W = W1 ⊕W2 and W1 ' R2 and W2 ' R2.
To give a linear transformation L : R3 →W is to give a 4 by 3 matrix.
Consider the example 

1 2 3
4 5 6
7 8 9
1 1 1

 =


1 2 3
4 5 6
0 0 0
0 0 0

+


0 0 0
0 0 0
7 8 9
1 1 1


Under this decomposition when we evaluate the linear transformation:


1 2 3
4 5 6
0 0 0
0 0 0

+


0 0 0
0 0 0
7 8 9
1 1 1



x
y
z

 =


1 2 3
4 5 6
0 0 0
0 0 0


x
y
z

+


0 0 0
0 0 0
7 8 9
1 1 1


x
y
z


The linear transformation L1 : R3 →W1 is the map

(
1 2 3
4 5 6

)
.

The linear transformation L2 : R3 →W2 is the map

(
7 8 9
1 1 1

)
.
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Theorem
To give a linear transformation L : V1 ⊕ V2 →W1 ⊕W2 it is equivalent to give four maps

L11 : V1 →W1, L21 : V1 →W2, L12 : V2 →W1, L22 : V2 →W2

according to the rule

∀~v1 ∈ V1, ∀~v2 ∈ V2, L(~v1 + ~v2) = L11(~v1) + L21(~v1) + L12(~v2) + L22(~v2)

Proof Idea:
This follows from the previous two theorems.
We can first obtain two maps

V1 →W1 ⊕W2 and V2 →W1 ⊕W2

each of which splits up to gives us two maps, for a total of four maps.
Alternatively we can first get two maps

V1 ⊕ V2 →W1 and V1 ⊕ V2 →W2

each of which splits up to gives us two maps, for a total of four maps.
In either case, the rule which will be satisfied is

∀~v1 ∈ V1, ∀~v2 ∈ V2, L(~v1 + ~v2) = L11(~v1) + L21(~v1) + L12(~v2) + L22(~v2)

one can verify the uniqueness conditions from this rule aswell so that both proceedures
give the same result.
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Recall V = R5 and

V1 = {(a, b, 0, 0, 0) ∈ V | a, b ∈ R} V2 = {(0, 0, c, d , e) ∈ V | c, d , e ∈ R}

then V = V1 ⊕ V2, where V1 ' R2 and V2 ' R3 and W = R4 and

W1 = {(a, b, 0, 0) ∈W | a, b ∈ R} W2 = {(0, 0, c, d) ∈W | c, d ∈ R}

so that W = W1 ⊕W2 and W1 ' R2 and W2 ' R2.

A map from V1 ⊕ V2 →W1 ⊕W2 is just a 4 by 5 matrix, for example
1 2 3 4 5
5 4 3 2 1
1 1 1 1 1
2 2 3 3 3


The map L11 : V1 →W1 is

(
1 2
5 4

)
.

The map L12 : V2 →W1 is

(
3 4 5
3 2 1

)
.

The map L21 : V1 →W2 is

(
1 1
2 2

)
.

The map L22 : V2 →W2 is

(
1 1 1
3 3 3

)
.
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Recall Matricies For Abstract Transformations
Suppose U has basis ~e1, . . . , ~en and V has basis ~f1, . . . , ~fm.
The matrix for a linear transformation L : U → V has the form:

L(~e1) L(~e2) L(~e3) · · · L(~ej) · · · L(~en)
↓ ↓ ↓ ↓ ↓

a11 a12 a13 · · · a1j · · · a1n

a21 a22 a23 · · · a2j · · · a2n

a31 a32 a33 · · · a3j · · · a3n

...
...

...
...

...
ai1 ai2 ai3 · · · aij · · · ain
...

...
...

...
...

am1 am2 am3 · · · amj · · · amn



← ~f1
← ~f2
← ~f3

...

← ~fi
...

← ~fm

According to the rule

L(~ej) =

gives entries jth column︷ ︸︸ ︷
a1j
~f1 + a2j

~f2 + a3j
~f3 + · · ·+ aij~fi + · · ·+ amj

~fm

Because ~fi are a basis, this expression is unique!
Because ~ej are a basis, this expression determines L (A3Q5a)
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Suppose U has basis ~e1, . . . , ~er , ~f1, . . . , ~fn and V has basis ~g1, . . . , ~g`, ~h1, . . . , ~hk .
The matrix for a linear transformation L : U → V has the form:

L(~e1) · · · L(~ej ) · · · L(~er ) L(~f1) · · · L(~fj ) · · · L(~fn)
↓ ↓ ↓ ↓ ↓ ↓

a11 · · · a1j · · · a1r b11 · · · b1j · · · b1n

a21 · · · a2j · · · a2r b21 · · · b2j · · · b2k

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

ai1 · · · aij · · · air bi1 · · · bij · · · bin
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
a`1 · · · a`j · · · a`r b`1 · · · b`j · · · b`n
c11 · · · c1j · · · c1r d11 · · · d1j · · · d1k

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

ci1 · · · cij · · · cir di1 · · · dij · · · d1n

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

ck1 · · · ckj · · · ckr dk1 · · · dkj · · · dkn



← ~g1

← ~g2

.

.

.
← ~gi

.

.

.
← ~g`
← ~h1

.

.

.

← ~hi
.
.
.

← ~hk

According to the rules

L(~ej ) = a1j~g1 + · · ·+ aij~gi + · · ·+ a`j~g` + c1j
~h1 + · · ·+ cij~hi + · · ·+ ckj~hk

and
L(~fj ) = b1j~g1 + · · ·+ bij~gi + · · ·+ b`j~g` + d1j

~h1 + · · ·+ dij~hi + · · ·+ dkj~hk

By splitting the basis up into multiple pieces we can cut the matrix up into pieces. The
same things works if we use even more pieces.
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Recall that cutting up a basis is equivalent to giving a direct sum decomposition and so if
we write

V1 = Span(~e1, . . . , ~er ) V2 = Span(~f1, . . . , ~fn)

W1 = Span(~g1, . . . , ~g`) W2 = Span(~h1, . . . , ~hk)

So that
V = V1 ⊕ V2 and W = W1 ⊕W2.

Then giving a linear transformation L : V →W with the formula

L(~ej) =

(
s∑

i=1

aij~gi

)
+

(
t∑

i=1

cij~hi

)
L(~fj) =

(
s∑

i=1

bij~gi

)
+

(
t∑

i=1

dij~hi

)
is equivalent to giving four linear transformations

L11 : V1 →W1, L21 : V1 →W2, L12 : V2 →W1, L22 : V2 →W2

With the formulas:

L11(~ej) =

(∑̀
i=1

aij~gi

)
L21(~ej) =

(
k∑

i=1

cij~hi

)
L12(~fj) =

(∑̀
i=1

bij~gi

)
L22(~fj) =

(
k∑

i=1

dij~hi

)
Then the matrix for L is of the form: (

A11 A12

A21 A22

)
Where Aij is the matrix for Lij with respect to the relevant basis.
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Zero-Blocks
If we happen to know that L(V1) ⊂W1, then this says that in the formula

L(~ej) =

(
s∑

i=1

aij~gi

)
+

(
t∑

i=1

bij~hi

)
all of the bij = 0 (Why?), and consequently L21 = 0 and so A21 = 0, and so the matrix is
actually of the form: (

A11 A12

0 A22

)
.

Which is a nicer matrix to work with than the general case.

If instead we know L(V2) ⊂W2 we obtain instead A12 = 0.

Consequently, if we know both L(V1) ⊂W1, and L(V2) ⊂W2 then we know

A12 = 0 A21 = 0

and so the matrix for L is of the shape:(
A11 0
0 A22

)
.

Which is significantly nicer than the more general case.
There are also conditions that would make the other blocks zero.
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Notes about Block Decompositions
One key feature of block decompositions is the following formulas hold so long as the
matricies Aij and Bij have matching sizes.(

A11 A12

A21 A22

)(
B11 B12

B21 B22

)
=

(
A11B11 + A12B21 A11B12 + A12B22

A21B11 + A22B21 A21B12 + A22B22

)
(
A11 A12

0 A22

)(
B11 B12

0 B22

)
=

(
A11B11 A11B12 + A12B22

0 A22B22

)
(
A11 0
0 A22

)(
B11 0
0 B22

)
=

(
A11B11 0

0 A22B22

)
(
A11 0
0 A22

)−1

=

(
A−1

11 0
0 A−1

22

)
and if both A11 and A22 are square matricies then:

Det

((
A11 A12

0 A22

))
= Det (A11)Det (A22)

Checking these formulas is an excercise.
One can also prove abstract versions of these relating to composing
L : V1 ⊕ V2 →W1 ⊕W2 and M : W1 ⊕W2 → U1 ⊕ U2.
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Putting this into practice - Canonical Forms
Let V and W be any vector spaces, and L : V →W be any linear transformation.
Our Goal find a basis for V and one for W so the matrix for L is simple!
Pick any basis ~f1, . . . , ~fn for Ker(L), so in particular Ker(L) = Span(~f1, . . . , ~fn).

Because ~f1, . . . , ~fn are linearly independent, there is a basis B for V of the form:

~e1, . . . , ~er , ~f1, . . . , ~fn

Now recall that we proved that we can write:

V = Span(~e1, . . . , ~er )⊕ Span(~f1, . . . , ~fn) = Span(~e1, . . . , ~er )⊕Ker(L)

Lemma
The collection of vectors ~g1 = L(~e1), . . . , ~gr = L(~er ) are linearly independent.
Proof:
First, we know that because we have a direct sum decomposition we have

Span(~e1, . . . , ~er ) ∩ Span(~f1, . . . , ~fn) = {~0}

but this means
Span(~e1, . . . , ~er ) ∩Ker(L) = {~0}

so by the assigment, we know
L(~e1), . . . , L(~er )

are linearly independent.
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Lemma
The collection of vectors

~g1 = L(~e1), . . . , ~gr = L(~er )

are a generating set for Im(L), hence a basis for Im(L).

Proof: From the assignment we know because ~e1, . . . , ~er , ~f1, . . . , ~fn is a basis for V that

L(~e1), . . . , L(~er ), L(~f1), . . . , L(~fn)

is a generating set for Im(L), but because ~f1, . . . , ~fn ∈ Ker(L) we see that

Im(L) = Span(L(~e1), . . . , L(~er ), L(~f1), . . . , L(~fn))

= Span(L(~e1), . . . , L(~er ),~0 . . . ,~0)

= Span(L(~e1), . . . , L(~er ))

which shows that ~g1, . . . , ~gr are a generating set.
Corollary[Rank-Nullity Theorem]
For any linear transformation L : V →W , the rank r plus the nullity n, is equal to the
dimension of the domain, dim(V )

Dim(V ) = Rank(L) + Null(L)

Proof In the above we can see that, r is the rank, n is the nullity, and r + n is the
number of elements in a basis for V .
This result is useful, we have seen it before for matricies.
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Now, using that ~g1, . . . , ~gr are linearly independent in W , we can as before, extend to a
basis

~g1, . . . , ~gr , ~h1, . . . , ~h`

for W , so that again we have

W = Span(~g1, . . . , ~gr )⊕ Span(~h1, . . . , ~h`) = Im(L)⊕ Span(~h1, . . . , ~h`)

Lemma
The matrix A for L with respect to the basis

~e1, . . . , ~er , ~f1, . . . , ~fn

for V and
~g1, . . . , ~gr , ~h1, . . . , ~h`

for W is of the form: (
Idr 0
0 0

)
Proof Sketch:
The first r columns come from the equations

L(~ei ) = ~gi = 0~g1 + 0~g2 + · · ·+ 1~gi + · · ·+ 0~gr + 0~h1 + · · ·+ 0~h`

the last n columns come from the equations.

L(~fj) = ~0 = 0~g1 + · · ·+ 0~gr + 0~h1 + · · ·+ 0~h`

putting all this together gives the result.
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Theorem[Smith Normal Form]
If L : V →W is any linear transformation between finite dimensional vector spaces, there
exists a choice of basis for V and a choice of basis for W such that with respect to this
basis the matrix is of the form: (

Idr 0
0 0

)
where r is the rank of L.
Proof Immediate from previous few lemmas.

Recall: On assignment one, you took a matrix A, and found P and Q so that

PAQ

was upper and lower triangular.
P was a change of basis on the codomain.
Q was a change of basis on the domain.
The result was almost (and with decent probability was) the Smith Normal Form.

The above also suggests that for Linear transformations L : V →W , the really only
defining features are the dimension of V , the dimension of W and the rank.
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What we just saw is the best that we can do for the situation L : V →W in terms of
finding a simple matrix representation for a single linear transformation.
There are other questions one could ask in this situation:

If I have two linear transformations, L1 : V →W and L2 : V →W can I make both
nice?

If I have L1 : V →W and L2 : U → V can I make both nice?

Other more elaborate setups.

Some of the above are not so hard, others lead to very hard problems. We will not focus
on this though.

What we will focus on next is the situation L : V → V , because we must use the same
basis for the domain and the codomain, the above strategy largely fails...
Except the part about using direct sum decompositions!!!
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Canonical Forms L : V → V

The above strategy fails for maps L : V → V , because in the above you had to pick a
basis for each of V and W , whereas for a map from V → V , you only get to pick one
basis.

Given two square matrices A and B we say that A and B are similar if there exists an
invertible matrix P so that:

P−1AP = B

We have seen that being similar means that the matricies can be seen to describe the
same linear transformation, just with respect to different choices of basis.

The goal of finding a canonical (that is nice) form for the matrix of L : V → V , is the
same as the goal of finding: the simplest matrix B which is similar to A

This is useful because

The simpler form will be easier to study.

In applications the interesting information the linear transformation encodes is
typically easier to see in the simple form and the choice of basis that gives rise to it.
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Preview of what we will see
Fix a linear transformation L : V → V .
We can always find a basis so that the matrix A associated to L has the shape

A =


A1

A2

. . .

Ar


where each of the Ai are square matricies (maybe not the same size, maybe all 1 by 1, or
maybe only one of them), and all the other entries are 0.

Each of the Ai have some simple structure, our two main simple shapes are:

Ai =



λ 1 0 · · · 0
0 λ 1 0
0 0 λ 1
...

. . .
. . .

...
λ 1 0
0 λ 1

0 · · · 0 λ


or Ai =



0 · · · 0 −a0

1 0 0 −a1

0 1 0 0 −a2

...
. . .

...
...

0 1 0 −a`−2

0 · · · 1 −a`−1


The form on the left is part of Jordan Canonical Form, the form on the right is part of
Rational Canonical Form, our focus will mostly be on the form on the left.
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